
New Visions on Metamorphic Testing
after aQuarter of a Century of Inception

Tsong Yueh Chen
Department of Computer Science & Software Engineering

Swinburne University of Technology, Australia
tychen@swin.edu.au

T. H. Tse
Department of Computer Science

The University of Hong Kong, Hong Kong
thtse@cs.hku.hk

ABSTRACT
Metamorphic testing (MT) was introduced about a quarter of a
century ago. It is increasingly being accepted by researchers and
the industry as a useful testing technique. The studies, research
results, applications, and extensions of MT have given us many
insights and visions for its future. Our visions include: MRs will
be a practical means to top up test case generation techniques,
beyond the alleviation of the test oracle problem; MT will not only
be a standalone technique, but conveniently integrated with other
methods; MT and MRs will evolve beyond software testing, or even
beyond verification; MRs may be anything that you can imagine,
beyond the necessary properties of algorithms; MT research will be
beyond empirical studies and move toward a theoretical foundation;
MT will not only bring new concepts to software testing but also
new concepts to other disciplines; MRs will alleviate the reliable
test set problem beyond traditional approaches. These visions may
help researchers explore the challenges and opportunities for MT
in the next decade.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
Metamorphic testing, Metamorphic relation, Testing, Test oracle,
Reliable test set, Proving, Debugging
ACM Reference Format:
Tsong Yueh Chen and T. H. Tse. 2021. New Visions on Metamorphic Testing
after a Quarter of a Century of Inception. In Proceedings of the 29th ACM
Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE ’21), August 23–28, 2021,
Athens, Greece. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
3468264.3473136

1 INTRODUCTION
Metamorphic testing (MT) [3] was introduced by Tsong Yueh Chen
about a quarter of a century ago, as motivated by the question
“Are successful test cases really useless?” Following up on the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’21, August 23–28, 2021, Athens, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00
https://doi.org/10.1145/3468264.3473136

fundamental concept, more than 440 papers have been published
by various researchers and presented fruitful results. For instance,
Le et al. [16] detected more than 100 faults in existing GCC and
LLVM compilers by means of the innovative “equivalence modulo
inputs” technique, which is effectively MT. Another interesting
example is, through the use of “metamorphic robustness testing”,
Zhou et al. [35] revealed that the presence of hyphens in paper
titles inadvertently reduces citation counts and journal impact
factors. This “bizarre” finding resulted in immense coverage in
the international electronic media as well as strong rebuttal by
Web of Science [7]. Yet another (sad) example is that Zhou and
Sun [33], using MT, “detected fatal software faults in the LiDAR
obstacle-perception module of self-driving cars and reported the
alarming results eight days before Uber’s deadly crash in Tempe,
AZ, in March 2018.”

Not only is MT recognized by researchers, but is also increasingly
being accepted by the industry. Some notable examples include
Google’s high-profile acquisition [10] of GraphicsFuzz [8] (which
applies MT and fuzzing to test graphics drivers in mobile phones);
Accenture’s patent on machine learning verification [9] (which
significantly reduces the number of test cases to identify bugs);
the testing of web enabled simulation at scale in Facebook [1]; the
data analytic system in Adobe Inc. [14]; the data access toolkit in
NASA [18]; the storm water management model system in the US
Environmental Protection Agency [17]; and the epidemiological
model simulation system in Oak Ridge National Laboratory spon-
sored by the US Department of Energy [21].

Two major surveys [3, 22] have been published to review the
progress ofMT.Wewill adopt a different approach in this ESEC/FSE-
IVR paper: We will present our insights and visions on MT in many
aspects unforeseen by the originator a quarter of a century ago. We
hope that our analysis will help researchers focus their studies on
the most appropriate direction.

2 METAMORPHIC TESTING AND
METAMORPHIC RELATIONS

In this section, we will set the scene by briefly highlighting the
concepts of metamorphic testing, metamorphic relations, and meta-
morphic groups of inputs. Readers may refer to Chen et al. [3] and
Segura et al. [22] for more details.

