
An Incentive Protocol for Distributed Dynamic P2P
Video-on-Demand Streaming

Wenbin Tang
The University of Hong Kong

Email: wbtang@cs.hku.hk

Xiaowei Wu
The University of Hong Kong

Email: xwwu@cs.hku.hk

T-H. Hubert Chan
The University of Hong Kong

Email: hubert@cs.hku.hk

Abstract—P2P file streaming has become very popular in on-
line video sharing. Under the video on demand (VoD) setting,
peers in the network may be interested in different portions of
the same video. It is a new challenge to distribute the server load
to peers under the VoD setting while at the same time maintaining
the streaming performance, i.e., low latency and good fluency. Our
approach is to use techniques in social recommendation to spread
information on which portions are currently popular. However,
peers might not always reveal the truth, because of privacy issues
or selfish behavior.

In this paper, we describe and discuss a synchronized large-
scale P2P VoD system in which each peer can only communicate
with one other peer in one round. We assume the video to
be streamed is divided into M consecutive chunks and only
one chunk can be transmitted due to network bandwidth every
communication. We decentralize the whole system such that each
peer has no extra information about the network or how other
peers behave, and can only communicate with its own neighbors
independently without the help of tracker to obtain robustness.
Moreover, the model we consider is fully dynamic: peers leave
and join the network frequently.

We show by experiment that even under the bounded connec-
tion, bounded transmission and distributed setting, our protocol
ensures that almost all peers in the dynamic P2P VoD network
can achieve low latency and good fluency in different kinds of
network topologies. We also analyze the streaming performance
when peers behave differently (selfish vs. unselfish). We show that
peers have little incentive to be selfish in our protocol, which
means that our protocol is in a sense self-enforcing.

I. INTRODUCTION

The peer-to-peer approach has been adopted heavily for
content distribution in recent years. Popular P2P file down-
loading systems like BitTorrent and Emule have proven the
efficiency of P2P assisted downloading. The P2P technology
is later applied to live streaming systems like PPLive to
significantly reduce the server load. Moreover, robustness
is achieved in those systems since the peers interact with
each other independently under decentralized controls. Recent
attention is drawn to a new kind of service named P2P video-
on-demand (VoD) in which peers may be interested in different
portions of the same video. P2P VoD streaming systems
(PPLive, PPStream and UUSee) were developed to alleviate
the server load. Peers in those systems contribute their own
upload bandwidths. Hence a large population of peers can be
served at the same time [5], [6].

The research was partially supported by the Hong Kong RGC grant
HKU719312E and the PROCORE grant F-HK31/11T.

It was posted by Cisco in 2012 that by 2017, 80 ∼ 90% of
the global consumer Internet traffic will be caused by P2P file
sharing, live streaming and VoD [3]. Among these applications,
VoD traffic has been growing rapidly for the past few years.
It is challenging to design mechanisms to evenly allocate the
server load to all peers since different peers may have different
viewing positions [6], [8].

Usually a tracker is placed in the system to maintain
connections and also help distributing server load evenly to
all peers. However, the role of tracker actually weakens the
robustness of the system by damaging the decentralization.
In a distributed P2P VoD system, peers only make limited
number of connections [12], [13] to existing peers and only
communicate with connected peers (neighbors) without any
global vision of the whole system [4]. Peers leave and join the
system frequently and hence the system is highly dynamic. To
support P2P VoD, it is commonly assumed that peers in those
systems contribute their local storages (usually 1GB) to help
other peers [6]. Moreover, peers in those P2P VoD systems will
unselfishly help their neighbors by not only contributing their
upload bandwidths, but also by disseminating their neighbors’
requests to possible source providers.

