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Continuous Collision Detection for Ellipsoids
Yi-King Choi, Jung-Woo Chang, Wenping Wang, Myung-Soo Kim, and Gershon Elber

Abstract—We present an accurate and efficient algorithm for continuous collision detection between two moving ellipsoids under

rational Euclidean or affine motion. We start with a highly optimized implementation of interference testing between two stationary

ellipsoids based on an algebraic condition described in terms of the signs of roots of the characteristic equation of two ellipsoids. Then

we derive a time-dependent characteristic equation for two moving ellipsoids, which enables us to develop an efficient algorithm for

computing the time intervals in which two moving ellipsoids collide. The effectiveness of our approach is demonstrated with practical

examples.

Index Terms—Ellipsoid, rational motion, Euclidean motion, affine motion, continuous collision detection, characteristic equation, zero

set
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1 INTRODUCTION

MOTION design, analysis, and planning are impor-
tant research topics that furnish a common sci-

entific base to diverse engineering disciplines such as
robotics, CAD/CAM, computer animation, and 3D com-
puter games [1]. For the simulation of realistic dynamical
motions, rigid objects should not penetrate each other;
and when they collide, impulsive response needs to be
handled properly. Real-time collision detection is also
crucial to physics engines for 3D computer games and
simulation of virtual environments [2].

Collision detection for general freeform moving ob-
jects is computationally very expensive. The use of
bounding volumes reduces the computational cost sig-
nificantly by first performing easy tests to simple ge-
ometric primitives such as spheres [3], axis-aligned
bounding boxes [4], [5], oriented bounding boxes [6],
and discrete oriented polytopes [7]. Due to its simplicity
and superior capability of shape approximation, the
ellipsoid is used as the bounding volume for robotic
arms and convex polyhedra for collision detection [8]–
[11]. Bischoff and Kobbelt [12] use a set of overlapping
ellipsoids for a compact, robust, and level-of-detail rep-
resentation of 3D objects defined as polygonal meshes.
Hyun et al. [13] show that sweeps of ellipsoids fit tightly
to human arms and legs. Thus ellipsoids have much
potential as a bounding volume for 3D freeform objects.

Rimon and Boyd [9] present a numerical technique for
computing the quasi-distance, called margin, between two
separate ellipsoids. Sohn et al. [14] compute the distance
between two ellipsoids using line geometry. Using the
Lagrange conditions, Lennerz and Schömer [15] present
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an algebraic algorithm for computing the distance be-
tween two quadrics. Distance computation is a more
difficult problem than collision detection since the latter
can be solved as a subproblem of the former—a pos-
itive distance between two objects implies no collision
between the two.

Ellipsoids are also used to represent the shapes of soil
particles in geo-mechanics and the iso-potential surface
of a molecule in computational physics [16]. The overlap
test for ellipsoids is of high interest in these fields [17],
[18]. In the field of astronautics, ellipsoids are used to
represent threat volumes of space objects to determine
possible close approach events [19].

Previous solutions for overlap test are mainly based
on numerical techniques; moreover, they are limited to
the case of stationary ellipsoids. For ellipsoids moving
with on-the-fly motions, collision detection exploiting
inter-frame coherence using separating planes has been
studied in [20]. To deal with moving ellipsoids with pre-
specified motions, one may perform a sequence of in-
terference tests between two stationary ellipsoids along
their respective motion paths at discrete time intervals.
Although temporal coherence can be taken into account
for speed-up, errors often occur due to inadequate tem-
poral sampling. Therefore it is desirable to achieve fast
continuous collision detection (CCD) of ellipsoids.

Continuous collision detection (CCD) is currently an
active research direction. Redon et al. [21]–[23], Govin-
daraju et al. [24], and Kim et al. [25] consider CCD in var-
ious simulation environments, comprising of hundreds
of thousands of polygons as obstacles and complex mov-
ing objects composed of articulated links. They develop
efficient algorithms of interactive speed for CCD while
employing effective computational tools for culling re-
dundant geometry at various stages of computation.
Redon et al. [21] use Oriented Bounding Box (OBB) as
the basic bounding volume, whereas Redon et al. [22],
[23] and Kim et al. [25] employ Line Swept Sphere (LSS).
These methods take geometric approaches in culling
redundant geometry. In particular, Redon et al. [22], [23]



2

and Kim et al. [25] apply a GPU-based collision detection
to the swept volumes of LSS primitives against the
environment; moreover, Govindaraju et al. [24] present a
GPU-based algorithm that can also deal with deformable
models. Zhang et al. [26], on the other hand, deal with
the CCD of articulated models with the approach of
conservative advancement that repeatedly moves objects
by a computed time step while ensuring non-collision.
Significant performance gain is achieved by using Taylor
models to construct dynamic bounding volume hierar-
chies of the articulated models. However, real-time CCD
of ellipsoids has not been addressed in the literature.
In this paper we use an algebraic formulation of the
problem and propose an efficient numerical solution that
achieves real-time performance.

Because swept volumes and distances are difficult
to compute for ellipsoids, an algebraic approach seems
more suitable for the CCD of ellipsoids. Research in
surface-surface-intersection of quadrics, which is closely
related to the problem of collision detection of ellipsoids,
also suggests that the algebraic treatment is a natural
approach for ellipsoids—geometric approaches usually
produce efficient intersection algorithms only for a lim-
ited class of simple quadrics, called natural quadrics (i.e.,
spheres, circular cylinders and cones) [27], [28], while
algebraic techniques are capable of handling general
quadrics [29]–[31]. Indeed, our algebraic approach leads
to an accurate solution to the CCD problem for moving
ellipsoids under rational Euclidean or affine motions.

The continuous collision detection for moving ellip-
soids in 3D space is far more complex than that for mov-
ing ellipses in 2D plane. An algebraic approach is used in
solving the CCD problem for moving ellipses [32], where
a univariate polynomial is formulated whose roots cor-
respond to the time instants at which the ellipses are
in internal or external touch. For moving ellipsoids,
however, the same approach of relying on detecting the
roots of the univariate polynomial is infeasible, since a
root of such a univariate equation may not correspond
to any contact between the two ellipsoids, as pointed out
in [32].

Based on the algebraic condition of Wang et al. [33] for
the separation of two stationary ellipsoids, we proposed
in our preliminary study [34] a method that reduces the
CCD problem for two moving ellipsoids to an analysis
of the zero set of a bivariate polynomial equation which
has high degree in the time parameter t. The resulting
algorithm proposed there cannot meet the real-time re-
quirement as it takes seconds to perform a single CCD
of moving ellipsoids.

In this paper we use the same algebraic formula-
tion in [34] but shall present a new efficient numerical
method to solve the problem about three orders of
magnitude faster than the previous method in [34], thus
bringing ellipsoid-based continuous collision detection
into the realm of computer graphics for real-time appli-
cations. This is achieved by exploring the special struc-
ture of the bivariate function under consideration and

employing several novel and efficient search techniques.
It is assumed throughout that the motions of moving
ellipsoids, either Euclidean or affine, are expressible as
rational functions of the time parameter t.

Our main contributions are:

• We present an efficient implementation of the
algebraic method for detecting overlap between
two stationary ellipsoids, which requires 107 addi-
tions/subtractions, 141 multiplications and 6 divi-
sions.

• We present an accurate and efficient algorithm
for detecting the collision between two moving
ellipsoids suitable for real-time applications. The
proposed algebraic approach computes the contact
time, contact point, as well as the time interval of
collision.

• Our algorithm works not only for Euclidean mo-
tions but also for affine motions, meaning that the
moving ellipsoids may change their shapes under
affine transformations. This facility can be a poten-
tial advantage over the traditional methods when
adapting our method to collision detection for de-
formable moving objects, such as human or animal
bodies.

