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ABSTRACT

Given a graph G and a set @) of query nodes, we examine the
Steiner Mazimum-Connected Subgraph (SMCS). The SMCS,
or GG’s induced subgraph that contains ) with the largest
connectivity, can be useful for customer prediction, product
promotion, and team assembling. Despite its importance,
the SMCS problem has only been recently studied. Existing
solutions evaluate the mazimum SMCS, whose number of
nodes is the largest among all the SMCSs of Q. However, the
maximum SMCS, which may contain a lot of nodes, can be
difficult to interpret. In this paper, we investigate the min-
imal SMCS, which is the minimal subgraph of G with the
maximum connectivity containing ). The minimal SMCS
contains much fewer nodes than its maximum counterpart,
and is thus easier to be understood. However, the minimal
SMCS can be costly to evaluate. We thus propose efficient
Expand-Refine algorithms, as well as their approximate ver-
sions with accuracy guarantees. Extensive experiments on
six large real graph datasets validate the effectiveness and
efficiency of our approaches.

1. INTRODUCTION

Graphs are prevalent in various domains, such as social
science, e-commerce, and biology. Given a graph G and a
set @@ of nodes, we study the Steiner Maximum-Connected
Subgraph (or SMCS), a subgraph of G with the maximum
connectivity that contains Q. The SMCS can be used in
customer prediction, community search, product promotion,
and team assembling [6]. In a social network (e.g., Face-
book), given a set @ of nodes denoting social network users,
its SMCS represents a group of people with similar inter-
est. The members of the SMCS found can then be consid-
ered for product recommendation. As another example, in
a Protein-Protein-Interaction (PPI) network [3], the SMCS
can be used to discover a subgraph connecting a given set Q
of protein nodes; the protein nodes appearing in the SMCS
can have a close relationship. In a bibliographic network
(e.g., DBLP), the SMCS can be used to look for research
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communities, in order to facilitate collaboration. Figure 1
illustrates an SMCS for the set Q={“Michael Stonebraker”,
“Samuel Madden”, “Daniel J. Abadi”, “Jennie Duggan”},
extracted from the DBLP. This SMCS illustrates the re-
searchers who are related to those specified in Q.
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Figure 1: A minimal SMCS of the DBLP.

The notion of the SMCS has only been recently studied.
In particular, Chang et al. [6] investigated a variant of the
SMCS (or known as the Steiner Mazimum-Connected Com-
ponent (SMCC) in [6]), which is the mazimum SMCS whose
number of nodes is the largest among all the possible SM-
CSs. We have tested the solution provided by [6] on some
datasets. We found that the maximum SMCS has a high co-
hesiveness (because its connectivity, or the smallest number
of edges whose removal disconnects it, is maximized). Un-
fortunately, the maximum SMCS is often extremely large
and complex. On the DBLP dataset that contains 803K
nodes and 3.2M edges, the average number of nodes of a
maximum SMCS is over 400K. This not only hinders the
analysis of the SMCS structure, but also makes it difficult
to be used in real situations. Suppose that a user wants to
set up an academic conference. She has a small budget to
invite a few renowned scholars and their related researchers.
To decide the invitation list, the user may issue a maximum
SMCS query, with @ containing the names of several re-
searchers, on DBLP. She can then contact the researchers
(or graph nodes) that appear in the SMCS. However, if the
maximum SMCS is very large, the user can have a hard
time to figure out the appropriate participants. Is it possi-
ble to get a smaller SMCS, while maintaining the maximum
connectivity?

In this paper, we examine the discovery of an SMCS that
has a small number of nodes. One way is to evaluate the
minimum SMCS, whose number of nodes is the smallest
among all the possible SMCSs. However, as we will dis-
cuss in Section 3.2, finding the minimum SMCS is NP-hard.
Furthermore, it is NP-hard to get an approximate minimum
SMCS with any constant ratio. Thus, any attempt to ob-



tain a minimum SMCS or its approximate version appears
to be a futile exercise. We study another version of SMCS,
called the minimal SMCS, which is essentially an SMCS of
Q (denoted as G'), such that any subgraph of G’ contain-
ing @ is not an SMCS of Q. While the minimal SMCS is
still challenging to find, we show that it can be derived in
polynomial time. To our understanding, the evaluation of
the minimum and minimal SMCS’s have not been studied
before.

Figure 2: The maximum SMCS (G3), minimum SMCS (G2),
and minimal SMCSs (G1 and G2).

Example 1.1 Figure 2 illustrates three SMCSs, namely, G1,
G2, and Gs, for a graph G and query node set Q = {f}.
All these SMCSs have a maximum connectivity of 3, i.e., at
least 3 edges have to be removed in order to disconnect them.
Here, G3 is the maximum SMCS, since it has the largest
number of nodes, while G2 is the minimum one. Both G
and G2 are minimal SMCSs.

Because obtaining the minimum SMCS is computationally
intractable, we study the efficient retrieval of the minimal
SMCS. One simple way is to first adopt the solution in [6]
to compute the maximum SMCS G’, and then iteratively
refine G’ to ensure its minimality. While this solution is
simple, it has a high complexity, since the cost of testing the
minimality of an SMCS is high (Section 4.2.1). Moreover,
due to the huge size of the maximum SMCS, it is extremely
slow in our experiments (Section 6).

Our Contributions. We have designed a minimal SMCS
solution called the FExpand-Refine framework. In the Ez-
pand step, through local expansion of nodes starting from
nodes in @, we obtain a subgraph G’ of G, which satisfies
the requirement of an SMCS. Intuitively, we obtain G’ by
exploring the neighboring nodes of @) until we obtain an
SMCS. In the Refine step, we devise an efficient algorithm
that removes nodes based on the dependence of nodes on
their minimal SMCSs.

We further improve the efficiency of solutions by relaxing
the constraint from two perspectives, namely connectivity
and minimality. In the Ezpand step, we bound the expan-
sion space (to relax the connectivity); in the Refine step, we
develop an approximation solution with accuracy guarantees
(to relax the minimality).

We have performed a detailed evaluation of our algorithms

on six large real graph datasets. Our experimental results
confirm our claim that the minimal SMCS has a higher
“quality” than the maximum SMCS, in terms of fewer nodes
and higher edge density. The efficiency of our new mini-
mal SMCS solutions addresses several orders of magnitude
improvement over basic solutions.
Organization. We review the related work in Section 2.
Section 3 formulates the SMCS and analyses the minimum
SMCS problem. Section 4 discusses our Expand-Refine so-
lutions. In Section 5, we present our relaxation strategies
to further improve the efficiency. We report our results in
Section 6. Section 7 concludes.