Former research on BitTorrent [7] and also on P2P VoD
systems [10] were performed to analyze how incentive proto-
cols encourage unselfish behaviors. However, all those results
suggest that it is difficult (or sometimes impossible) to design
incentive protocols in which peers are motivated to dedicate
their bandwidths to help each other. Most of those protocols
[7], [10], [9] are equipped with rewarding mechanisms to
reward unselfish peers. It is hence an interesting question
whether an incentive protocol can be effectively designed so
that without any rewarding mechanism, all peers will behave
unselfishly to maximize their own (expected) profits. Those
protocols are also called self-enforcing since peers have little
incentive to be selfish.

We analyze in this paper a fully distributed and dynamic
P2P VoD system in a round-by-round manner. Assuming
that all peers in the system have bounded bandwidths, each
peer (including the server) is only allow to make constant
number of connections and only initiate one communication
with its neighbor in each round. Based on statistics from
[6], we assume the starting position of each peer is indepen-
dently identically distributed following some distribution on
the whole video. We design a distributed protocol in which
the bandwidths of all peers are efficiently used such that all
peers’ requests are likely to be disseminated and responded.
We designed a scheme called Collaborative Request Selection

(CoRS) to help peers disseminating urgent requests and hence
can use the whole network bandwidth to help peers under
bad situation, i.e., waiting for a long time. Our protocol (with
CoRS adopted) is applied to several different network models
to show the performance, which is measured by the latency
and the fluency of each peer. We show by experiments that our
protocol guarantees that almost all peers achieve low latency
(short waiting time) and good fluency (smooth viewing) under
all tested network topologies.

To analyze how unselfish behavior (disseminating requests
from their neighbors) is encouraged in our protocol, we
compare the network and peer performances when some peers
behave selfishly. Our experiments show that (1) if only one
peer behaves selfishly, then its latency and fluency are not
much better than before; (2) the network performance is still
good if only a small fraction of peers behave selfishly. Given
above, it is easy to see that peers have little incentive to be
selfish because being selfish is not guaranteed to be profitable.
Hence even without any rewarding mechanism equipped, our
protocol is still incentive by implicitly encouraging unselfish
behaviors.

II. MODEL AND PROTOCOL DESCRIPTION

We analyze the distributed video streaming problem in a
network consist of N peers in a synchronized setting. At the
beginning, the owner of the video (which we called the server)
cuts the video into M chunks such that each chunk can be
transmitted in a short period of time, which is called one round.
The video streaming procedure is proceed in a round-by-round
manner. With bounded download and upload bandwidth, the
server would like to distribute the load caused when all N
peers are trying to watch the video at the same time.

A. Requirements

Streaming Requirement. Each peer joins the network for the
purpose of watching the video. Hence, they all require the
chunks of the video to be received in the correct order, which
means that there will be lots of communication collisions when
the bandwidth is bounded.

Bounded Connections. Each peer only has a constant number
C of neighbors. During the streaming process, unless some
connections fail, no more connections are allowed to be made.

Distributed Communication. We assume that each peer (in-
cluding the server) is only allowed to communicate with its
own neighbors in the network, except the first time it joins the
network or any of the current connections is no more available.
Under the distributed setting, each peer has no global vision of
the network and can not directly communicate with the server
unless it is a neighbor of the server.

Bounded Bandwidth. Since each peer has a bounded down-
load and upload bandwidth, it is only allowed to make one
communication with one of its own neighbors every round
and respond to a limited number of communication requests.
For each communication established, only one chunk can be
transmitted in each direction, which means that at most 2
chunks will be transmitted in each communication. If the
number of communication requests some peer u receives
is beyond the limit, only some of them (according to the

limitation) will be made successfully. Note that since at most
N communications are established every round, the bandwidth
of most of the peers are not fully used, which is a common
observation in the real network.

Video-on-Demand. To support VoD, we assume that a con-
stant fraction of peers will start watching the video at some
random positions. In that case, each peer u (with starting
position startu) can start watching the video only after chunk
startu is received.