Now a few words on the practicality of our result
are in order. According to the operation counts, our
approach requires about 20%∼30% more arithmetic op-
erations than the OBB overlap test [6] and even more
operations than other tests such as spheres, AABBs, k-
DOPs, and LSSs. Thus the ellipsoidal CCD should be
applied to special cases where ellipsoids provide tighter
fit to freeform objects, possibly undergoing deformations
that can locally be approximated by affine deformations.
To this end, the recent trend in 3D modeling for the next
generation GPU architecture [35], [36] is quite promising,
where 3D shapes are directly represented using paramet-
ric surfaces to alleviate the bottleneck of bus bandwidth.
As indicated by the Dupin indicatrix of a surface, convex
parts of surfaces can be tightly fit with ellipsoids. Exact
contact time and contact point of two ellipsoids would
provide good initial solutions for further processing of
the underlying parametric surfaces.

The rest of this paper is organized as follows. We
first present an algorithm for detecting overlap between
two stationary ellipsoids in Section 2, focusing on an
efficient implementation with a minimized number of
arithmetic operations. Then we present the continuous
collision detection algorithm for two moving ellipsoids
in Section 3. We present some experimental results in
Section 4, and conclude the paper in Section 5. To keep
a comfortable flow of reading, detailed analysis and
argument are given in the appendices.

2 DETECTING OVERLAP BETWEEN STATION-
ARY ELLIPSOIDS

In this section we present an efficient algorithm for de-
tecting overlap between two stationary ellipsoids which
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are assumed to be sampled instances of two moving
ellipsoids at the same instant. This algorithm is based
on the separation condition for two ellipsoids proved
in [33]. The contribution here is an optimized algorithm
with a minimal number of arithmetic operations; we
conclude that 107 additions/subtractions, 141 multipli-
cations and 6 divisions are needed. This efficient im-
plementation, while having practical values in its own
right, will be invoked in the subsequent method for the
continuous collision detection of moving ellipsoids.

An ellipsoid A is represented by a quadratic equation
XT AX = 0 in E

3, where X = (x, y, z, w)T are the
homogeneous coordinates of a point in 3D space. The
symmetric matrix A is normalized so that the interior of
A is given by XT AX < 0; this amounts to assuming that
the determinant |A| < 0.

Two ellipsoids are said to be overlapping if their in-
teriors have non-empty intersection. They are said to be
separate or disjoint if their boundary surfaces and interiors
share no common points. Two ellipsoids that are not
separate but share no common interior points are said
to be touching.

For two ellipsoids A : XT AX = 0 and B : XT BX = 0
in E

3, the quartic polynomial f(λ) = det(λA−B) is called
the characteristic polynomial and f(λ) = 0 is called the
characteristic equation of A and B. The polynomial f(λ)
has degree 4, its leading term has a negative coefficient,
and it always has two positive real roots. The following
theorem [33] captures the relationship between the ge-
ometric configuration of two ellipsoids and the roots of
their characteristic equation:

THEOREM 1 (Separation condition of two stationary
ellipsoids) Let A and B be two ellipsoids with characteristic
equation f(λ) = 0. Then,

1) A and B are separate if and only if f(λ) = 0 has two
distinct negative roots;

2) A and B touch each other externally if and only if f(λ) =
0 has a negative double root.

REMARK 1 Note that the theorem in [33] assumes that the
characteristic equation has the form of f(λ) = det(λA+B) =
0 and therefore the result there is stated in terms of positive
roots. Our changes here make the presentation consistent with
the classic literature in linear algebra.

REMARK 2 Clearly, the leading coefficient and the constant
term of f(λ) are |A| and |B|. So they are negative [33]. This
implies that f(λ) = 0 has two distinct negative roots if and
only if f(λ0) > 0 for some λ0 < 0. The latter condition on a
sign test is more convenient, especially when we consider two
moving ellipsoids.

2.1 Characteristic polynomial

For efficient implementation, it is crucial to set up the
characteristic equation using a minimal number of arith-
metic operations. We now present an efficient algorithm
for this computation.

An ellipsoid is said to be in canonical form if it is
represented by a diagonal matrix

A =









1/a2 0 0 0
0 1/b2 0 0
0 0 1/c2 0
0 0 0 −1









. (1)

Under an affine transformation MA this ellipsoid is
transformed to one in a general form with coeffi-
cient matrix (M−1

A )T AM−1
A . Now assume that we use

two transforms MA and MB to obtain two ellipsoids
(M−1

A )T AM−1
A and (M−1

B )T BM−1
B , where A and B are

diagonal matrices representing ellipsoids in canonical
positions. Then the characteristic polynomial of the two
ellipsoids is f(λ) = det(λ(M−1

A )T AM−1
A −(M−1

B )T BM−1
B ).

In the following we first compute the coefficients of
the quartic polynomial f(λ), and then the signs of the
roots of the polynomial are computed to determine the
relative configuration of the two ellipsoids. Given two
ellipsoids represented as the images of their standard
diagonal form (cf. (1)) under the transformations MA and
MB , we may simultaneously transform them to A and
MT

A (M−1
B )T BM−1

B MA, where A is a diagonal matrix as
in (1) and MT

A (M−1
B )T BM−1

B MA is treated as a general
4×4 matrix. The characteristic polynomial then takes the
following form: f(λ) = det(λA−MT

A (M−1
B )T BM−1

B MA);
obviously the roots of the characteristic polynomial
remain the same as before. The power form of f(λ)
in λ can be obtained by expanding the determinant
det(λA − MT

A (M−1
B )T BM−1

B MA). Then we can use its
Sturm sequence to determine whether the two ellipsoids
overlap, by Theorem 1.

2.2 Computational cost

To count the number of negative real roots of f(λ), we
will first compute the Sturm sequence of f(λ) and then
check the sign flips of this sequence at 0 and −∞. For
the moment we assume that MA and MB are Euclidean
transformations, since this is a case that is used most
often in applications. To compute MT

A (M−1
B )T BM−1

B MA,
we note that MB is the composition of a rotation RB

followed by a translation VB , so its inverse M−1
B is

equivalent to a rotation RT
B followed by a translation

−RT
BVB . Based on this observation, we can count the

arithmetic operations as follows:

1) Computing M−1
B requires 9 additions/subtractions

and 9 multiplications.
2) M−1

B MA requires 27 additions/subtractions and 36
multiplications.

3) MT
A (M−1

B )T is the transpose of M−1
B MA, and so

needs no arithmetic operation.
4) Since B is a diagonal matrix, BM−1

B MA requires 12
multiplications.

5) Finally, MT
A (M−1

B )T BM−1
B MA can be constructed

using additional 21 additions/subtractions and 30
multiplications.
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Thus we need 57 additions/subtractions and 87 mul-
tiplications to obtain MT

A (M−1
B )T BM−1

B MA. Then the
characteristic polynomial can be computed with another
29 additions/subtractions and 39 multiplications using
the algorithm presented in Appendix A. The deriva-
tive of a quartic polynomial can be computed using
3 multiplications. To divide a degree n polynomial
by a degree (n − 1) polynomial, we need 2(n − 1)
additions/subtractions, 2(n − 1) multiplications and 2
divisions. Thus we can compute the Sturm sequence
using 12 additions/subtractions, 15 multiplications and
6 divisions. To find the number of negative real roots,
we need to examine the signs of the leading term and
constant term of the polynomials in the Sturm sequence,
for which 8 additions/subtractions are needed to count
the number of sign flips. In summary, we need a total
of 107 additions/subtractions, 141 multiplications and 6
divisions for collision detection between two stationary
ellipsoids.