2. RELATED WORK

Our work is related to topics of connectivity, community
search, and cohesive subgraph detection.

Connectivity. The SMCS is a subgraph of G with the
maximum edge-connectivity (called connectivity here). The
connectivity of a graph G is the minimum number of edges
whose removal disconnects G [17]. Connectivity has been
studied in a wide range of graph-related problems, includ-
ing network reliability [13], VLSI chip design [22], trans-
portation planning [5], social networks [30], computational
biology [27], and cohesive subgraph detection [1, 8]. How-
ever, it has only been recently used to facilitate the search
of cohesive subgraphs for a given set of nodes (or SMCS) [6].
In this paper, we study the SMCS problem extensively.

Community Search. Given a set @ of nodes in a graph
G, the community search problem aims at finding the sub-
graphs of G that contains ). For this problem, various
goodness metrics have been proposed, including minimum
degree [26, 15, 4], trussness [18, 19](the minimum support
of an edge in the subgraph, where the support of an edge is
the number of triangles containing it), a-adjacency-y-quasi-
k-clique [14], query biased edge density [31], and attributed
community [16]. These measures are fundamentally differ-
ent from connectivity, and so their solutions cannot be used
to obtain the SMCS.

Moreover, as mentioned in [1, 20], compared with min-
imum degree and trussness, connectivity is a better cohe-
siveness metric. In particular, the minimum degree only
restricts degrees of nodes in subgraphs without any struc-
ture constraint [1]. In Fig. 3a, with query Q@ = {a, e}, the
whole graph G will be returned under the minimum degree
metric (where the minimum degree is maximized). How-
ever, under the connectivity metric, a better subgraph G1
in which all nodes are highly connected will be returned,
since the nodes in G2 are far away from query nodes. As
for the trussness measure, it can be too restrictive on the
triangle structure, which is a local concept, whereas connec-
tivity is more global [1]. Notice that there is no triangle
in bipartite graphs, e.g., paper-author graphs, online dating
graphs, or product-purchaser graphs. For these graphs, it
is better to use connectivity as a goodness metric, since no
cohesive subgraphs with trussness can be found. For exam-
ple, in Fig. 3b, with query @ = {c}, no subgraph will be
returned under trussness metric, because there is no trian-
gle in the subgraph. On the other hand, the whole graph
(with connectivity equal to 4) is returned under the connec-
tivity metric. Hence, in this paper, we use connectivity for
community search, and develop solutions for obtaining the
minimal SMCS.
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Figure 3: (a) An ill-connected graph that minimum degree

fails to separate; (b) A well-connected bipartite graph that
cannot be found with trussness [1].

Cohesive Subgraph Detection. In recent years, there
has been a lot of work about the retrieval of cohesive sub-
graphs from a large graph. Different kinds of cohesive sub-
graphs have been studied, such as the maximal clique [7, 10],



quasi-clique [32], k-plex [29], k-core [25, 9, 21], k-truss [12,
28], and locally densest subgraph [24]. However, these so-
lutions are inherently different from our problem, in which
they are not query-dependent (i.e., the specification of @Q is
not required). Hence, their techniques are inapplicable to
compute minimal SMCS.

3. THE SMCS PROBLEM

We will describe the graph model and three types of SM-
CSs in Section 3.1. We study the intractability problem of
the minimum SMCS in Section 3.2.

3.1 Connectivity and SMCS

Given an undirected graph G, let V(G) and E(G) be
its sets of nodes and edges respectively. We use G[S] =
(S, E[S]) to denote the subgraph of G induced by node set
S C V(G), where E[S] = {(u,v) € E(G) : u,v € S}. Let
N (u) be the set of neighbors of v in G. We denote by G\u
the graph obtained by removing node u from V(G). We use
component to refer to a connected component of G.

Definition 3.1 (Connectivity) The connectivity (or edge-
connectwity in [17]) A(u,v) between two distinct nodes u
and v in V(G) is the minimum number of edges whose re-
moval disconnects u and v. The connectivity of the graph
MG) = min, yev(g) AMu,v) is the minimum connectivity be-
tween any two distinct nodes in G (i.e., the smallest number
of edges whose removal disconnects G).

Definition 3.2 (k-Component) A subgraph g of G is a
k-component (or k-edge connected component in [1, 8]) if
1) M(g) > k; and 2) the connectivity of any super-graph of g
in G is less than k.

Given a set of query nodes Q C V, we use Gg to denote
a node-induced subgraph of G containing ). We define the
SMCS as follows.

Definition 3.3 (SMCS) The Steiner Mazimum-Connected
Subgraph (SMCS) is a subgraph Gq of G such that the con-
nectwity A(Gq) of Go is mazimized.

Let sc¢(Q) be the connectivity of any SMCS of Q. In [6],
sc(Q) is called the Steiner-connectivity of Q. When Q =
{u}, we use sc(u) to denote sc({u}).

Definition 3.4 (Maximum SMCS) An SMCS Gg of Q
such that the number of nodes in Gg is mazimized.

The maximum SMCS is also called the Steiner Mazimum-
Connected Component (SMCC) in [6]. In our experiments,
the maximum SMCS suffers from having a huge size and low
edge density. Hence, we study the problems of finding other
SMCS alternatives as follows.

Definition 3.5 (Minimum SMCS) An SMCS Gq of Q
such that the number of nodes in Gg is minimized.

Definition 3.6 (Minimal SMCS) An SMCS Gq of Q such

that any proper induced subgraph of Gg containing Q is not
an SMCS of Q.

Note that a minimum SMCS is also a minimal SMCS.
Figure 2 shows these three kinds of SMCSs. Next, we discuss
the problem of finding the minimum SMCS.

3.2 Intractability of minimum SMCS

It is easy to observe that the minimum SMCS problem is
APX-hard since it is a generalization of the Steiner tree
problem: given any subset of nodes S in G(V, E), a minimum
subgraph spanning all nodes in S can be found by comput-
ing a minimum SMCS of SU{u} in G(VU{u}, EU{(s,u)}),
where s € S and uw ¢ V. Note that although the ob-
jectives are slightly different (one aims at minimizing the
number of edges while the other aims at minimizing the
number of nodes), we can create dummy nodes within each
edge to make the two objectives arbitrarily close. Since the
Steiner tree problem is APX-hard, the minimum SMCS is
also APX-hard. We further show in the following that the
problem does not admit any constant approximation ratio,
even when restricted to the case when |@Q| = 1. The reduc-
tion from vertex cover problem is a modification of the
hardness proof of the MSMD3 problem in [2].