B. The Model and the Protocol

Let N be the number of peers and M be the number of
chunks. At round t = 0, only the server has M chunks indexed
by [M] = {1, 2, . . . ,M}, all other peers have no chunk and
are waiting to receive the chunks in the correct order. Assume
that each peer makes C connections with existing peers (which
means a maximum number of C out-neighbors). Recall that at
most 2 chunks are transmitted in each communication.

The set of chunks each peer u has can be indicated by
a bit set of length M (chunk bit-set) {β1, β2, . . . , βM} such
that βi = 1 if u has chunk i and 0 otherwise. Let startu ∈
[M] be the starting position of peer u. Let pu be the current
downloading position of peer u, which is the smallest index
of the chunks that is after the current viewing position of u
and not received. Let s be the number of rounds to consume
(watch) one chunk. Note that s indicates the ratio between the
downloading speed and the consuming speed. We call a peer
u started if it has received chunk startu and finished if it has
obtained all desired chunks {startu, startu + 1, . . . ,M}.
How Peers are Connected: Network Topology

There are at most N peers in the network at the same
time. Each peer will perform a peer-searching procedure by
the following rules when it first joins the network.

1) BTC-Network: each peer will choose C neighbors
uniformly at random from existing peers and make
connections when the first time it joins the network.
During the streaming, if some peer leaves the net-
work, then each of its in-neighbors will choose a
backup neighbor uniformly at random independently
from all existing peers.

2) PA-Network [2]: each peer will choose C neighbors
from existing peers with probabilities proportion to
their degrees and make connections when the first
time it joins the network. During the streaming,
if some peer leaves the network, then each of its
neighbors will choose a backup neighbor from all
existing peers with probabilities proportion to their
degrees independently.

3) Twitter-Network [11]: the network is extracted by
removing peers with degree 1 and taking the largest
connected component (nearly 50, 000 peers and
260, 000 edges) from the graph of Twitter [11]. For
streaming, if any peer leaves, the new peer joining
the network will take its place and preserve the same
set of links. To reduce the maximum degree of the
network to a constant, we assume that each peer only
select a constant number C of neighbors uniformly at
random and only communicate with those neighbors
during the streaming.

We consider a fully dynamic network.

1) At the beginning there is only one peer (server)
and every round λ peers join the network and make
connections until there are N peers.

2) Each peer can quit the downloading any time during
the procedure independently with probability q every
round. To ensure that a constant fraction of peers
watch the video until it is over, we set q = Θ(1

M).
3) Each peer that has finished the watching will leave

the network immediately.
4) Assuming a fixed size network, when a peer leaves

the network, a new peer will join the network and
make connections as described above.

Where Peers Start: Video on Demand

Since not all peers will watch the video from the very
beginning, we assume that a constant fraction ε of peers will
perform random seek when it joins the network. (According to
[6], we set ε ≈ 0.5) We use the same distribution to model the
starting positions of random seekers as in [13]. The starting
position of each random seeker (peer that starts watching from
a random position instead of the beginning) is identically inde-
pendently distributed by the following exponential distribution:
Pr[startu ≥ i] = e−

3i
M ,∀i ∈ [M], which is equivalent to

Pr[startu = i] = 3e
− 3i

M

M(1− 1
e3

)
,∀i ∈ [M].

How Peers Communicate: 4 Phases

Each peer will choose one of its neighbors uniformly at
random every round and make communication. The commu-
nication is divided into the following 4 phases (some details
will be discussed later).

1) Establishment. At the beginning of each communi-
cation, the initiating peer u will send out the commu-
nication request to the chosen neighbor v. However,
since the bandwidth of each peer is bounded, each
peer can only accept a bounded number of communi-
cation requests (chosen uniformly at random). Hence
with some probability, the communication request
might be ignored by v and u can not make any extra
communication this round.

2) Exchanging Chunk Requests. Once the communi-
cation is established, the two peers u and v will
exchange the information about what chunks they
want. Each peer preserves a list of chunks it desires to
obtain (requests list). We assume that only a bounded
number k of requests from the requests list can be
chosen and sent during each communication.