Metamorphic testing (MT) was proposed with a view to extracting
useful information from successful test cases that do not reveal
failures. It involves multiple executions of two or more test cases.
For ease of understanding, we will only discuss the execution of two
test cases in this paper. The input and output of the first test case
are called the source input and output, while those of the other test
case are called the follow-up input and output. These test cases are

1487

Postprint of paper in Ideas, Visions and Reflections Track, Proceedings of the ACM
Joint European Software Engineering Conference and Symposium on Foundations of
Software Engineering (ESEC/FSE ’21), ACM, New York, NY, pp. 4087-4090 (2021)

https://doi.org/10.1145/3468264.3473136
https://doi.org/10.1145/3468264.3473136
https://doi.org/10.1145/3468264.3473136

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece T. Y. Chen and T. H. Tse

linked up bymetamorphic relations (MRs), which are determined by
some necessary properties of the algorithm of the program under
test. The pair of source and follow-up inputs is called ametamorphic
group (MG) of inputs.

In software testing, a test oracle is the mechanism to determine
whether the outputs from a program is correct. A program is said
to be non-testable if (a) an oracle does not exist, or (b) it takes
too much time to apply. We refer to such situations as the oracle
problem.

Consider, for instance, a program that implements the sine fun-
ction. It accepts an angle 𝑥 in degrees to 99 places after decimal
and returns sin(𝑥) with the same number of decimal places. There
is no simple oracle to determine whether the output is erroneous.
Taking note of MT guidelines, we treat 𝑥 and sin(𝑥) as source
input and output, and apply the basic trigonometric property that
sin(𝑥) = sin(180−𝑥) for any angle 𝑥 in degrees. It can be expressed
as an MR that relates the source and follow-up test cases:

If 𝑥 ′ = 180 − 𝑥, then sin(𝑥 ′) = sin(𝑥).

Testing the program again using a follow-up input 𝑥 ′ = 180 − 𝑥 ,
if sin(𝑥 ′) ≠ sin(𝑥), it will indicate that the MR has been violated,
thus revealing a failure.

In addition to alleviating the oracle problem, MRs are also useful
in generating test cases based on successful test cases.

3 NEW VISIONS ON METAMORPHIC TESTING
3.1 Beyond Alleviation of Test Oracle Problem:

A Top-up Test Case Generation Method
MT started off as a test case generation technique, but
shortly became better known as a method to address
the test oracle problem. We envisage that MT’s role as
a good test case generation technique will continue to
grow and become as popular as its function to alleviate
the test oracle problem.

The original motivation behind MT is how to explore the useful
information associated with a test case that does not reveal any
failure. Therefore, MT was first designed as a test case generation
method. Shortly after its invention, it became obvious that MT
could alleviate the oracle problem. Since then, the focus on MT has
been shifted to addressing this problem, that is, the use of MT to
test non-testable software.

MT appears to be the only approach that can address the two
key problems in software testing, namely the oracle problem and
the reliable test set problem (see Section 3.7). The original intuition
for MT is: The source test cases are generated by a specific test case
generation method, referred to as the original test case generation
method. Then, follow-up test cases are generated by a method built
on the given MR and the original test case generation method. In
other words, given any test case generation method, MT provides
a generic approach to transforming it into an “enhanced” version,
which is expected to have a better failure detection capability
than the original method. Recent studies [2, 25, 32] have reported
that follow-up test cases are more effective in revealing failures
than their corresponding source test cases. We envisage that more
experimental and theoretical studies will be conducted to further
investigate the failure detection capabilities between the source and

follow-up test cases. More attention will be focused on the initial
aim behind the proposal of MT, that is, how to useMT as an effective
test case generation method, regardless whether the software is
testable or non-testable. In the future, if one has decided to adopt a
particular test case generation technique, it will be worthwhile to
consider topping it up with appropriate MRs.

3.2 Beyond a Standalone Technique:
Integration with Other Methods
Originally developed as a standalone technique, MT has
successfully integrated with other methods. We envisage
that MT will be a popular integration partner with
many more methods.

Even though MT was developed as a standalone technique, it
can easily be integrated with other techniques, mainly because
its concept is simple and its process is straightforward. The only
arguable assumption in MT is the existence and availability of MRs,
which are defined as necessary properties involving multiple inputs
and the corresponding outputs of the algorithm for the program
under test. We cannot conceive of any application that does not
have desirable properties that are necessary. As a reminder, MRs
are only necessary properties, rather than necessary and sufficient
properties. Therefore, there are normally many potential MRs, and
it should not be too difficult to identify at least some of them.
Moreover, the MT process only involves program executions and
checking the relations among multiple inputs and their computed
outputs. As there is no need for any preconditions except specific
MRs, and because of the simplicity of the process, MT can easily
be integrated with other methods [15]. Existing work has covered
the integration of MT with debugging [5], fault localization [28],
program repair [15], and symbolic execution [5].We envisage that it
will become a standard research question for researchers to consider
whether, through the use ofMRs, the applicability of their developed
methods can be extended to programs without test oracles, even
if the original methods assume the presence of oracles. This may
as well become a common question to be raised by reviewers for
papers assuming the need for oracles.