Theorem 3.1 (Inapproximability) Unless P=NP, there
does not exist any polynomial-time algorithm that approxi-
mates the minimum SMCS problem within any constant ra-
tio.

PrOOF. We show that there exists an instance of mini-
mum SMCS problem with one query node such that is NP-
hard to approximate within any constant ratio, which proves
that the general minimum SMCS problem does not admit
any polynomial-time constant approximation algorithm un-
less P=NP. We first give an APX-hard instance.

Let H be an instance of vertex cover with nyg nodes
and mpy edges that does not admit any polynomial-time
approximation scheme (PTAS). W.lo.g., assume my = 3 -
2" = O(ny) for some integer h and the minimum degree of
H is at least 3. We create an instance H; of the minimum
SMCS problem as follows. Construct a ternary tree T rooted
at r with height h + 1 such that every internal node has
degree 3. Note that T contains 3 - 2" leaf nodes, called E,
each of them corresponds to an edge in H. We then create
another copy of E, called F', that forms a Hamiltonian cycle
with the previous leaf nodes. We further create n new nodes
A such that each of them is connected to a node in F iff it
is an endpoint of the corresponding edge (refer to Figure 4).
Let the minimum SMCS instance be (H1, {r}).

T
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Figure 4: Hard Instance Hy [2]

Observe that sc(r) = 3 and any SMCS of r must contain
all nodes in T'U F, but not necessarily all of A. We show
that the minimum SMCS of r corresponds to find a minimum
S C A such that every node in F' is connected to at least
one node in S (hence a vertex cover in H).

Let S C A be any vertex cover of H. Then the subgraph
induced by TUF'US is an SMCS of r since deleting any two
edges from the subgraph cannot disconnect it: since £ and
F form a cycle, (1) if both edges are chosen from the cycle,



then each node in S U F' is connected to some node in F, all
nodes in F are connected by internal nodes of the ternary
tree and hence the graph remain connected; (2) otherwise
FE and F are still connected by a path P. Since each node
not in £ U F has at least 3 edge-disjoint paths to P, the
graph will remain connected. It is easy to observe the other
direction: if T U F'U S induces an SMCS of r, then S must
be a vertex cover since each node in F' has degree 2 in the
subgraph induced by T'U F.

Since the vertex cover instance H does not admit any
PTAS(and myg = O(ng)), the instance Hy does not admit
any PTAS. Now we proceed to show that there exists an
instance of minimum SMCS problem that does not admit
any constant approximation ratio by applying the standard
error amplification technique.

Given graph H1, in which the minimum SMCS of Q = {r}
cannot be approximated within 1 4+ ¢, we construct Hz as
follows. For each node u (of degree d(v)) in Hi, we replace
it by a copy of H;i by connecting each of the d(v) neighbors
of u to a distinct internal node = € T in the copy of H;. We
further replace each x (which is of degree 4 now) by a cycle
of length 4 and connect each of its neighbor to a distinct
node in the cycle. Let the resulting graph be Hs. Now
consider the minimum SMCS of @ = {r2} in Hs, where r
is the root of the copy H; of the original root r. Still we
have sc(rz) = 3. Moreover, for any SMCS of rp in Hs, if we
extract the subgraph within one copy of H; and contract the
length 4 cycle we created during the construction, then its
minimum degree is at least 3. Hence our previous analysis
shows that it must be 3-connected.

Since it is NP-hard to distinguish the existence of a size-k
SMCS and a size-(14-€)k SMCS of @) in Hy, it is now NP-hard
to distinguish size-k* and size-(1 + ¢)?k? SMCSs (ignoring
constant additive terms) in Hs. Hence Hs does not admit
any polynomial-time algorithm that with approximation ra-
tio smaller than (1 + €)>. By repeating the above proce-
dure, we can create instance H; such that finding the min-
imum SMCS of r; is (1 + ¢)*-inapproximable, which implies
that in general, the minimum SMCS problem does not ad-
mit any polynomial-time constant approximation algorithm:
if there exist a polynomial-time c-approximation algorithm,
for some constant ¢ > 1, then we would be able to dis-
tinguish size-k* SMCS and size-(1 + ¢)*k* SMCS in H;, for
i>log; .c+1. O

Theorem 3.1 states that it is not only intractable to ob-
tain a minimum SMCS, but also hard to get its approximate
version in an accurate manner. Hence, we focus on the mini-
mal SMCS, which although may be larger than the minimum
SMCS, can be found in polynomial time.

4. PROCESSING MINIMAL SMCS

We now examine how to find a minimal SMCS from G
efficiently. Let us first present our Expand-Refine framework.
As shown in Algorithm 1, it contains three steps. First, we
compute the Steiner-connectivity sc(Q) of the query node
set . We then perform Expand (line 2) to generate an SMCS
of @, which serves as a candidate of the minimal SMCS.
We then execute Refine (line 3) on the SMCS returned by
line 2. This operation removes selected nodes and returns a
minimal SMCS of Q.

Step 1: Find sc¢(Q). An efficient algorithm for obtaining
sc¢(Q) has been proposed in [6]. The solution is based on the

Algorithm 1: Framework(G, Q)

Input: A graph G = (V, E), and a set Q of query nodes
Output: The node set of a minimal SMCS of Q

1 Compute the Steiner-connectivity sc(Q) of Q; /* By
invoking the method SC-OPT proposed in [6] */

2 H « Expand((Vse(Q) Esc(@)), @ 5¢(Q)); /* Compute an
SMCS of () as a candidate */

3 Hg < Refine(G[H], Q, sc(Q));
minimal SMCS of Q */

4 return Hg;

/* Refine G[H] to get a

connectivity graph. Let us use sc(u,v) to denote sc({u,v}).
If (u,v) € E, then sc(u,v) is the maximum connectivity of
any graph containing edge (u,v).

Definition 4.1 (Connectivity Graph [6]) Given a graph
G = (V, E), the connectivity graph of G is a weighted undi-
rected graph G. = (V, E,w) with the same set of nodes and
edges as G. Fach edge (u,v) in G. has a weight w(u,v)
equal to the Steiner-connectivity sc(u,v) of {u,v} in G.

An efficient algorithm was proposed in [6] to compute G,
in O(a(G)-h-1-|E|) time, where a(QG) is the “arboricity” of
G and is bounded by (usually much smaller than) /]E| [11],
and h and [ are usually bounded by small constants for real
graphs [8]. Based on G., [6] developed an O(|Q)]) algorithm
to compute the Steiner-connectivity sc(Q). For a single node
u, its Steiner-connectivity is sc(u) = max, ey sc(u, v), i.e.,
the maximum weight among all edges adjacent to uv in Ge.