When the two stationary ellipsoids above are sampled
from affine motions, it can be shown that we need a
total of 125 additions/subtractions, 156 multiplications
and 18 divisions for detecting their collision. We skip
the detailed counting here.

We have implemented the collision detection algo-
rithm in C++ and run our tests on a desktop PC with
an Intel Core 2 Duo E6600 2.40 GHz CPU (single-
threaded) and a 2GB main memory. In the case of motion
matrices with elements of rational degree 4, the matri-
ces MA and MB are constructed using about 100 ad-
ditions/subtractions and 100 multiplications. Including
this, the whole procedure of detecting overlap between
two ellipsoids took less than 0.7 µsec.

2.3 Contact point of two touching ellipsoids

Part (2) of Theorem 1 states that two ellipsoids have ex-
ternal contact if and only if their characteristic equation
f(λ) = 0 has a negative double root λ0. It is also proved
in [33, Lemma 5] that the contact point of two touching
ellipsoids is given by the solution of (λ0A−B)X = 0, as
summarized in the following theorem.

THEOREM 2 Suppose that two ellipsoids XT AX = 0 and
XT BX = 0 touch externally, i.e., f(λ) = 0 has a negative
double root λ0. Then rank(λ0A − B) = 3 and the homoge-
neous coordinates of the contact point X0 are given by the
unique nontrivial solution (up to a multiplicative constant)
of (λ0A−B)X = 0.

3 CONTINUOUS COLLISION DETECTION

In this section we will present an efficient algorithm
for continuous collision detection (CCD) between two
moving ellipsoids: A(t) : XT A(t)X = 0 and B(t) :
XT B(t)X = 0. Here the ellipsoids may move under
affine deformations, including the commonly used Eu-
clidean rigid motions as a special case. The formation of
A(t) and B(t) in the case of rational motions are given
in Appendix B.

(a)

(b)

Fig. 1. (a) A CCD function for two collision-free ellipsoids;

(b) A CCD function for two colliding ellipsoids. The blue

and yellow regions are where F (u, t) > 0 and F (u, t) < 0,

respectively. The zero set F (u, t) = 0 is given by the dark

blue curve. The red points in (b) represent the moments

when the ellipsoids are in external contact.

3.1 CCD equation for moving ellipsoids

We first introduce the continuous collision detection
(CCD) equation of the two moving ellipsoids A(t) and
B(t). This CCD equation is simply the characteristic
equation of A(t) and B(t), f(λ; t) = det(λA(t)−B(t)) = 0,
t ∈ [0, 1]. We will call f(λ; t) the CCD function. The graph
of the typical CCD function is shown in Fig. 1(a) for two
collision-free moving ellipsoids, and in Fig. 1(b) for two
colliding moving ellipsoids. (Note that λ is replaced by
by a function of u as discussed below.)

Our CCD algorithm exploits some special features of
the zero set of the CCD equation. Consider a fixed time
t0 ∈ [0, 1]. If A(t0) and B(t0) are separate, according to
the discussions in Section 2, f(λ; t0) = 0 has two negative
real roots, that is, the line t = t0 has two intersection
points with the zero set of f(λ; t) in the half plane λ < 0.
If A(t0) and B(t0) overlap, f(λ; t0) = 0 has no negative
real root, that is, the line t = t0 has no intersection point
with the zero set of f(λ; t) in the infinite strip (−∞, 0]×
[0, 1]. Finally, if A(t0) and B(t0) are externally tangent,
the line t = t0 has a tangential intersection (i.e., a double
intersection point) with the zero set of f(λ; t) in the half
plane λ < 0.

To facilitate numerical processing, we use the repa-
rameterization λ = u−1

u
to map the variable λ ∈ (−∞, 0]

to u ∈ (0, 1], therefore the infinite strip (λ, t) ∈ (−∞, 0]×
[0, 1] is mapped to the region (u, t) ∈ (0, 1] × [0, 1].
This mapping preserves the structure of f(λ; t) = 0 in
the sense that the number of intersections between a
horizontal line t = t0 and the zero set of f(λ; t) = 0 is
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the same as that between the line t = t0 and the zero set
of f(λ(u); t) = 0. Clearly, the transformed characteristic
equation f(λ(u); t) = 0 has the same zero set as the
equation

F̂ (u, t) ≡ det((u−1)A(t)−uB(t)) = 0, (u, t) ∈ (0, 1]×[0, 1].

Recall that the elements of A(t) and B(t) are rational
functions of t. Since we are only interested in the zero
set of F̂ (u, t), we use F (u, t) to denote the bivariate
polynomial after cleaning up the common denominator
in F̂ (u, t). Clearly, F (u, t) and F̂ (u, t) have the same zero
set. Furthermore, to improve numerical robustness we
represent F (u, t) in the Bernstein form. From now on,
we will also call F (u, t) = 0 the CCD equation.

Based on the preceding discussion and notation, we
have the following theorems:

THEOREM 3 Any horizontal line t = t0 ∈ [0, 1] has at most
two intersections with the zero set of F (u, t) in the region
(0, 1]× [0, 1]. In particular,

1) A(t0) and B(t0) are separate if and only if the line t =
t0 intersects the zero set of F (u, t) in two distinct points
in (0, 1]× [0, 1];

2) the interiors of A(t0) and B(t0) intersect if and only if
the line t = t0 does not intersect the zero set of F (u, t)
in (0, 1]× [0, 1];

3) A(t0) and B(t0) are externally tangent if and only if
the line t = t0 has a double intersection point with the
zero set of F (u, t) in (0, 1]× [0, 1].

The next theorem is fundamental to our CCD algo-
rithm.

THEOREM 4 Let A(t) and B(t) be two moving ellipsoids in
continuous motion in t ∈ [0, 1]. Suppose that at t = 0, the
ellipsoids A(0) and B(0) are separate. Then A(t) and B(t)
collide in t ∈ [0, 1] if and only if there exists a time t0 in
[0, 1] such that the line t = t0 has a double intersection point
(u0, t0) with the zero set of F (u, t) in the region (0, 1]× [0, 1].

PROOF: Suppose that there exists a time t0 in [0, 1]
such that the line t = t0 intersects the zero set of F (u, t)
at a double point in the region (0, 1] × [0, 1]. Then, by
Theorem 3, A(t0) and B(t0) touch each other externally.
Therefore, A(t) and B(t) collide in t ∈ [0, 1].

Now consider necessity. Suppose that A(t) and B(t)
collide in t ∈ [0, 1]. Then either A(t) and B(t) touch each
other externally at some time t0 in [0, 1] or A(t) and B(t)
overlap with each other at some time t1 ∈ [0, 1]. In the
former case, we are done. In the latter case, since A(t)
and B(t) are undergoing continuous motions and they
are separate at t = 0, there exists time t0 ∈ [0, t1] such
that A(t) and B(t) touch each other externally at t0. The
proof is completed. �

Theorem 4 suggests how to detect whether two mov-
ing ellipsoids collide. First we may check if A(0) and
B(0) are separate, using the procedure in Section 2. If

not, we are done; if yes, we need to check if there exists
a time t0 in [0, 1] such that the line t = t0 has a double
intersection point (u0, t0) with the zero set of F (u, t) in
(0, 1] × [0, 1]. Clearly, such a point (u0, t0) is a solution
of the equations F (u, t) = Fu(u, t) = 0, where Fu(u, t)
denotes ∂F (u, t)/∂u. To find all the collision intervals, we
note that whenever the collision status of two ellipsoids
switches from separation to overlap (or vice versa), there
must be a time instant at which the ellipsoids are in
external contact; and hence the key task of our collision
detection algorithm now is to detect all real solutions of
F (u, t) = Fu(u, t) = 0 in the region (u, t) ∈ (0, 1]× [0, 1].