As described in [3], the integration can be facilitated through
two steps, namely, (a) the correspondence between a single test case
and an MG of test cases, and (b) the correspondence between the
pass/fail outcome of the single test case and the satisfaction/violation
outcome of theMGwith respect to anMR. In conventional debugging
with slicing, for instance, we need only debug the slices related to
failure-revealing inputs (instead of the whole program), because
we know that the fault must reside within these slices. When we
integrate MT and debugging with slicing, we need only debug
the slices related to violation-revealing MGs. In short, the focus is
shifted from failure-revealing inputs to violation-revealing MGs.

3.3 Beyond Testing: Also Proving and
Debugging
Originally developed as a software testing technique,
MT has migrated into proving and debugging as additio-
nal means of verification. It appears to be the only
technique applicable to all three areas of verification,
namely testing, proving, and debugging.

1488

New Visions on Metamorphic Testing after aQuarter of a Century of Inception ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

MT was first proposed as a software testing technique for verifi-
cation, by generating follow-up test cases and checking against the
MRs. Like the limitation of traditional software testing, it can only
reveal the failures of a program with respect to MRs, but cannot
prove the correctness of the program. In other words, MT can only
show that an MR does not hold for the program for some MGs,
but cannot show that MRs always hold for the program for any
eligible MGs. It is therefore natural to go beyond testing MRs to the
proving of MRs. In this way, MT evolves into a proving technique
[5]. More importantly, when MRs are proven not to hold for a
program, constraints on inputs that lead to the invalidity of the
MRs can be obtained. Such constraints provide useful information
for program debugging and repair [5].

During traditional testing, we may detect an erroneous result
for a specific input of, say, 𝑥 = 5. Debuggers will then attempt to
localize the fault and repair the program based on this specific input.
Suppose we apply MT instead. We would reveal the violation of an
MR when, say, 𝑥 is greater than 3 but smaller than 6. Obviously, the
condition “3 < 𝑥 < 6” is more informative than the specific input
“𝑥 = 5” in debugging and repair.

The use of MT as proving and debugging techniques will grow
because it provides a very different perspective when compared
with traditional proving and debugging, which are driven by specific
inputs; whereas MRs involve conditions for multiple inputs. We
envisage thatMTwill show its popularity in all aspects of verification:
not only testing, but also proving and debugging. To the best of our
knowledge, MT is the only technique that is applicable to all three
areas of verification.

3.4 Beyond Necessary Properties of the
Algorithms: Anything You Can Imagine
Although MRs were first defined as the necessary prope-
rties of the algorithm whose implementation will be
tested, the definition, roles, and uses have evolved beyond
verification. We envisage that new roles and uses of MRs
will continue to emerge.

MRs were originally defined as the necessary properties of prog-
ram algorithms. In the context of validation [27], MRs can be defined
for the expectations from the users’ perspective. In the context of
system assessment or selection [29], MRs can be defined for the
evaluation, adequacy, or appropriateness criteria. In the context of
software understanding [34], MRs can help user comprehension in
the absence of a thorough specification. Thus, diverse definitions,
roles, and uses of MRs have emerged as the MT concept is being
extended to various areas. We envisage a continued growth of the
diversified roles and usages of MRs to capture various kinds of
information through the powerful mathematical “relations”. They
do not have any limitation except perhaps our own imagination.