From now on, we assume that G. has been computed.
Thus, the sc(u,v) and sc(u) values for every edge (u,v) € E
and node u € V are readily known. In the rest of this
section, we will explain the details of Expand (Section 4.1)
and Refine (Section 4.2).

4.1 The Expand Operation (Alg. 1 Step 2)

The goal of this step is to return a candidate for minimal
SMCS of Q. In fact, any SMCS of @ can be a candidate,
and one simple way is to obtain the maximum SMCS, us-
ing the solution provided by [6]. However, as we will show
in our experiments, the maximum SMCS computed can be
extremely large. If the maximum SMCS of @ is returned in
this step, the efficiency of Refine (Step 3 of Algorithm 1)
can be seriously affected — a huge number of nodes have to
be removed before we can get the minimal SMCS of Q). We
next present a better method that generates a smaller SMCS
of @ efficiently.

To start with, let us present the notion of layer.

Definition 4.2 (Layer) For allk > 1, let Vi, = {u € V :
sc(u) > k} and Ey, = {(u,v) € E : sc(u,v) > k}. We call
Gr = (Vi, Ex) the k-th layer of graph G.

Given an integer k, G can be obtained easily. We first
compute Ej, which contains all the edges in G. whose sc
values are higher than k. Then, the set Vi is simply the set
of nodes induced by E. We have developed a useful lemma
for G.

Lemma 4.1 For allk > 1, each component of the k-th layer
Gr = (Vi, Ex) is k-connected.

PROOF. By definition, we know that for any edge (u,v) in
the component G’ of (Vi, Ej), there must exists a subgraph
Guv of G’ containing (u,v) that is k-connected. Hence any
two adjacent nodes in G’ are k-connected, implying that G’
is k-connected. [



Algorithm 2: Expand(Gy, Q, k)

Algorithm 3: Refine-Basic(G[H], Q, k)

Input: A graph Gy = (Vi, Ek), a set Q of query nodes, and
the Steiner-connectivity k of Q

Output: The node set of an SMCS of @

S« 0, H<« 0

Compute a Steiner Tree S from Gj containing Q;

while H = () do
pick u € S closest to Q such that N(u) € S; /* N(u) is
the set of neighbors of u in Gj */
S+ SUN(u);
H < ComputeKECC(G([S], Q, k);
k-component containing @ in Gg[S] */

AW N

o,

/* Compute a

7 return H;

We now describe our local expansion strategy, which finds
a subgraph of G containing @ that is sc(Q)-connected. Let
k = sc(Q) be obtained in Step 1 of Algorithm 1. Given the
k-th layer Gx=(V, Ex) and a set @Q of query nodes, Algo-
rithm 2 computes an SMCS of @) by performing a local search
on G. Particularly, we first form a Steiner tree on the graph
G to connect all query nodes (line 2). Since the Steiner
tree problem is NP-hard, a well-known 2-approximation al-
gorithm [23] is adopted to construct the Steiner tree. We
then iteratively expand the candidate node set S by involv-
ing the local neighbors of the query nodes in a breadth-
first-search manner and invoke ComputeKECC to test whether
there exists a k-component containing @ in G[S], until a
valid SMCS of @ is found (lines 3-6). Here, function Com-
puteKECC returns the node set of that component if it ex-
ists, or an empty set otherwise (line 6). To implement this
function, we first invoke the best k-component algorithm,
called KECCs-Exact [8], which returns all the k-components
of G¢[S] in O(h -l - |E|) time, where h and [ are usually
bounded by small constants. Then ComputeKECC returns
the k-component that contains (). For convenience, we use
M = O(h -l - |E|) to denote the time complexity of Com-
puteKECC.

Algorithm 2 always returns an SMCS of @, since in the
worst case, the maximum SMCS will be returned. In our ex-
periments, the number of nodes in SMCSs returned is much
smaller than that of their maximum counterparts.

4.2 The Refine Operation (Alg. 1 Step 3)

After obtaining an SMCS G[H] of Q with sc(Q)=k in
Step 2, we need to check its minimality, i.e., any subgraph
induced by a proper subset of H is not an SMCS of Q.
However, since there are 2lHI=1Ql possible induced subgraphs
of H containing @, examining all possible subgraphs is not
feasible. To validate the minimality of the SMCS, we first
describe a basic refinement algorithm in Section 4.2.1, and
then propose a better solution in Section 4.2.2. To further
improve the efficiency, we introduce the incremental removal
optimization technique in Section 4.2.3.

4.2.1 Basic Refinement

Observe that if G[H] is not minimal, then there must
exist a subgraph G[Hq], where Ho ¢ H, @ C Hg and
AG[Hg]) = k, i.e., there exists a k-component containing
Q if any node in H\Hg is removed. Based on this intu-
ition, we develop the Refine-Basic (Algorithm 3). In lines
1-4, all nodes in H\Q are tested iteratively. If a smaller
SMCS is found, we shrink the candidate set and recursively
call Refine-Basic to find a minimal SMCS (lines 3-4). The
node set H of a minimal SMCS will be returned if there

Input: A graph G[H], a set Q of nodes, and the
Steiner-connectivity k of Q
Output: The node set of a minimal SMCS of Q
1 for each node u € H\Q do
2 H'’ + ComputeKECC(G[H|\u, Q, k); /* Compute a
k-component containing @ in G[H|\u */
3 if H' # 0 then
a | return Refine-Basic(G[H'], Q, k);

5 return H;

does not exist a k-component containing Q when any node
in H\Q is removed (line 5).

Theorem 4.1 Algorithm 8 returns a minimal SMCS of Q
in O(|H|*M) time.

PrROOF. Correctness: If G[H] is not minimal, then there
exists Hg & H, Q@ C Hg and A\(G[H']) = k. Hence by ex-
amining all nodes in H\Q, we can find at least one node
u € H\Hg such that the k-component containing @ af-
ter removing u is non-empty, which means that whenever a
graph is returned, it must be a minimal SMCS of Q.

Running Time: Since the size of SMCS is reduced in
each recursive call, there are at most |H| recursive calls.
Between two consecutive recursive calls, each node in H\Q
is examined at most once, which takes O(M) time. Hence
the total running time is at most O(|H|?*M). O

4.2.2 Advanced Refinement

We now explain how to use the relationship between nodes
to speed up the refinement step.

Definition 4.3 (Separable) Given any SMCS G[H] of a
set Q of nodes, node u € H\Q is separable for Q if there
exists an sc(Q)-component containing Q in G[H|\u.