3.2 Solving the CCD equation

So far we have given an algebraic formulation of the
problem under consideration. Now we shall present a
numerical method based on this formulation. Given two
moving ellipsoids over time [0, 1], if they are separate
throughout a time interval (t0, t1) ⊆ [0, 1], then the inter-
val (t0, t1) is called a separation interval (SI). A separation
interval (t0, t1) is called a maximal separation interval if
(1) the two ellipsoids contact each other at t0 or t0 = 0;
and (2) the two ellipsoids contact each other at t1 or
t1 = 1. If the ellipsoids overlap throughout the interval
(t0, t1), then (t0, t1) is called an overlapping interval (OI).
Similarly, we can define the maximal overlapping interval.
An interval (t0, t1) ⊂ [0, 1] that is neither a separation
interval nor an overlapping interval is called a mixed
interval (MI). Our goal is to identify all the maximal
separation intervals and maximal overlapping intervals.

By solving the CCD equation, we mean determin-
ing all contact instants at which the two ellipsoids are
in external contact. Clearly, these instants define the
endpoints of all the maximal separation intervals and
maximal overlapping intervals. The contact instants cor-
respond to the critical points in the zero set of the CCD
equation—a solution (u∗, t∗) of F (u, t) = 0 is said to be
a critical point if it further satisfies Fu(u∗, t∗) = 0. In this
case the contact instant is t∗.

Basic idea. The idea of our algorithm is to subdivide
recursively the motion interval [0, 1] into a number of
small intervals which can be confirmed to be either SI or
OI. Then these intervals can be merged to form maximal
separation intervals and maximal overlapping intervals.

During the process of our algorithm, for each interval
(t1, t2) under consideration, we first determine the colli-
sion statuses of the two ellipsoids at the two endpoints of
the interval. The interval (t1, t2) is temporarily labeled as
a candidate separation interval (CSI) if the two ellipsoids
are either separate or touching at t1 and t2 (Fig. 2(a)),
since such an interval may be a separation interval in
this case. Similarly, an interval (t1, t2) is temporarily
labeled as a candidate overlapping interval (COI), if the
two ellipsoids are either overlap or touching at t1 and
t2 (Fig. 2(b)). Further processing is needed to confirm
whether a CSI is an SI, or a COI is an OI.
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t
t2

t1 u

+1

+1

CSI

t
t2

t1 u+1

CSI

0

(a) (b)

t
*

t
t2

t1 u

+1

CSI

t
t2

t1 u+1

-1

0

t
*

0

CSI

COI

COI

-1

(c)

Fig. 2. Examples of intervals classified as (a) a candidate separation interval (CSI); (b) a candidate overlapping

interval (COI); and (c) mixed intervals with different collision statuses at t1 and t2 will be divided at a contact instant

t∗ and each of the two subintervals being classified as either a CSI or a COI. The circled numbers are the collision

statuses at particular time instants (+1 for separation, 0 for external contact and −1 for overlapping).

If the two moving ellipsoids have different collision
statuses (either separate or collide) at t1 and t2 (Fig. 2(c)),
then (t1, t2) is a mixed interval (MI). In this case, we
will find a contact moment t∗ in (t1, t2), and use it to
subdivide (t1, t2) into two intervals (t1, t

∗) and (t∗, t2).
Evidently, one of the two intervals is a CSI and the other
is a COI.

In the following we are going to devise robust tests to
determine definitely whether a CSI (or COI) is a separa-
tion (or overlapping) interval. If the collision status over
the entire interval is confirmed, we are done and the
interval is labeled as an SI or OI. Otherwise, the interval
will be subdivided at some contact time t∗ so that we
will work on the resulting smaller intervals in a recursive
manner, until the collision status of the ellipsoids in all
subintervals can be confirmed.

To determine the collision status of two ellipsoids at
a particular time t0, we introduce the following state
function:

State(t0) =











+1 if maxu F (u, t0) > 0, i.e., separate;

0 if maxu F (u, t0) = 0, i.e., touching;

−1 if maxu F (u, t0) < 0, i.e., overlap.

Instead of using the efficient method in Section 2.2, this
function makes use of the sign of maxu F (u, t0) to check
the collision status of two static ellipsoids, whose value
can be found by solving the cubic equation Fu(u, t) = 0
and can be reused in other steps of the algorithm, e.g.,
for the computation of contact time as discussed below.
Here, State(t0) = 0 if and only if (u0, t0) is a critical point
for some u0 ∈ (0, 1].

We now describe our algorithm in details.

Initialization. We start by classifying the initial inter-
val [0, 1] as a CSI or a COI, depending on the collision
statuses at t = 0 and t = 1. If the collision statuses at
t = 0 and t = 1 are different, we compute a contact
instant t∗ (corresponding to a critical point (u∗, t∗))
where the ellipsoids are in external contact, using the

following operation:

• ContactTime: This is to determine a contact instant
in an interval [t1, t2], when the collision statuses of
the ellipsoids at t1 and t2 are different. It is done
by a binary search in t to find t∗ ∈ [t1, t2] such that
State(t∗) = 0. We then have ContactTime(t1, t2) = t∗.
(In the binary search, we take into account the local
maximum values maxu F (u, t1) and maxu F (u, t2).
But we omit the details here.)

We then subdivide [0, 1] into two smaller intervals [0, t∗)
and (t∗, 1], and classify each as a CSI or a COI (as in
Fig. 2(c) with t1 = 0 and t2 = 1).

Algorithm 1 Initialization

Input: F (u, t) with (u, t) ∈ (0, 1]× [0, 1]

if State(0) = +1 and State(1) = +1 then
label [0, 1] as CSI

else if State(0) = −1 and State(1) = −1 then
label [0, 1] as COI

else
t∗ ← ContactTime(0, 1)
report the contact time t∗

if State(0) = −1 then
label [0, t∗) as COI and (t∗, 1] as CSI

else
label [0, t∗) as CSI and (t∗, 1] as COI

REMARK 3 For the sake of robustness, if State(0) = 0, we
replace State(0) by State(ε), where ε > 0 is a sufficiently
small constant. Similarly, if State(1)=0, we replace State(1)
by State(1 − ε). Thus we assume that State(0) and State(1)
can never be 0.

Processing candidate separation intervals. For a
CSI (t1, t2), we use the following operation, called
BézierShoot, to either confirm that (t1, t2) is an SI or, if
it is not, extract a separation interval which is a sub-
interval of (t1, t2).
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• BézierShoot: A Bézier shoot from t1 to t2, denoted
as BézierShoot(t1 → t2) = t̂, is to find a separation
interval (t1, t̂) ⊆ (t1, t2). It has two steps. In the first
step, we find û such that F (û, t1) = maxu F (u, t1)
(As discussed in Remark 3, to ensure robustness,
t1 is replaced by t1 + ε if t1 is a contact instant.)
If F (û, t1) ≤ 0, we conclude that no SI can be
thus extracted (and set t̂ = t1). Otherwise, we use
in the second step the Bézier clipping search [37]
from t1 to t2 to find the first root of F (û, t) = 0
(an equation in t with û being fixed), if there is
one. This step either concludes that there is no real
root of F (û, t) = 0 in (t1, t2) (see Fig. 3(a)), which
implies that (t1, t2) is an SI (and hence t̂ = t2), or
produces the smallest root t̂ of F (û, t) = 0 in (t1, t2)
(see Fig. 3(b)), which gives an SI (t1, t̂) ⊂ (t1, t2),
since a Bézier shoot ensures that F (û, t) > 0 for
all t ∈ (t1, t̂). A Bézier shoot from t2 to t1, i.e.,
BézierShoot(t1 ← t2), is defined similarly.