3.5 Beyond Empirical Research: Toward a
Theoretical Foundation for MT

Because of its simplicity, there has been a long misconception that
MT is unlikely to have an enriched and sound theoretical foundation
with formally predictable consequences. Nevertheless, researchers
have found that the development of a solid foundation theory for
MT is feasible and useful. For instance, a recent theoretical analysis

unveils sufficient conditions for composite MRs to be more cost
effective than component MRs [20] (in terms of the ratio of the
number of faults detected to the number of program executions).
This result is important because it identifies the precise situations
where a composite MR will preserve the fault detection capability
of individual component MRs. This saves test resources without the
need to compromise the fault detection capability. Another key area
is a foundation for the automatic construction of MRs, which has
received growing attention as more and more MR construction
methods are being developed [23, 30]. Yet another area is the
concept of diversity for MRs [19], which plays a major role in
their effectiveness. It is well known that, as necessary properties,
MRs can be expressed as a partially ordered set. Hence, for any two
given MRs that have a specific connection in this partial ordering,
what is the relationship between their fault detection effectiveness?
There are so many interesting (although challenging) questions to
be investigated with a view to building a theoretical foundation for
MT, which will in turn lead to various impacts on software quality.

3.6 Beyond New Concepts in Software Testing:
New Concepts in Other Disciplines As Well
Not only has MT introduced new ideas in software
testing, but also new concepts in other disciplines. We
envisage more new concepts will continue to develop in
other disciplines along with the evolution of MT and
MR.

The fundamentals for MT have gradually been developed. The
concepts of diversity of MRs, composition of MRs, adequacy of MRs,
fault detection effectiveness of MT, and the likelihood that an input
in a violating MG is a failing input, have gradually been established
to enrich the solid foundation. At the same time, the emergence of
new concepts is not just restricted to software testing. New concepts
are being brought by MT in other disciplines as well. For instance,
slicing [24, 26] is a very important concept in program analysis.
A new type of slice [28] was proposed for MT as a counterpart of
traditional execution slices. Similarly, MT-based counterparts of
other kinds of traditional slices are envisaged, resulting in a new
family of metamorphic slices in parallel with the original family of
traditional slices. This will definitely enrich the notion of slicing
and enhance its applicability.

3.7 Beyond the Traditional Approach to
Alleviating the Reliable Test Set Problem:
Selecting MRs Rather Than Test Cases

It is well known that testing can only reveal the presence of faults
in a piece of software, but cannot guarantee its correctness. More
specifically, Howden [13] has proven that it is impossible to find
any algorithm such that, for any given program 𝑃 , it can construct
a reliable test set 𝑇 whose successful execution will imply the
correctness of 𝑃 , unless𝑇 is the entire input domain. This is referred
to as the reliable test set problem.

Even though the problem cannot be completely solved, numerous
test case selection or generation techniques have been developed for
the last several decades to improve test adequacy and effectiveness.
Nevertheless, research on test case selection appears to have reached

1489

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece T. Y. Chen and T. H. Tse

a slowmoving stage, as no innovative technique has been developed
for quite a while. Research has shown that a small number of diverse
MRs is almost as effective as the whole set of MRs [19] in ensuring
software quality. Hence, we envisage that MR selection (instead of
test case selection) will emerge as a fundamental task for effective
and efficient software testing.

4 CONCLUDING REMARKS
Along with the evolution of MT, we anticipate that more and more
interesting, significant, and influential research will continue to
emerge, as evidenced by the continuing growth of papers on MT.
New concepts will be developed to enrich the theoretical foundation
for MT as well as other disciplines. We envisage to have better
knowledge and understanding on how to define and generate MRs,
how to composite MRs, and how to select a group of diverse MRs
for cost-effective testing. The selection and generation of MRs
will become as important and as fundamental as the selection and
generation of test cases. Furthermore, the following will become
standard questions for researchers to answer:

(1) How to useMRs to top up your test case generation technique?
(2) How to integrate MT with your technique that assumes a

test oracle, so that the enhanced method will be applicable
to non-testable systems?

We envision that MT may become a cutting-edge approach to
the quality assurance of big data analytics [6], deep and machine
learning systems [4, 11, 31], and complex simulations [12, 17], which
are some of the major types of systems in our daily life for the next
few decades, as already evidenced by some of its initial successes
in these areas.

ACKNOWLEDGMENTS
T. Y. Chen would like to thank David Rosenblum for his encourage-
ment and confidence in metamorphic testing since the early days
of inception. This project is supported by a grant from Facebook
and a grant from Australian Research Council (DP210102447).

REFERENCES
[1] J. Ahlgren, M. Berezin, et al. 2021. Testing web enabled simulation at scale

using metamorphic testing. Proceedings of the 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering in Practice (ICSE-
SEIP’21) (2021), 140–149.