3) Exchanging Chunks. Based on the chunks each
of them has and their neighbour’s requests, each
peer chooses a chunk it has that is requested by its
neighbor for transmission (if there is any).

4) Updating Local Information. At the end of each
communication, based on the chunks and the requests
each peer receives, the chunk bit-set and the requests
list will be updated accordingly.

Note that for each instance of communication, only one
communication request (confirmation) and k chunk requests
(each of size O(log2M)) will be sent in each direction, which
compared to the size of chunk (usually 500 Kb) are negligible.

How Peers Behave: Selfish vs Unselfish

Note that pu will be contained in the requests list of u as
long as u is not finished. Based on whether a peer disseminates
its neighbors’ requests, we consider 2 types of peers.

Unselfish Peers. Peer that tries to help its neighbors by storing
and passing its neighbors’ requests if they are more urgent.
Mechanism is designed and adopted to distinguish urgent
requests from non-urgent requests. Hence, if an unselfish peer
u has enough buffer, it will not necessarily choose pu as a
request but probably urgent requests from its neighbors. The
requests from the neighbors of an unselfish peer u will be
included in u’s own requests list;

Selfish Peers. Peer that only tries to get chunks after its
downloading position, which means that it will never ask for or
download any chunks that are not chunks after its downloading
position. The requests list of those peers only contains chunks
after their downloading position, i.e., {pu, pu + 1, . . . ,M}.

C. Measurements

The performance of the above protocol can be measured
by the latency and the fluency of each peer.

Latency. The latency lu for peer u is defined to be the number
of rounds peer u spends on waiting for chunk startu. In
application, short latency implies that peers can start watching
the video soon after they join the network.

Fluency. For each peer u that is started, we call a round bad
for u if u has consumed all chunks it has and is waiting for the
next chunk to come; good if u has some unwatched (fraction
of) chunk. Let bu be the number of bad rounds and gu be the
number of good rounds, then the fluency of peer u is defined
to be fu = gu

gu+bu
, which is the ratio between the number of

good rounds and the total number of rounds after u receives
chunk startu. Note that fu ∈ (0, 1] for each peer u and larger
fu indicates less time is spent on buffering. Also note that
gu = (M − startu + 1) × s if u leaves the network after it
finishes watching the video.

III. COLLABORATIVE REQUEST SELECTION

In this section, we introduce the Collaborative Request Se-
lection (CoRS) scheme that is adopted to disseminate requests.
We define a data structure called REQUEST to represent a
request. Each peer will have a prioritized list of requests. Each
request is generated and stored with the following 4 fields:

1) ID. The requested chunk’s ID.
2) Urgent. A boolean flag indicating whether this re-

quest should be put into high priority. When a peer
has no chunks to watch, an urgent request is generated
for the requested chunk. Otherwise, a normal request
with urgent = false is generated.

3) Hop Limit. The limit on the number of hops a request
is allowed to travel through before it expires. The
hop limit is set to h when the request is generated
and decreased by 1 every round. Hop limit is used
to control the number of copies of one request and
reduce the number of requests in the whole network.

4) Time Stamp. The time stamp of a request is set to
be the round by which the requested chunk should

be received so that the streaming can be carried out
fluently. For example, if peer u is starting to watch
chunk wu, then the time stamp for the request for
chunk pu should be set to current round+(pu−wu)s.

Note that for each round, if peer u is not finished, then a
new request for pu will be generated (with hop limit equals to
h) and merged into u’s requests list. The requests list of each
peer is sorted according to the following rules:

1) urgent request has higher priority then non-urgent
request;

2) if two requests have the same urgent field, then earlier
time stamp implies higher priority;

3) if two requests have the same urgent and time stamp
fields, then lower hop limit implies higher priority.

4) if two requests have the same urgent, time stamp
and hop limit fields, then smaller ID implies higher
priority.

Consider an established communication between u and v.