Given a CSI (t1, t2), we perform two Bézier shoots
from both ends of the interval to extract a separation
interval from each end. This results in two possible
cases: (1) the entire interval can be confirmed as an SI
(Fig. 4(a)); or (2) two SIs (t1, t

′) and (t′′, t2) are obtained,
and depending on the collision status of the ellipsoids
at t̃ = (t′ + t′′)/2, the subdivided intervals from [t′, t′′]
are either labeled as CSIs or COIs (Fig. 4(b) & (c)) for
further processing as in the following algorithm:

Algorithm 2 CSI handling

Input: A candidate separation interval (CSI) (t1, t2)

if interval width t2 − t1 is sufficiently small then
report (t1, t2) as an OI (see Remark 4 below)

else
t′ ← BézierShoot(t1 → t2)
t′′ ← BézierShoot(t1 ← t2)
if t′ > t′′ then

report (t1, t2) as an SI . . . Fig. 4(a)
else

report (t1, t
′) and (t′′, t2) as SIs

t̃← (t′ + t′′)/2
if State(t̃) = −1 then

t∗ ← ContactTime(t′, t̃) . . . Fig. 4(b)

t∗∗ ← ContactTime(t̃, t′′)
report contact time instants t∗ and t∗∗

label [t′, t∗), (t∗∗, t′′] as CSIs and
(t∗, t∗∗) as a COI

else
if State(t̃) = 0 then

report contact time instant t̃
label [t′, t̃), (t̃, t′′] as CSIs . . . Fig. 4(c)

REMARK 4 In the case where the difference t2 − t1 is suf-
ficiently small, as we cannot avoid some chance of having
tiny loop(s) in the zero set of F (u, t), therefore to be more
conservative, we classify the interval (t1, t2) as an OI.

u

t

t1

t2
+1

+1

u

SI

(a)

u

t

t1

t2
+1

+1

u

t

SI

(b)

Fig. 3. A Bézier shoot operation. (a) F (û, t) = 0 has no

real root in [t1, t2]; (b) t̂ is the smallest root of F (û, t) = 0
in [t1, t2].

Processing candidate overlapping intervals. For a
candidate overlapping interval (COI) (t1, t2), we aim to
identify some overlapping intervals (OIs) within a COI,
so that the remaining subintervals can be further pro-
cessed. Given a COI (t1, t2), if it contains any separation
interval, then F (u∗, t∗) > 0 for some t∗ ∈ (t1, t2) and
the zero set of F (u, t) = 0 contains some close loops in
the strip (u, t) ∈ (0, 1] × (t1, t2). Hence, a COI can be
confirmed as an OI if it does not contain any loop, and
this can be checked as follows.

We first consider the coefficients of the Bernstein form
of F (u, t). Using the convex hull property of the Bern-
stein form [38], if all the coefficients are negative, the
interval (t1, t2) is an OI since we must have F (u, t) < 0
in this interval (Fig. 5(a)). If the coefficients have different
signs, we will check the existence of a loop in the zero
set of F (u, t) = 0. The existence of a loop in (t1, t2)
implies that the derivative Ft(u, t) cannot be of the same
sign for all (u, t) ∈ (0, 1] × (t1, t2). For this, again using
the convex hull property, we check whether the control
coefficients of Ft(u, t), expressed as a bivariate Bernstein
function on (0, 1]× (t1, t2), have the same sign. To make
the test more effective, we further limit this check only to
the subregion in which F (u, t) can possibly be positive
for t ∈ (t1, t2); this subregion is the maximum extent of
intersection of the convex hull of the control polyhedron
of F (u, t) and the ut-plane. If all these coefficients of the
Bernstein form of Ft(u, t) are of the same sign, then the
zero set of F (u, t) does not have a loop in the interval
(t1, t2), implying that (t1, t2) is an OI; otherwise, if these
coefficients have different signs, (t1, t2) is still a COI.

If a COI remains so after the above filtering using the
sign checking on the Bernstein coefficients of F (u, t) and
Ft(u, t), we further process this interval by checking the
collision status of the two ellipsoids at t̃ = (t1 + t2)/2. If
the two ellipsoids are separate at t̃, the two mixed inter-
val (t1, t̃) and (t̃, t2) will be further processed (Fig. 5(b)).
If the two ellipsoids are overlapping at t̃, we label the
two subintervals (t1, t̃) and (t̃, t2) as COIs (Fig. 5(c)),
and process them using the above coefficient filtering
operation recursively.
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Fig. 4. The handling of a candidate separation interval (CSI) in the algorithm for solving a CCD.

u

t

OI

-1

-1t1

t2

F u t

t

( , )<0

for all Î [ , ]t t1 2

(a)

u

t
-1

-1t1

t2

t +1

COI

COI

t
**

0

t
*

0

CSI

(b)
u

t
-1

-1t1

t2

t

COI

COI

-1

(c)

Fig. 5. The handling of a candidate overlapping interval (COI) in the algorithm for solving a CCD.

Algorithm 3 COI handling

Input: A candidate overlapping interval (COI) (t1, t2)

if interval width t2 − t1 is sufficiently small then
report (t1, t2) as an OI

else
if F (u, t) = 0 has no loop in (t1, t2) then

report (t1, t2) as an OI . . . Fig. 5(a)
else

t̃← (t1 + t2)/2
if State(t̃) = +1 then

t∗ ← ContactTime(t1, t̃) . . . Fig. 5(b)

t∗∗ ← ContactTime(t̃, t2)
report contact time instants t∗ and t∗∗

label (t1, t
∗), (t∗∗, t2) as COIs and

(t∗, t∗∗) as a CSI
else

if State(t̃) = 0 then
report contact time instant t̃

label (t1, t̃), (t̃, t2) as COIs . . . Fig. 5(c)

3.3 Finding the first contact time only

Many real-time applications of collision detection require
only the first contact time to be computed. Suppose that
the two ellipsoids are separate at t = 0, i.e., State(0) =
+1. We then apply Bézier shoots recursively from t = 0,
until we encounter the first contact time. We show that
this process has quadratic convergence (Appendix C)
and is efficient especially when the motion degree is low.

4 EXPERIMENTAL RESULTS

We have tested our method in two applications to
demonstrate its robustness and effectiveness. The first

one features a human character animation in which two
virtual human characters bounded by ellipsoids move in
a sequence of frames. We determine the first contact in-
stant of the characters in between every two consecutive
frames. The motion of each ellipsoid is obtained by inter-
polating its orientations and positions at two consecutive
frames. Both rigid and affine motion interpolation are
tested and the performance in both cases are evaluated.
In the second experiment we perform collision detection
between a robotic arm moving with pre-specified rigid
motion and a stationary obstacle. Continuous collision
detection is applied among the bounding ellipsoids of
the links of the robotic arm and the obstacle, and all
collision time intervals are reported.

4.1 Test in human character animation

To test the efficiency of our method, we use two virtual
boxers performing action in close proximity of each
other, as shown in Fig. 6. The first contact instant in
each time interval [ti, ti+1] is to be determined, where
the ti are the time instants of each animation frame.
Each character is bounded tightly by 20 ellipsoids, en-
closing different body parts such as heads, limbs, etc.
The motions of the two boxers are driven by motion
capture data, together with a simple control mechanism.
Between every two consecutive frames, the collision
detection algorithm is applied to 400 pairs of ellipsoids,
formed by picking one ellipsoid from each of the char-
acters. We do not consider self-collision here, which can
easily be dealt with by taking into account the pairwise
CCD of non-adjacent ellipsoids of the same character.