[2] A. Chan, L. Ma, F. Juefei-Xu, Y. S. Ong, X. Xie, M. Xue, and Y. Liu. 2021. Breaking
neural reasoning architectures with metamorphic relation-based adversarial
examples. IEEE Trans. Neural Net. Learn. Sys. (2021). https://doi.org/doi:10.1109/
TNNLS.2021.3072166

[3] T. Y. Chen, F. C. Kuo, H. Liu, P. L. Poon, D. Towey, T. H. Tse, and Z. Q. Zhou. 2018.
Metamorphic testing: A review of challenges and opportunities. ACM Comp.
Surv. 51(1) (2018), 4:1–4:27.

[4] T. Y. Chen, P. L. Poon, K. Qiu, Z. Zheng, and J. Zhou. 2021. Use of metamorphic
relations as knowledge carriers to train deep neural networks. arXiv preprint
(2021), arXiv:2104.04718.

[5] T. Y. Chen, T. H. Tse, and Z. Q. Zhou. 2011. Semi-proving: An integrated method
for program proving, testing, and debugging. IEEE Trans. Soft. Eng. 37(1) (2011),
109–125.

[6] A. Davoudian and M. Liu. 2020. Big data systems: A software engineering
perspective. ACM Comp. Surv. 53(5) (2020), 110:1–110:39.

[7] P. Dockrill. 2019. Study claims one punctuation mark has been
skewing our scientific ranking system. ScienceAlert. Retrieved from
https://www.sciencealert.com/hyphens-break-our-entire-system-of-scientific-
ranking-new-analysis-reveals (2019).

[8] A. F. Donaldson, H. Evrard, A. Lascu, and P. Thomson. 2017. Automated testing
of graphics shader compilers. Proc. ACM Program. Lang. 1(OOPSLA) (2017),
93:1–93:29.

[9] A. Dwarakanath, M. Ahuja, S. Sikand, R. M. Rao, R. P. J. C. Bose, N. Dubash, and S.
Podder. 2018. Identifying implementation bugs in machine learning based image
classifiers using metamorphic testing. Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA’18) (2018), 118–
128.

[10] Google-GraphicsFuzz. 2018. GraphicsFuzz is acquired by Google. Retrieved from
https://www.graphicsfuzz.com/ (2018).

[11] P. He, C. Meister, and Z. Su. 2020. Structure-invariant testing for machine
translation. Proceedings of the 42nd International Conference on Software
Engineering (ICSE’20) (2020), 961–973.

[12] X. He, X. Wang, J. Shi, and Y. Liu. 2020. Testing high performance numerical
simulation programs: Experience, lessons learned, and open issues. Proceedings of
the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA’20) (2020), 502–515.

[13] W. E. Howden. 1976. Reliability of the path analysis testing strategy. IEEE Trans.
Soft. Eng. 2(3) (1976), 208–215.

[14] D. C. Jarman, Z. Q. Zhou, and T. Y. Chen. 2017. Metamorphic testing for
Adobe data analytics software. Proceedings of the 2nd International Workshop on
Metamorphic Testing (MET’17) (2017), 21–27.

[15] M. Jiang, T. Y. Chen, F. C. Kuo, D. Towey, and Z. Ding. 2017. A metamorphic
testing approach for supporting program repair without the need for a test oracle.
J. Soft. Sys. 126 (2017), 127–140.

[16] V. Le, M. Afshari, and Z. Su. 2014. Compiler validation via equivalence modulo
inputs. Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’14) (2014), 216–226.

[17] X. Lin, M. Simon, and N. Niu. 2021. Scientific software testing goes serverless:
Creating and invoking metamorphic functions. IEEE Soft. 38(1) (2021), 61–67.

[18] M. Lindvall, D. Ganesan, R. Ardal, and R. E. Wiegand. 2015. Metamorphic model-
based testing applied on NASADAT: An experience report. Proceedings of the 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering (ICSE’15) 2
(2015), 129–138.

[19] H. Liu, F. C. Kuo, D. Towey, and T. Y. Chen. 2014. How effectively does
metamorphic testing alleviate the oracle problem? IEEE Trans. Soft. Eng. 40(1)
(2014), 4–22.