Selection of Requests. Since each peer can only choose at
most k requests for transmission, if the requests list contains
more than k requests, the top-k requests with highest priority
will be chosen and sent out.

Selection of Chunks. Suppose k prioritised requests are sent
from u to v, then v will check the requests one by one
following the priority to find the first chunk that v has and
is requested by u for transmission.

Updating Local Information. At the end of each commu-
nication, since each peer may receive new chunks and new
requests, the local information (chunk bit-set and requests list)
should be updated accordingly. It is obvious that the chunk bit-
set should be updated to indicate the acquisition of the new
chunks.

The requests list of each peer u is updated as follows.

1) The hop limits of all newly arrived requests and
requests in the requests list are decreased by 1.

2) If u is not finished, a new request for chunk pu will
be generated.

3) All existing requests will be merged to form a new
requests list: if several requests contain the same ID,
then merge these requests into one, set its hop limit
to the highest one, the time stamp to the lowest one
and urgent if one of them is urgent.

4) After that, delete from the requests list all requests
with hop limit 0 and requests for already received
chunks.

IV. PERFORMANCE EVALUATION

Based on the real world statistics, we fix our experiment
parameters as follows in this section.

A. Basic Settings

According to a recent report published by Akamai [1] at
July 2013, the global average connection speed had climbed
to 3.3 Mbps, and the percentage of networks with an average
speed > 4 Mbps is more than 50%. Considering that Hong

Kong has the world’s highest average peak connection speed
(65.1 Mbps), we assume in the P2P VoD streaming network,
the download bandwidth (and hence the upload bandwidth) is
bounded by 6.6 Mbps.

We assume that the video to be streamed is encoded in
flv format with 360 × 640 resolution (360P), 25 frames per
second and 320 Kilobit per second (Kbps). Let the size of
one chunk be fixed to 512 Kb and assume that the video is
cut into M = 1000 chunks. Then the whole video will last
for 512∗1000

320 = 1600 seconds, which is approximately 26.7
minutes. Note that it takes 512

320 = 1.6 seconds to consume one
chunk. Assume that each peer can only initiate one communi-
cation and respond to a maximum number of 4 communication
requests every round. Since only one chunk can be downloaded
in each communication, at most 5 chunks can be downloaded
in each round. Since it takes 5∗512

6.6∗1024 ≈ 0.379 second to finish
the transmission of 5 chunks, we fix the length of one round to
be 0.4 second, which means that each chunk will be consumed
in s = 1.6

0.4 = 4 rounds.

We set N = 214 = 16384 to indicate the maximum
number of peers watching the same video at the same time.
Since it is easy to achieve good streaming performance in
a small size network, we set N large enough to show how
a large population of peers can be served at the same time
by our protocol. Considering the balance between robustness
and efficiency of the streaming protocol, we set C = 4 for
the BTC-network, PA-network and Twitter-network by which
peers are connected.

As defined before, we set the fraction of random seekers
to be ε = 0.5 and probability of leaving during the watching
to be q = 1

s×M = 1/4000. We set k = 20 be the maximum
number of requests each peer can send in each communication;
h = 10 be the hop limit of each request. By Section III, each
request is of size roughly dlog2Me+ 1 + dlog2 he+ 36 = 51
b, which implies that an extra k×51 = 20×51 = 1020 b (≤ 1
Kb) package will be transmitted in each communication. Since
each chunk is of size 500 Kb, the extra data is negligible.

B. Viewing Position Distribution

With parameters fixed as above, the viewing position of
each peer when it first joins the network is chosen under the
following distribution (Fig. 1).

Fig. 1. The CDF of the starting position

As we can see, about ε = 0.5 fraction of peers start from
the beginning and other peers start from some random posi-
tions with distribution defined in [13]. Note that the distribution
matches Figure 6 (the CDF of the viewing position of movies)
of [6] quite well. The assumption [13] that an e−3 ≈ 0.05
fraction of peers’ downloading position is M = 1000 is also
used by our experiments.