Two fast and simple culling techniques are first used
to quickly eliminate unlikely colliding pairs of ellipsoids.
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Fig. 6. Real-time continuous collision detection in a boxing game. Ellipsoids in collision are highlighted in red.

For each pair of moving ellipsoids, we first test whether
their bounding spheres collide. The bounding spheres
assume linear translation between the end positions of
the ellipsoids. The moving spheres are guaranteed to
bound the ellipsoids with the interpolating motions. To
test whether the bounding spheres collide, we formulate
a simple squared distance function d(t) = |c1(t) −
c2(t)|

2 − (r1 + r2)
2 < 0, t ∈ [0, 1], of two spheres, where

c1(t), c2(t) are the sphere centres and r1, r2 are the sphere
radii. Then, two moving spheres are collision-free in [0, 1]
if and only if d(0) > 0 and d(t) has no real roots in [0, 1].
The bounding spheres test is very efficient—it takes only
1.5 µsec per test and can filter out a large number of
trivially non-collision cases, i.e., when the ellipsoids are
far apart.

If the bounding spheres collide, we then apply a
separating-plane method to further eliminate the remain-
ing easy cases of non-colliding ellipsoids. We compute
a plane that separates the two ellipsoids [20] at the
beginning of the time frame, and then test whether the
two moving ellipsoids are continuously separated by the
plane during the whole frame period. We assume that
the separating plane is under the same motion as one
of the ellipsoid, say B(t), so that it is always separate
from B(t) in [0, 1]. The collision test is now between A(t)
and the moving plane P(t), which are then transformed
so that A(t) becomes the unit sphere at the origin and
P(t) becomes P ′(t); A(t) and P(t) collide if and only
if the distance from the origin to P ′(t) is less than 1,
which can also be determined algebraically as in the
bounding sphere test. The separating plane test involves
also a static collision detection of the ellipsoids at t = 0,
and hence can identify trivial collision cases where the
ellipsoids overlap at t = 0.

A total of 1,000 frames are processed for the boxing
sequence. A continuous rigid motion is used for interpo-
lation between every two consecutive frames; the center
positions of the ellipsoids are linearly interpolated and
the orientations are interpolated by a linear quaternion
curve, producing a rotation matrix of rational degree
2. As a result, 400,000 pairs of moving ellipsoids were
tested, out of which 93.8% of the pairs were filtered
out by the sphere test, and 34.1% and 62.6% of the re-
maining pairs were determined as colliding or collision-
free, respectively, at t = 0 using separating planes as
witnesses. For the remaining 780 pairs (0.195%), we
applied the algorithm from Section 3.3 that computes
the first contact point in continuous collision detection.

Of these, 742 were collision-free and 38 were in col-
lision. Since only the first contact time is needed, we
also maintain an upper bound, t, on the contact time,
which is the minimum of all the first contact time that
have been computed so far. Subsequent CCD is only
determined within the interval [0, t]. Including all the
above procedures and the generation of interpolating
motions MA(t) and MB(t) for 40 ellipsoids, the average
time for collision detection for each frame took 1.33 msec,
in which 400 pairs of moving ellipsoids were handled. A
total of 40 motion matrices were generated in 195 µsec.
The formulation of the bivariate function F (u, t) takes
considerable computation. However, this is needed only
when the ellipsoids are in close proximity, when both
the sphere test and separating plane test fail to declare
separation. The first row of Table 1 summarizes the
average and the worst case running time for all pairwise
CCD tests. The performance for the close proximity cases
is also presented.

Using a rigid motion of ration degree 2 as motion
interpolant, the degree of the CCD equation F (u, t) is
28 in t. In Appendix D we describe an affine motion
interpolation which approximates the relative motion
between two moving ellipsoids, and results in a CCD
equation of degree 6 on t. In order to compare properly
the performance of our CCD method with the two dif-
ferent motions, the separating plane test which depends
on the interpolating motion is not used and all CCD
computations are carried out in the time interval [0,1],
i.e., the upper bound t of the first contact time is not
maintained, since t varies with different motions. The
performance of our CCD method with the two motion
interpolations is shown in the second and third rows of
Table 1. The average time per frame has a significant
37.6% speed-up using the proposed affine motion inter-
polation, due to the more efficient motion construction
and a CCD computation of a much lower degree. In our
experiment, both motion interpolations gave the same
collision result of whether a pair of ellipsoids collide
or not. Not accounting those pairs with first contact at
t = 0, the differences between the first contact time
of the ellipsoids with affine motion interpolation and
that with rigid motion interpolation have an average,
standard deviation and maximum of 0.008, 0.03 and
0.49, respectively. We notice that the differences in the
order of the maximum value occurs only in extreme
cases; neglecting the maximum value gives an average,
standard deviation and maximum of 0.006, 0.01 and 0.14,
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TABLE 1

Average CPU time taken for CCD of two virtual human

characters in a boxing animation.

τfrm
(ms)

τmot
(ms)

τe
(µs)

τf
(µs)

τc
(µs)

τw
(µs)

Rigid motion, setup 1∗ 1.33 0.20
over all 400K pairs 2.8 2.5 17.8 73.9
over 780 close pairs∗∗ 55.2 54.7 65.4 73.9

Rigid motion, setup 2∗ 1.90 0.20
over all 400K pairs 4.2 4.0 13.8 100.1

Affine motion, setup 2∗ 1.19 0.13
over all 400K pairs 2.6 2.5 6.6 39.4

τfrm represents the average time per frame; τmot for constructing the inter-
polating motion; τe, τf, τc represent the average time for pairwise CCD of
all ellipsoids, collision-free ellipsoids, and colliding ellipsoids, respectively;
and τw is the worst case running time for one CCD among all 400K pairwise
CCDs.
∗Setup 1—with sphere and separating plane tests, CCD over [0,t]

Setup 2—with sphere test only, CCD over [0,1]
∗∗where both sphere and separating plane tests fail to declare separation

respectively. When using affine motion interpolation to
achieve low degree polynomial computation and there-
fore a more efficient collision detection, significant devi-
ation from the rigid motion may occur due to the affine
approximation that varies the sizes of the ellipsoids.

4.2 Test in robotic arm movements

In our second experiment a CRS F3 robotic arm collides
with an I-shaped obstacle. The robotic arm assumes a
pre-defined rigid motion and is tightly bounded by 10
ellipsoids (0-9) and the obstacle by 3 ellipsoids (U,V,W)
(Fig. 7). We perform 30 pairwise collision tests using our
algorithm to find all the collision time intervals between
the robotic arm and the obstacle. The motion of the
robotic arm is designed in such a way that the three
joints of the arm rotate with rational motions of degree
2 and hence the fingers move with rational motions of
degree 6. The total time for processing all 30 pairs of
ellipsoids is 43.8 msec. Note that the time needed for
collision detection in general depends on the motion
degree as well as the complexity of the zero set of the
CCD equation. The degree of F (u, t) in t, the time taken
for obtaining F (u, t) and that for solving the CCD for
each pair of ellipsoids are summarized in Table 2.

4.3 Two further examples

We present two more examples to test the accuracy of
our method and its efficiency in the case of general affine
motions.

Example 1. Consider the two moving ellipsoids A(t) :
x2

4 + y2

16 + z2

4 = 1 and B(t) : x2 + y2

9 + z2

16 = 1 un-
der rigid motions with the following degree-2 rotations
(RA(t), RB(t)) and degree-3 translations (TA(t), TB(t)):

RA(t) =
1

EA(t)

(

−(8t2 − 8t + 1) −2(2t − 1) 2(2t − 1)
2(2t − 1) 1 2(2t − 1)2

−2(2t − 1) 2(2t − 1)2 1

)

RB(t) =
1

EB(t)

(√
2(t − 1)(3t − 1) 2t(2t − 1)

√
2(t − 1)2√

2(2t − 1) −2t(t − 1)
√

2(2t − 1)2

−
√

2t(3t − 2) 2(2t − 1)(t − 1)
√

2t2

)

TABLE 2

Average CPU time taken for CCD of a robotic arm and

an obstacle.