[20] K. Qiu, Z. Zheng, T. Y. Chen, and P. L. Poon. 2020. Theoretical and empirical
analyses of the effectiveness of metamorphic relation composition. IEEE Trans.
Soft. Eng. (2020). https://doi.org/doi:10.1109/TSE.2020.3009698

[21] A. Ramanathan, C. A. Steed, and L. L. Pullum. 2012. Verification of compartmental
epidemiological models using metamorphic testing, model checking and visual
analytics. Proceedings of the 2012 ASE/IEEE International Conference on BioMedical
Computing (BioMedCom’12) (2012), 68–73.

[22] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortes. 2016. A survey on
metamorphic testing. IEEE Trans. Soft. Eng. 42(9) (2016), 805–824.

[23] S. Segura, J. A. Parejo, J. Troya, and A. Ruiz-Cortes. 2018. Metamorphic testing
of RESTful web APIs. IEEE Trans. Soft. Eng. 44(11) (2018), 1083–1099.

[24] J. Silva. 2012. A vocabulary of program slicing-based techniques. ACM Comp.
Surv. 44(3) (2012), 12:1–12:41.

[25] Y. Tian, K. Pei, S. Jana, and B. Ray. 2018. DeepTest: Automated testing of deep-
neural-network-driven autonomous cars. Proceedings of the 40th International
Conference on Software Engineering (ICSE’18) (2018), 303–314.

[26] M. Weiser. 1984. Program slicing. IEEE Trans. Soft. Eng. 10(4) (1984), 352–357.
[27] X. Xie, J. W. K. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen. 2011. Testing

and validating machine learning classifiers by metamorphic testing. J. Sys. Soft.
84(4) (2011), 544–558.

[28] X. Xie, W. E.Wong, T. Y. Chen, and B. Xu. 2013. Metamorphic slice: An application
in spectrum-based fault localization. Info. Soft. Tech. 55(5) (2013), 866–879.

[29] X. Xie, Z. Zhang, T. Y. Chen, Y. Liu, P. L. Poon, and B. Xu. 2020. METTLE: A
metamorphic testing approach to assessing and validating unsupervised machine
learning systems. IEEE Trans. Reliab. 69(4) (2020), 1293–1322.

[30] B. Zhang, H. Zhang, J. Chen, D. Hao, and P. Moscato. 2019. Automatic discovery
and cleansing of numerical metamorphic relations. Proceedings of 2019 IEEE
International Conference on Software Maintenance and Evolution (ICSME’19) (2019),
235–245.

[31] J. M. Zhang, M. Harman, L. Ma, and Y. Liu. 2020. Machine learning
testing: Survey, landscapes and horizons. IEEE Trans. Soft. Eng. (2020),
doi:10.1109/TSE.2019.2962027.

[32] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid. 2018. DeepRoad: GAN-
based metamorphic testing and input validation framework for autonomous
driving systems. Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering (ASE’18) (2018), 132–142.

[33] Z. Q. Zhou and L. Sun. 2019. Metamorphic testing of driverless cars. Comms.
ACM 62(3) (2019), 61–67.

[34] Z. Q. Zhou, L. Sun, T. Y. Chen, and D. Towey. 2020. Metamorphic relations for
enhancing system understanding and use. IEEE Trans. Soft. Eng. 46(10) (2020),
1120–1154.

[35] Z. Q. Zhou, T. H. Tse, and M. Witheridge. 2021. Metamorphic robustness testing:
Exposing hidden defects in citation statistics and journal impact factors. IEEE
Trans. Soft. Eng. 47(6) (2021), 1164–1183.

1490

https://doi.org/doi:10.1109/TNNLS.2021.3072166
https://doi.org/doi:10.1109/TNNLS.2021.3072166
https://doi.org/doi:10.1109/TSE.2020.3009698

	Abstract
	1 Introduction
	2 Metamorphic Testing and Metamorphic Relations
	3 New Visions on Metamorphic Testing
	3.1 Beyond Alleviation of Test Oracle Problem: A Top-up Test Case Generation Method
	3.2 Beyond a Standalone Technique: Integration with Other Methods
	3.3 Beyond Testing: Also Proving and Debugging
	3.4 Beyond Necessary Properties of the Algorithms: Anything You Can Imagine
	3.5 Beyond Empirical Research: Toward a Theoretical Foundation for MT
	3.6 Beyond New Concepts in Software Testing: New Concepts in Other Disciplines As Well
	3.7 Beyond the Traditional Approach to Alleviating the Reliable Test Set Problem: Selecting MRs Rather Than Test Cases

	4 Concluding Remarks
	References