C. Protocol Performance: Latency and Fluency

We show our protocol performances under three different
network topologies in this section. For space reason, we will
only discuss issues in the BTC network model in detail.
However, our experiments show that similar results can be
obtained in the PA-network model and Twitter-network model.
From now on, we will be focusing on the BTC-network.

Since the network is fully dynamic, if a peer u joins the
network at round t1, starts watching at round t2 and eventually
leaves the network at round t3, then the latency of u can be
calculated by lu = t2 − t1 and the fluency of u is the fraction
of good rounds between t2 and t3: fu = gu

t3−t2 . We run the
P2P VoD system under three different network topologies for
30, 000 rounds and collect all lu’s and fu’s of each peer u that
leaves the network before round 30, 000. By our experiment,
more than 400, 000 peers leave before we stop collection and
hence we have more than 400, 000 data points (lu, fu).

The latencies of peers in the BTC network that we collected
are distributed as follows (Fig. 2). As we can see from Fig. 2,
more than 99.6 percent of peers have latency ≤ 10 rounds and
99.8 percent of peers have latency ≤ 50 rounds. Recall that
each round lasts for 0.4 second, hence lu ≤ 10 implies that
peer u starts watching the video 4 seconds after it joins the
network and lu ≤ 50 implies that peer u starts watching 20
seconds after it joins the network. Moreover, the fraction of
peers that are suffering from large latency (lu ≥ 100) is less
than 0.1%.

Fig. 2. The CDF of the latency in BTC

The fluencies of peers are distributed as follows (Fig. 3).
If peer u has fluency fu and leaves the network after watching
chunk endu, then u spends 1−fu

fu
× (endu− startu)× s× 0.4

seconds on waiting during the streaming process (excluding the
latency). Note that fu = 1 means that there is no interrupts
during the streaming until peer u leaves the network. Recall
that the video lasts for about 1600 seconds, which can be taken
as an upper bound for (endu − startu) × s × 0.4. Hence if
fu ≥ 0.99, then totally less than 16 seconds are spend on
waiting; if fu ≥ 0.97, then totally less than 50 seconds are
spend on waiting.

Fig. 3. The CDF of the fluency in BTC

By the above figures, we can see that about 98 percent
of peers obtain perfect fluency (fu = 1), which means that
almost all peers in the network do not even need to wait for

a single second after the first few seconds (latency), and more
than 99.2 percent of peers have good fluency (fu ≥ 0.99). The
fraction of peers that are under bad situation (fu ≤ 0.97) is
only 0.6%.

It is shown by the above two figures that our protocol
makes sure that with probability at least 0.996, a peer in
the network only need to wait for less than 4 seconds before
watching; with probability at least 0.992, a peer in the network
only need to wait for less than 16 seconds during the streaming
process. Note that if peer u is not satisfied by the network
situation (i.e., lu ≥ 100 or fu ≤ 0.97), it can simply leave the
network and then join again. Our experiment suggests that with
high probability, the situation will be good enough if u rejoins
network. Since we assume that each peer (including the server)
only has constant number of neighbors and (in expectation) can
only download less than 2 chunks every round, the experiment
result suggests that our protocol actually achieves a great
succeed in distributing chunk requests and helps the P2P VoD
system to achieve a good efficiency.

D. Selfish vs. Unselfish

We analyze how the protocol performance will be affected
when some peers are selfish. Remind that a selfish peer u will
always sent {pu, pu + 1, . . . , pu + k − 1} as requests to its
communication partners and will never include any requests
from its neighbors into its own requests list.

Is Being Selfish Profitable?

We analyze the difference between being selfish and being
unselfish by comparing a peer’s latency and fluency under
those two behaviors, given that all other peers behave un-
selfishly. To make sure that the only differences between
the peer’s latency and fluency are caused by the peer’s own
behavior (instead of other peers’ behaviors or random choices),
we fix the randomness used by all peers in those two cases
to be the same. After fixing the randomness, we can make
sure that the network topologies are the same in those two
cases and moreover, all random choices made by each peer on
communications are the same.