Degree Time (msec) Collision
Motion F (u, t)

in t
Obtain
F (u, t)

Solve
CCD

Total intervals
in [0, 1]

U-0 0 0 0.045 0.077 0.122 -
U-1 2 32 0.272 0.125 0.397 -
U-2 2 32 0.272 0.130 0.402 -
U-3 2 32 0.272 0.126 0.398 -
U-4 4 64 0.813 0.838 1.651 -
U-5 4 64 0.812 0.256 1.068 -
U-6 6 96 1.612 1.642 3.253 -
U-7 6 96 1.676 0.338 2.014 -
U-8 6 96 1.680 0.356 2.036 -
U-9 6 96 1.684 1.498 3.181 -
V-0 0 0 0.045 0.076 0.122 -
V-1 2 32 0.272 0.126 0.397 -
V-2 2 32 0.272 0.131 0.402 -
V-3 2 32 0.272 0.125 0.397 -
V-4 4 64 0.813 0.860 1.673 -
V-5 4 64 0.812 0.881 1.693 -
V-6 6 96 1.612 1.591 3.203 -
V-7 6 96 1.676 0.052 1.729 -
V-8 6 96 1.680 1.505 3.186 -
V-9 6 96 1.683 1.545 3.228 -

W-0 0 0 0.045 0.077 0.122 -
W-1 2 32 0.272 0.127 0.399 -
W-2 2 32 0.272 0.130 0.402 -
W-3 2 32 0.272 0.126 0.398 -
W-4 4 64 0.812 0.859 1.671 -
W-5 4 64 0.813 0.827 1.641 -
W-6 6 96 1.612 0.075 1.687 [0.311,0.677]
W-7 6 96 1.677 0.085 1.762 [0.104,0.323],

[0.778,0.943]
W-8 6 96 1.680 1.506 3.186 -
W-9 6 96 1.684 0.261 1.945 [0.451,0.538]

where EA(t) = 8t2 − 8t + 3, EB(t) = −2(3t2 − 3t + 1) and
TA(t) =

(

− 8t3 +24t2 − 6t− 2,−24t3 +24t2 +6t− 6,−32t3 +48t2 −
12t − 2

)T
, TB(t) =

(

(72 − 24
√

2)t3 + (−156 + 72
√

2)t2 + (114 −
72

√
2)t − 27 + 24

√
2, 12t − 6, (88 − 24

√
2)t3 + (−168 + 72

√
2)t2 +

(114 − 72
√

2)t − 26 + 24
√

2
)T

. These motions are designed
so that the ellipsoids have their first contact at t0 = 1/2.
The degree of F (u, t) in t is 34 and our algorithm reports
contact at t = 0.5 with an error in the order of 10−8.
The whole computation took 0.7 msec and extracted two
overlapping intervals.

Example 2. In Fig. 8, two ellipsoids are in motions of
degree 4 with rather large affine deformations. Here,
the degree of F (u, t) in t is 48 and it took 2.7 msec
to compute all the four overlapping intervals using the
algorithm presented in Section 4. Detection of the first
contact time takes 0.6 msec.

5 CONCLUSIONS

We have presented an efficient and accurate algorithm
for continuous collision detection between two mov-
ing ellipsoids under rational motions. Significant speed-
up was realized by developing an efficient scheme to
quickly compute the critical points of the zero set of the
bivariate CCD equation, which correspond to the contact
time instants of two ellipsoids, and determine whether
the ellipsoids are overlapping or separate within a time
interval. Our experiments showed that real-time CCD of
ellipsoids can be achieved for time-critical applications.
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(a) (b) (c) (d) (e)

Fig. 7. (a) An F3 robotic arm and an I-shaped obstacle; (b) the bounding ellipsoids; (c), (d) & (e) the robotic arm in

motion with t = 0.104, 0.311 and 0.778, respectively, and the colliding ellipsoids are shown in red.

Fig. 8. Two moving ellipsoids under degree-4 dependent motion with affine deformations, the CCD equation F (u, t) =
0 is of degree 48 in t and four overlapping intervals are detected.

We believe that there are many other interesting prop-
erties of our algebraic condition, which should lead to
more efficient geometric algorithms for dealing with
ellipsoids and affine deformations. The robotic arm ex-
ample also shows that, because of the composite motions
of the joints, the degree of the CCD equation in t can
easily raise well beyond 100, which cannot be dealt
with reasonably using numerical methods. Therefore, the
approximation of high degree motions or non-rational
motions (which is not handled currently by our numeri-
cal scheme for solving the CCD equation) by low-degree
rational motions is worth pursuing in this regard.
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APPENDIX A
COEFFICIENTS OF THE CHARACTERISTIC

POLYNOMIAL

We present an efficient algorithm for computing the
five coefficients of the characteristic polynomial f(λ) of

degree 4. Let MT
A (M−1

B )T BM−1
B MA = [bij ]4×4. Then

the characteristic polynomial is given in the following
simple form:

f(λ) = det(λA − MT
A (M−1

B )T BM−1
B MA)

=

∣

∣

∣

∣

∣

∣

∣

λ/a2
− b11 −b12 −b13 −b14

−b21 λ/b2
− b22 −b23 −b24

−b31 −b32 λ/c2
− b33 −b34

−b41 −b42 −b43 −λ − b44

∣

∣

∣

∣

∣

∣

∣

.

By expanding this determinant, the five coefficients can
be constructed as follows:

The 4th-degree term (T4): − 1
a2b2c2

The 3rd-degree term (T3): b11
b2c2 + b22

a2c2 + b33
a2b2
− b44

a2b2c2

The 2nd-degree term (T2):

b33b44 − b34b43

a2b2
+

b11b44 − b14b41

b2c2
+

b22b44 − b24b42

a2c2

+
b23b32 − b22b33

a2
+

b13b31 − b11b33

b2
+

b12b21 − b11b22

c2

The 1st-degree term (T1):

−b22b33b44 + b22b34b43 + b33b42b24

a2
+

b44b32b23 − b32b24b43 − b42b23b34

a2

+
−b11b33b44 + b11b34b43 + b33b14b41

b2
+

b44b13b31 − b31b14b43 − b41b13b34

b2

+
−b11b22b44 + b11b24b42 + b22b14b41

c2
+

b44b12b21 − b21b14b42 − b41b12b24

c2

+b11b22b33 − b11b23b32 − b22b13b31 − b33b12b21 + b21b13b32 + b31b12b23

The constant term (T0):

b11b22b33b44 − b11b22b34b43 − b11b33b24b42 − b11b44b23b32

−b22b33b14b41 − b22b44b13b31 − b33b44b12b21

+b11b32b24b43 + b11b23b34b42 + b22b13b34b41

+b22b31b14b43 + b33b12b24b41 + b33b21b14b42 + b44b12b23b31
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+b44b21b13b32 + b12b21b34b43 + b13b31b24b42 + b14b41b23b32

−b21b14b43b32 − b21b13b34b42 − b31b12b24b43

−b31b14b42b23 − b41b12b23b34 − b41b13b32b24

If MA and MB are rigid transformations, the constant
term equals det(−B) and the following function effi-
ciently computes the coefficients f(λ) using 29 addi-
tions/subtractions and 39 multiplications.