Lemma 4.2 Given any SMCS G[H] of a set Q of nodes, if
u € H\Q is non-separable for Q, then any SMCS of Q that
s a subgraph of G[H| must contain u.

PROOF. We prove this by contradiction. Let k = sc(Q),
and G[H'] be the subgraph of G[H] that is an SMCS of Q
and does not contain u. Since u is not contained in G[H'],
when u is deleted from G[H], the k-component containing
Q@ must contain G[H’] as a subgraph. Hence u is separable
and contradicts the assumption. []

Given an SMCS G[H] of Q, Algorithm 4 computes a min-
imal SMCS of @ by repeatedly removing separable nodes
from the SMCS. We initialize T as the set of nodes whose
separabilities are not yet tested (line 1). Then in every round
we test the separability of a node u € T (lines 2-8). If u is
non-separable, it will be removed from T (line 6); otherwise
it is separable, then we can shrink H to a proper subset
H' C H that does not contain u and update T (line 8).
Note that we can remove at least one node from 7' in each
step and when T is empty, all nodes except those in @ in
the current SMCS must be non-separable, which ensures the
minimality.

Theorem 4.2 (Minimal-SMCS) Given an SMCS G[H]
of a set Q of nodes, Refine (G[H]|,Q,k) computes a minimal
SMCS of Q that is a subgraph of G[H] in O(t-M) time, where
t is the number of iterations (t < |H|).



Algorithm 4: Refine(G[H], Q, k)

Algorithm 5: Refine-Inc(G[H], Q, k)

1 T+ H\Q; /* T is the set of all nodes in H whose
separability is not tested */
while T # () do
pick a node u € T}
H'’ + ComputeKECC(G[H|\u, Q, k); /* Compute a
k-component containing @ in G[H]|\u */
if H' =0 then /* u is non-separable */
| T T\u;
else /* G[H'] is an SMCS of Q */
| H«H' T+ TnH';

return H;
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ProoF. First observe that whenever we replace the SMCS
G[H] of Q by a subgraph G[H'], we have A(G[H']) = k,
which means that G[H'] is also an SMCS of Q. When G[H]
is returned by the algorithm, all nodes except those in @
must be non-separable. By Lemma 4.2, we know that G[H]
must be a minimal SMCS since any subgraph of G[H] in-
duced by a proper subset of H containing () must not be
k-connected due to the absence of some non-separable node.
Since in each iteration, the complexity is O(M), the total
running time is O(¢ - M). O

Given the above algorithms, a minimal SMCS of @ can
be computed by calling Algorithm 1 with inputs G and Q
(Framework(G, Q)).

4.2.3 Incremental Removal Optimization

Note that given an SMCS G[H] of a set Q of query nodes
with s¢(Q) = k, in the refinement step, we identify the sep-
arability of a sample node in each iteration. If the sampled
node u is separable, then all nodes not contained in the k-
component containing @ in G[H|\u are separable. However,
in some cases, especially when k is small, every time when
a separable node is identified, we can only reduce the size
of SMCS by a small constant, which is inefficient when the
candidate SMCS is large.

One observation is, for any subset U C H\Q, if there
exists a k-component containing () after removing U from
G[H], then we can identify all nodes in U separable imme-
diately. Using this idea, we develop an incremental removal
optimization for the refinement algorithm, as shown in Al-
gorithm 5. The key idea is that we try to sample a set of
nodes in each iteration. Let ¢ denote the number of nodes
to be sampled, initialized to 1 (line 2). After one successful
removal during the iteration procedure (a k-component con-
taining @ is found after removing U), the sample size ¢ will
be increased by 1 (line 12). When it meets an unsuccessful
removal (there does not exist a k-component containing Q
after removing U), if the size of U is 1, the only element in
U will be removed from T since it is non-separable (line 8);
otherwise, the sample size ¢ will be reset to 1 (line 10). Note
that in the second case, the nodes in U cannot be labeled as
non-separable, even though we know one of them is.

S. IMPROVING PERFORMANCE BY CON-
STRAINT RELAXATION

In this section, we focus on improving the efficiency of our
Expand-Refine algorithm in two ways. First, for the Ezpand
operation, we constrain the local search space while relaxing
the connectivity. Second, for the Refine operation, we pro-
pose an approximation algorithm to speed up the refinement
procedure with accuracy guarantee.

T H\Q;

i 1 /* the number of nodes to be sampled */

while T # 0 do

i < min(¢, |T);

sample ¢ nodes U from T

H' + ComputeKECC(G[H\UJ, Q, k); /* Compute a

k-component containing Q in G[H\U] */

if H' =0 and ¢ =1 then /* U ={u} */
T « T\U;

9 else if H' =( and i > 1 then

non-separable */

10 | i+ 1

11 else

H+ H , T+ TNH i+ i+1;

13 return H;

5.1 Early Stop in the Expand Step

As described in Section 4.1, in the FEzpand step, we locally
expand the Steiner tree S to find an SMCS of Q). However,
since the local expansion is a heuristic search strategy, the
time cost may be very high in some cases, especially when
the graph size is very large. In order to reduce the search
space, we use a threshold 6 to bound the size of .S, so called
early stop. Specifically, as shown in Algorithm 6, after ob-
taining the Steiner tree S for the query nodes, we expand
the tree S to a graph in a BFS manner until the node size
exceeds a threshold 6, i.e., |S| > 6, where 6 is empirically
tuned. Then we extract a k’-component H containing Q in
Gy[S], where k' < k is the maximum possible connectiv-
ity. Following that, we may get a candidate subgraph with
connectivity less than the Steiner-connectivity of Q). How-
ever, as we will show in Section 6.3, the connectivity k' of
the subgraph returned by Algorithm 6 is very close to the
corresponding maximum one in practice.

5.2 Approximation in the Refine Step

Note that to ensure an SMCS graph G[H]| of a set @
of nodes is minimal, we need to test separability for each
node v € H\Q, which takes Q(|H| - M) time in the worst
case. For a large k, usually we have a large minimal SMCS,
which leads to long processing time. To further improve the
efficiency of the refinement procedure, we propose an ap-
proximation algorithm which incorporates two extra user-
specified parameters into the input, i.e., the approximation
ratio r and the failure probability §. The approximation al-
gorithm stops earlier and outputs with probability at least
(1—10) an SMCS of @ that is an r-approximation of a mini-
mal SMCS of @, for any constant § € (0,1) and r > 1. Note
that an SMCS G[H] of @ is an r-approximation if there
exists Ho C H such that [Hg| > L|H| and G[Hg)] is a min-
imal SMCS of Q. The failure probability ¢ is defined as the
probability that the approximation ratio is larger than r.