Generate-Characteristic-Polynomial

/* Variable definition

ea,eb,ec are the diagonal members of matrix A

ab = ea * eb, ac = ea * ec, bc = eb * ec,

abc = ea * eb * ec

bij is a member of the matrix MT
A

(M−1
B

)T BM
−1
B

MA

*/

begin
b12s = b12 * b12; b13s = b13 * b13;

b14s = b14 * b14; b23s = b23 * b23;

b24s = b24 * b24; b34s = b34 * b34;

b2233 = b22 * b33;

termA = b11 * bc + b22 * ac + b33 * ab;

termB = (b2233 − b23s)*ea + (b11 * b33 − b13s)*eb

+ (b11 * b22 − b12s)*ec;

T4 = −abc;
T3 = termA − b44 * abc;

T2 = termA * b44 − termB − b34s * ab − b14s * bc

− b24s * ac;

tmp1 = termB * b44;

tmp2 = b11*(b2233 + eb * b34s + ec * b24s − b23s);

tmp3 = b22*(ea * b34s + ec * b14s − b13s);

tmp4 = b33*(ea * b24s + eb * b14s − b12s);

tmp5 = b34*(ea * b23 * b24 + eb * b13 * b14)

+ b12*(ec * b14 * b24 − b13 * b23);

tmp5 += tmp5; // multiply by 2

T1 = −tmp1 + tmp2 + tmp3 + tmp4 − tmp5;

T0 = constant; // constant value det[-B]

end;

APPENDIX B
3D RATIONAL EUCLIDEAN AND AFFINE MO-
TIONS

A rational Euclidean motion in E
3 is given by

M(t) =

(

R(t) V (t)

0
T 1

)

, (2)

where V (t) ∈ E
3, R(t) a 3 × 3 orthogonal matrix, and t

can be considered as a parameter of time. The motion is
a composition of a rotation R(t) acting upon a point in
E

3, followed by a translation V (t). All rational Euclidean
motions can be represented in (2) with

V (t) =
(

v0

v3
,
v1

v3
,
v2

v3

)T

, and

R(t) =
1

E





















e2
0 + e2

1

− e2
2 − e2

3

2e1e2

− 2e0e3

2e0e2

+ 2e1e3

2e0e3

+ 2e1e2

e2
0 − e2

1

+ e2
2 − e2

3

2e2e3

− 2e0e1

−2e0e2

+ 2e1e3

2e0e1

+ 2e2e3

e2
0 − e2

1

− e2
2 + e2

3





















where E = e2
0 + e2

1 + e2
2 + e2

3 and v0, . . . , v3, e0, . . . , e3 are
polynomials in t [39]. The Euler parameters e0, e1, e2, e3

describe a rotation about a vector in E
3 and are called

the normalized Euler parameters when E = 1. Readers are
referred to [40] for a survey on rational motion design
and [39], [41], [42] for interpolating a set of positions in
E

3 using piecewise B-spline motions.
When the entries of V (t) and R(t) are rational poly-

nomials of maximal degree k, we called M(t) a rational
motion of degree k. An ellipsoid A(t) moving under a
rational motion M(t) is represented as XT A(t)X = 0,
where A(t) = (M−1(t))T AM−1(t). Assume that the
maximal degree of the entries in R(t) and V (t) are kR

and kV , respectively. Then,

A(t) =

(

P (t)<2kR> U(t)<2kR+kV >

U(t)T

<2kR+kV >
s(t)<2(kR+kV )>

)

for some 3 × 3 matrix P (t), 3-vector U(t), and scalar
function s(t). Here, the bracketed subscript represents
the maximal degree of the entries of the associated entity.

For a rational affine motion in E
3, the motion matrix

M(t) is formed by replacing R(t) in (2) by a 3× 3 non-
singular matrix L(t). The motion is then a composition
of a linear transformation L(t) acting upon a point in E

3,
followed by a translation V (t). Assume that the maximal
degree of the entries in L(t) and V (t) are kL and kV ,
respectively. Here,

A(t) =

(

P (t)<6kL> U(t)<6kL+kV >

U(t)T

<6kL+kV >
s(t)<6kL+2kV >

)

for some 3 × 3 matrix P (t), 3-vector U(t), and scalar
function s(t).

APPENDIX C
QUADRATIC CONVERGENCE OF RECURSIVE

BÉZIER SHOOT

We now show that recursive Bézier shoot in search of a
contact time, i.e., a regular solution (u∗, t∗) of F (u, t) =
Fu(u, t) = 0, has quadratic convergence. Without loss
of generality, we may assume that (u∗, t∗) is located at
the origin (0, 0), with F (u, t) = 0 and Fu(u, t) = 0 as
shown in Fig. 9. Then, by the regularity assumption and
Implicit Function Theorem, the solution of F (u, t) = 0
can be represented locally at (0, 0) by Taylor expansion
t = αu2 + o(u2), and the solution of Fu(u, t) = 0 by
u = kt + o(t). Now consider a Bézier shoot from t0. The
solution of Fu(u, t0) = 0 is û = kt0 + o(t0). So the first
root of F (û, t) = 0 is

t1 = αû2 + o(û2) = α[kt0 + o(t0)]
2 + o(t20) = αk2t20 + o(t20).

It follows that t1/t20 = αk2 + o(1), i.e., recursive Bézier
shoot has quadratic convergence. But if (u∗, t∗) is a
singular solution representing tangential contact of the
two ellipsoids, then the convergence is in general linear.

APPENDIX D
AN AFFINE MOTION INTERPOLANT

Assume that an ellipsoid A(t) is under a motion MA(t),
and another ellipsoid B(t) is similarly under a motion
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Fig. 9. Quadratic convergence of recursive Bézier shoot.

MB(t), for t ∈ [t0, t1]. The two ellipsoids A(t) and B(t)
collide if and only if the standard ellipsoid A collides
with the moving ellipsoid B̂(t) under a relative motion
M̂B(t) = M−1

A (t)MB(t), for t ∈ [t0, t1]. The ellipsoid B̂(t0)
with its center c0 is represented as

B̂(t0) : (x− c0)
T B0(x− c0) = 1,

where B0 is a symmetric positive definite matrix and
x = (x, y, z)T is a point on B̂(t0). Similarly, the ellipsoid
B̂(t1) with its center c1 is represented as

B̂(t1) : (x− c1)
T B1(x− c1) = 1,

where B1 is a symmetric positive definite matrix. Now
consider an interpolation B̂(t) between the two ellipsoids

B̂(t) : (x− c(t))T B(t)(x− c(t)) = 1, (3)

where

c(t) =
t1 − t

t1 − t0
c0 +

t− t0
t1 − t0

c1,

B(t) =
t1 − t

t1 − t0
B0 +

t− t0
t1 − t0

B1.

Note that B(t) is symmetric positive definite if B0 and
B1 are both symmetric and positive definite. Thus B̂(t)
represents a moving ellipsoid under an affine motion,
for t0 ≤ t ≤ t1. By expanding the above representation
of the ellipsoid B̂(t), we get

B̂(t) : xT B(t)x− 2xT B(t)c(t) + c(t)T B(t)c(t) = 1.

Using the homogeneous coordinates X = (x, y, z, w)T ,
we represent the ellipsoid B̂(t) as XT B̂(t)X = 0, where

B̂(t) =





B(t) −B(t)c(t)

−c(t)T B(t)T
c(t)T B(t)c(t)− 1



 . (4)

We can then easily show that the characteristic polyno-
mial f(λ, t) = det(λA− B̂(t)) has degree 6 in t.
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[41] T. Horsch and B. Jüttler, “Cartesian spline interpolation for indus-
trial robots,” Computer-Aided Design, vol. 30, no. 3, pp. 217–224,
1998.
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