Algorithm 6: Bounded-Expand(Gy, Q, k, 0)

Input: A graph G = (Vi, Fk), a set Q of query nodes, the
Steiner-connectivity k£ of @, and a node size
threshold 6
Output: The node set of a k’-component containing Q and
the connectivity &k’
1 Compute a Steiner Tree S from G} containing Q;
2 Expand S by adding the local neighbors of Q in G in a
BFS manner, s.t. |S| < 6;
3 Extract a k’-component H containing @Q from S, where
k' < k is the maximum possible connectivity;
4 return (H, k');
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Algorithm 7: Approx-Refine(G[H], Q, k, r, d)

Algorithm 8: Approx-Refine-Inc(G[H], Q, k, r, J)

Input: A graph G[H], a set Q of nodes, the
Steiner-connectivity k of @, and two user-specified
parameters r and ¢

Output: The node set of an approximated minimal SMCS

of Q
1 T+ H\Q;
2 step <= 0; /* the number of non-separable nodes sampled
consecutively */

3 while step < loggf‘ and T # 0 do
sample uniformly at random a node u € T
H’ + ComputeKECC(G[H|\u, Q, k);
k-component containing @ in G[H]|\u */
if H' =0 then /* u is non-separable */

| T < T\u, step < step + 1;
else

| H« H', T+ TnNH', step + 0;

SN

/* Compute
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10 return H;

The pseudocode of the approximation method is shown in
Algorithm 7. Different from Algorithm 4, we maintain an
extra variable, i.e., the number of non-separable nodes sam-
pled consecutively, denoted as step. At first, the value of
step is initialized to 0 (line 2). In each iteration of the algo-
rithm, we sample a node u from T uniformly at random (line
4) and test its separability (lines 5-9). If u is non-separable
(line 6), then it will be removed from T and the value of
step will be increased by 1 (line 7); otherwise we can shrink
H to the k-component containing @ in G[H]\u, update T
and reset the value of step to 0 (line 9). The iteration will

be halted when the value of step is not less than llzgg% or T
is empty. Lemma 5.1 shows that our approximation algo-
rithm outputs an r-approximation of a minimal SMCS of Q
in G[H] with probability at least (1 — 4).

Lemma 5.1 (Approximated Minimal SMCS) Given an

SMCS G[H] of a set Q of nodes , for any constant & € (0,1)
and r > 1, Algorithm 7 returns an r-approrimation of a
minimal SMCS of Q in G[H] with probability at least (1—9).

Proor. Let G[H'] be the SMCS returned by Algorithm 7.
Fix any arbitrary minimal SMCS G[Hg] of Q in G[H']. We

prove that the probability that G[H'] is not an r-approximation

of G[Hg], i.e., contains more than r|Hg| nodes, is at most
5. When H’ is returned, if T = (), then we know that H’
contains only non-separable nodes and is a minimal SMCS

of Q. Hence we have T # () and step > log'r .

Notice that throughout the whole algorithm, T contains
the set of nodes whose separability is not tested in the cur-
rent SMCS of @, and the value of step is the number of
non-separable nodes that are consecutively sampled. By
Lemma 4.2, for each non-separable node u, any minimal
SMCS of Q, including G[Hg,)], must contain u. Hence in each
iteration, all nodes not in Hég are contained in 7' and must
be separable. Let x be the number of non-separable nodes
that have been identified so far. Note that all those nodes
are contained in Hg. The probability that a non-separable
node is chosen is at most

[Hol— 1@l —o _ |Hp—|Ql —= _ |Hp|
T SR T

1
< =
r

Since whenever a non-separable node is chosen, it will be
removed from 7', the event that a non-separable node is
sampled is negatively correlated. Since the probability that

o
= O

1 T+ H\Q, i+ 1, step < 0;

1
while step < lfz)ii and T # () do
1 < min(¢, |T]);
sample uniformly at random ¢ nodes U from T}
H’ + ComputeKECC(G[H\U], ¢, k);
if H =0 and i = 1 then
T + T\U, step < step + 1;
else if H' = () and i > 1 then
| i1
else
| H< H , T+ TNH' i+ i+1,step + 0;

© W N0 ;W N

12 return H;

a non-separable node is sampled in each iteration is less
than , the probability of sampling a consecutive number of

log 5
log

= log, 3 non-separable nodes is < (% )1037“ 5 =9. O

As an example, if we set r = 4 and require a failure prob-
ability 6 = 0.1%, then we can output the current graph

lo log o1
whenever we sample consecutive Dg ;i = Og; "g‘i"l ~4.98 <5
non-separable nodes. Note that there is a trade-off between

the failure probablhty 5 and the approximation ratio r, i.e.,

for a fixed number [ Tor } the failure probability § increases
when r decreases. Slnce in our analysis, we do not take into
consideration the inconsecutive non-separable nodes sam-
pled and the effect that the events of sampling non-separable
nodes are negatively correlated, in practical, the approxima-
tion ratio and the failure probability should be much smaller
(which will be confirmed by our experimental results).

The incremental removal optimization can also be used
in the approximation algorithm, as shown in Algorithm 8.
The main idea is similar to Algorithm 5. Whenever we sam-
ple a separable node, the sample size ¢ is increased by 1
(line 11), otherwise it will be set to 1 (line 9). Since our al-

gorithm stops only when (

I ] consecutive non-separable
ogr
nodes are sampled (which means the sample size is always

1), Lemma 5.1 still holds for Algorithm 8.

6. EXPERIMENTAL RESULTS

Data. We use six large real graph datasets: (1) ca-CondMat,
or condensed matter collaboration network; (2) soc-Epinionsl1,
the who-trusts-whom network of Epinions.com; (3) DBLP,
a bibliographic network '; (4) wiki-Talk, a Wikipedia talk
(communication) network; (5) as-Skitter, the Internet topol-
ogy; and (6) uk-2002, the Web graph within the .uk domain
in 2002 2. Apart from DBLP and uk-2002, the datasets are
downloaded from the Stanford SNAP library . For each
dataset, we use its largest connected component as our test
graph. Their number of nodes and edges, average degree d,
and the largest Steiner-connectivity Scmaz, are reported in
Table 1.

Queries. The node set @ of a query is randomly generated,
based on query size |@Q| and the inter-distance I (i.e., the
maximum distance between any two nodes in Q). By de-
fault, |@Q| = 3 and | = 2. These values are also used in [26,
19]. For testing the effect of the Steiner-connectivity, we use
a slightly different query model, as detailed in Section 6.2.

"http://dblp.uni-trier.de/xml/
http://law.di.unimi.it /datasets.php
3http://snap.stanford.edu/data,/




Table 1: Dataset statistics (K=10% and M=10°)
| ID | Dataset | #Nodes | #Edges | d

| SCmax |
D1 ca-CondMat 21K 91K 8.55 25
D2 | soc-Epinionsl 75K 405K 10.69 67
D3 DBLP 803K 3.2M 8.18 118
D4 wiki-Talk 2.3M 4.6M 3.90 131
D5 as-Skitter 1.7M 11M 13.09 111
D6 uk-2002 18M 261M 28.34 943

Algorithms. We tested several minimal SMCS solutions:

e Basic: Based on Expand-Refine (Alg. 1), but com-
pute maximum SMCS in line 2, and replace line 3 by
Refine-Basic (Alg. 3).

e ER: Algorithm 1.

e ER-I: Algorithm 1 with incremental removal optimiza-
tion, i.e., replace line 3 by Refine-Inc (Alg. 5).

e ER-I-A,: Approximate Expand-Refine with incremen-
tal removal optimization, i.e., in Alg. 1, replace line 3
by Approx-Refine-Inc (Alg. 8). Here w:[llzggéw is
the termination threshold, i.e., ER-I-A,, stops after w
non-separable nodes are sampled.

e B-ER-I-A,: ER-I-A, with bounded local search, i.e.,
in Alg. 1, replace line 2 by Bounded-Expand (Alg. 6)
and line 3 by Approx-Refine-Inc (Alg. 8). We set the
local expansion threshold 8 = 10000, which is selected
to achieve stable quality and efficiency by testing 6 in
[500, 20000].

To examine the effectiveness of our solutions, we have also
implemented the following algorithms:

e max-SMCS: the algorithm proposed in [6], which finds
the maximum SMCS of Q.

e local-SMCS: this uses local expansion (Alg. 2) to gen-
erate an SMCS of @), without any refinement.

For the parameter w used in approximation algorithms, we
found that w=3 balances the running time, approximation
ratio and failure probability (details in Sec. 6.3). We thus
set its default value to 3.

The above algorithms are implemented in C++ and com-
piled with GNU g++ 4.6.3 with the -O3 optimization. The
source codes for computing k-components (ComputeKECC),

constructing the connectivity graph, and computing the Steiner-

connectivity and the maximum SMCS are obtained from the
authors in [6, 8]. Our experiments are conducted on a ma-
chine with an Intel(R) Xeon(R) CPUQ@2.6GHz and 96GB
memory running Linux.

Next, we examine the effectiveness and efficiency of SMCS
solutions in Sections 6.1 and 6.2. We discuss the results for
our relaxation solutions in Section 6.3.

6.1 Effectiveness

We compare the minimal SMCSs and approximated ones
returned by ER-I, ER-I-A3 and B-ER-I-A3 respectively. We
also evaluate the quality of max-SMCS and local-SMCS, ac-
cording to:

(1) Size. The number of nodes in the result graph.

(2) Edge Density p. This measures the density of a graph [17,

24], and is the ratio of the number of edges of a graph g to
that of a complete graph with the same set of nodes:

2% |E(9)|
) = W (Vi) 1) W
Exp-1: Quality Evaluation. For each dataset in D1-D5,
we randomly select 500 sets of query nodes with the size
randomly ranging from 1 to 16 and inter-distance [ being
2, and report the average number of nodes size and edge
density p.

D1 D2 D3 D4 D5 D1 D2 D3 D4 D5

(a) size () p
Figure 5: Quality evaluation

The results are shown in Figure 5. Note that solutions
with local expansion (local-SMCS, B-ER-I-A3, ER-I-A3 and
ER-I) perform better than max-SMCS under all measures. A
gigantic number of nodes is returned by max-SMCS. Moreover,
ER-I achieves the highest edge density with the smallest
number of nodes. Thus, it is useful to remove nodes from
discovered subgraphs by our solution. The number of nodes
in the subgraphs returned by local-SMCS is around 10 times
more than ER-I, which shows that using local expansion
alone is not enough, and the refinement step is necessary.

Exp-2: DBLP Case Study. We use the query Q={“Michael
Stonebraker”; “Samuel Madden”, “Daniel J. Abadi”, “Jennie
Duggan”} on the DBLP dataset. Table 2 shows the quality
measures for different SMCS methods. We found that ER-I
returns a small and cohesive 7-connected subgraph (size=15
and p=0.58), which is much better than those returned by
max-SMCS and local-SMCS. Figure 1 (in Sec. 1) shows the
result returned by ER-I. Due to the large sizes of the sub-
graphs returned by max-SMCS and local-SMCS, they are not
illustrated here. Notice that the results of both ER-I-A3 and
B-ER-I-A3 are all very close to the one returned by ER-I.

Table 2: Quality measures of the DBLP case study.

%}1;1;3 max-SMCS | local-SMCS | B-ER-I-A; | ER-I-Ag | ER-I
size 171,435 129 17 17 15
p 0.0001 0.21 0.54 0.54 | 0.58

6.2 Efficiency

We now evaluate the efficiency of our algorithms for min-
imal SMCS queries under different situations. Each exper-
iment is run three times, and the average CPU time is re-
ported in seconds. We treat the running time of a query as
infinite (Inf) if it exceeds 1 hour.

Exp-3: Effect of Queries. In these experiments, we test
our approaches using different queries. The reported time is
the average time of processing 500 queries.

First, we observe the effect of the query size |Q]. We
test 5 different |Q| values in {1, 2, 4, 8, 16}. The running
time of ER, ER-I, ER-I-A3, B-ER-I-A3 and Basic on differ-
ent datasets (D1-D5) is shown in Figure 6. In general, the
running time of all algorithms increases with the query size.
Since the number of nodes in the candidate generated in the
local expansion step increases when |@Q| increases, the time
cost in both candidate generation step and refinement step
increases. Our algorithms (ER, ER-I, ER-I-A3 and B-ER-
I-A3) outperform the baseline algorithm by several orders
of magnitude on all datasets. Moreover, ER-I is better than
ER. For example, on D5 (as-Skitter), ER-I is around 10 times
faster than ER. Thus, the incremental removal optimization
improves the performance substantially. The approximation
algorithm ER-I-A3 further improves the performance by re-
laxing the minimality; on D3 (DBLP), ER-I-A3 is around 2
times faster than ER-I. B-ER-I-A3 achieves the highest per-
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Figure 8: Varying Steiner-connectivity of @ (|Q| =3,1=2)

formance by relaxing both connectivity and minimality; on
D3 (DBLP), B-ER-I-A3 is around 10 times faster than ER-I.

We then study the effect of the inter-distance [ among
query nodes. The running time of ER, ER-I, ER-I-A3, B-ER-
I-A3, and Basic on different datasets (D1-D5) by varying
the inter-distance ! (from 1 to 5) of query is illustrated in
Figure 7. Similar to the results obtained by varying the
query size, ER, ER-I, ER-I-A3 and B-ER-I-A3 outperform
Basic by several orders of magnitude on all datasets. ER-
I is still better than ER. For example, on D5 (as-Skitter),
ER-TI is around 5.7 times faster than ER. Again, B-ER-I-Ag
performs the best; on D5, B-ER-I-A3 is around 45 times
faster than ER.

We also evaluate the effect of the Steiner-connectivity
s¢(Q) of Q. For each dataset in D1-D5, we select some
representative values of Steiner-connectivity based on its
largest Steiner-connectivity. For each value of sc(Q), we
randomly select 500 different query sets with |Q| = 3 and
!l = 2. The running time of ER, ER-I, ER-I-A3, B-ER-I-
A3 and Basic on different datasets by varying the Steiner-
connectivity sc(Q) of query is illustrated in Figure 8. Gener-
ally, ER, ER-I, ER-I-A3 and B-ER-I-A3 outperform the base-
line algorithm by several orders of magnitude on all datasets.
When sc(Q) increases, the advantage of the approximation
algorithm over others becomes more obvious. For example,
on D5 (as-Skitter), when sc(Q)=>50, ER-I-A3 is around 12.5
times faster than ER-I. When sc(Q) increases, the number
of nodes in the result increases, and the approximation algo-
rithm stops earlier while the exact one needs a lot of time to
do minimality testing on the result graph. B-ER-I-A3 which
combines both connectivity and minimality relaxations still
is the fastest.

Table 3: Scalability testing for B-ER-I-A3 on D6 (in seconds)

[ e [ v [ 2 [ 4 | 8 [ 16 |
[ Time | 13.1 | 21.3 | 28.2 | 32.5 | 379 |
[ ¢ [t [ 27137 4715 |
[ Time | 343 | 41.4 | 27.5 | 32.4 | 29.6 |
[s<(Q) [ 10 | 20 [ 30 | 40 [ 50 |

[ Time | 10.1 | 17.1 | 16.1 | 18.6 | 184 |

Exp-4: Scalability Testing. We test the scalability of
our fastest algorithm (B-ER-I-A3) on D6 (uk-2002) which
contains 261 million edges. The reported time is the average
time of processing 500 queries. Table 3 shows the running
time of B-ER-I-A3 on D6 when varying the query size |Q|,
inter-distance [ and Steiner-connectivity sc(Q). It shows
that B-ER-I-A3 has ideal scalability and is quite efficient
even for such a large network.

6.3 Results on Constraint Relaxation

In what follows, we will first evaluate the error of con-
nectivity by adding a threshold in the Ezpand step. Then
we evaluate our approximation techniques in the Refine step
and discuss how to set parameters.

Exp-5: Connectivity Relaxation. We evaluate the er-
ror of connectivity in B-ER-I-A3 on D3 (DBLP). The average
percentage errors of the connectivity (k') of detected mini-
mal SMCSs by B-ER-I-A3 to the one (k) returned by exact
algorithms, e.g., ER, are reported in Table 4, where we vary
the query size |Q|, inter-distance ! and Steiner-connectivity
sc(Q) as mentioned in Sec. 6.2 (%oerror = (k — k')/k). The
connectivity of detected minimal SMCSs obtained by B-ER-
I-A3 are very close to the exact solutions. Combined with
the analysis on efficiency in Sec. 6.2, B-ER-I-A3z balances the
efficiency and effectiveness well.

Exp-6: Minimality Relaxation. We evaluate the perfor-
mance of the approximation algorithm (ER-I-A,) by varying




Table 4: Error of connectivity on D3 (DBLP)

[T 17271478716
[ Perror | 1% | 1% | 2% | 3% | 6% |
[ ¢ [ 1 [ 23 ]4]35 |
[ Ferror | 1% | 1% | 2% | 2% | 2% |
[sc(@ [ 4 [ 8 [ 12 [ 16 [ 20 |
I

[T 4% [ 3% [ 1% | 0% |

Oerror

D1 D2 D3 D4 D5 D1 D2 D3 D4 D5 D1 D2 D3 D4 D5
(a) Query Time(sec) (b) Approx. Ratio (c) Failure Prob.
Figure 9: Minimality approximation performance

the termination threshold w, from 2 to 5. To investigate the
actual approximation ratio and failure probability, for each
value of w from 2 to 5, we select a pair of (r,d), i.e., (8,

og o
0.02)(“ETE ~ 1.88 < 2), (5, 001)(M ~ 2.86 < 3), (6,

0.001)(“EI0L ~ 3.86 < 4) and (4, 0.001)(ETIL ~ 4.98 <
5). We randomly select 500 sets of query nodes with size ran-
domly ranging from 1 to 16 and the inter-distance [ being 2.
The query time, actual approximation ratio and failure prob-
ability of ER-I-As, ER-I-A3, ER-I-A4 and ER-I-A5 are shown
in Figure 9. In Figure 9a, we also report the query time of
the exact algorithm ER-I. In general, all these approxima-
tion algorithms run much faster than ER-I, and their actual
average approximation ratios and failure probabilities are
all much lower than the theoretical values. One exception
is that the failure probability of ER-I-A2 on D5 (as-Skitter)
is much larger than its theoretical value, because the value
of w in ER-I-A3 is too small (w = 2) which leads to a high
variance. Specifically, ER-I-As is the fastest approximation
algorithm on all datasets, but its actual approximation ratio
and failure probability are the highest. Although ER-I-A5 is
the slowest, it achieves the best actual approximation ratio
and failure probability. We observe that a larger w leads to
higher accuracy. We also see that ER-I-A3 achieves the best
balance among the running time, approximation ratio, and
failure probability. We thus suggest to set w to 3 (withr =5
and 6 = 0.01).

7. CONCLUSIONS

In this paper, we examine the minimal SMCS problem.
We develop Expand-Refine algorithms for finding minimal
SMCSs. In addition, we propose two strategies to further
improve the efficiency by relaxing connectivity and mini-
mality. Our experiments on large datasets demonstrate the
effectiveness and efficiency of our proposed solutions. We
plan to extend our techniques to cohesive subgraph search
under other metrics.
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