Our experiment is carried out by choosing a random peer
u and then record u’s latency lu and fluency fu if u behaves
unselfishly; record u’s latency l′u and fluency f ′u if u behaves
selfishly. We see the difference of latency by points (lu, l

′
u)

and difference of fluency by points (fu, f
′
u) after repeating

the random selection of peers independently for enough times.
We put all collected (lu, l

′
u) points into one figure to indicate

the how the latency is affected by being selfish. Note that if
all data points are close to the base line lu = l′u, then it means
that being selfish makes little difference; if most of the data
points are above the base line, then it means that being selfish
actually hurts the latency. We also put all collected (fu, f

′
u)

points into one figure to indicate the how the fluency is affected
by being selfish. Similarly, if all data points are close to the
base line fu = f ′u, then being selfish makes little difference; if
most of the data points are below the base line, then it means
that being selfish actually hurts the fluency.

Since we already know that all lu’s are close to 0 and all
fu’s are close to 1, to make the figure less biased, we collect
data points (lu, l

′
u) and (fu, f

′
u) for different ranges of lu and

fu independently and then put all data points together into

one figure. The following two figures show the differences of
latency and fluency after being selfish.

Fig. 4. Differences of latency and fluency in BTC
As shown in Fig. 4, for latency, being selfish is slightly

profitable if originally (unselfish case) the peer has small
latency (≤ 50). However, since most of the data points with
lu ≥ 50 are at or above the base line, the conclusion is that if
originally peer u has latency lu ≥ 50, then (with high prob-
ability) being selfish is not beneficial. More importantly, data
points above the base line indicates that in some cases being
selfish will actually be worse since the latency is increased. If
originally peer u has large latency, then a possible implication
is that u is not connected to peers under good situation. In
that case, lots of urgent requests will be generated by u’s
neighbors. Since u does not help its neighbors to disseminate
the urgent requests, those requests (compared to the case when
u is unselfish) are less likely to be responded. Hence every
round, the request from u is less likely to be disseminated and
responded since it will be competing with many other urgent
requests that are not yet responded. Hence, if u is selfish, then
it is only guaranteed be profitable if originally u has small
latency. However, if that is the case, u does not even need
to be selfish. Since being selfish may actually be harmful, to
maximize u’s own benefit, it is wise to be unselfish.

For the case of fluency, since all most all data points are
really close to the base line, we can see from Fig. 4 that
actually it makes very little difference to be selfish. Hence
by giving consideration to both fluency and latency, it is not
profitable to be selfish and each peer has little incentive to
be selfish, which means that our protocol, especially with the
CoRS mechanism, is self-enforcing.

How Will Selfish Peers Affect the Network?

Instead of analyzing the protocol performance on one
selfish peer, we analyze how the network performance is
affected if many peers are selfish at the same time. Note that
if only a constant number of peers are selfish, the network
performance will not be affected. Here we assume that each
peer becomes selfish after it joins the network with probability
p and unselfish with probability 1 − p, independently for all
peers. By varying the value of p ∈ [0, 1], we can see how will
selfish peers affect the network. Note that if we collect data
from enough number of peers, then by measure concentration,
the fraction of selfish peers will be close to p.

Our measurement in this case is the whole network perfor-
mance. We measure the average latency and average fluency
for each value of p by collecting data points while running the
P2P VoD system for 30, 000 rounds. For each p, before the
collection is stopped, roughly 400, 000 peers leave the network
and the data points are calculated by taking average over all
latencies and over all fluencies. The following figure shows
how the average latency and average fluency are changed when
we vary p from 0 (all unselfish) to 1 (all selfish).

It can be seen from Fig. 5 that as the fraction of selfish
peers increases, the network performance becomes worse.
Compared to the case when all peers are unselfish, in which
all peers only need to wait less than 1 second in average for
the first chunk, when the fraction of selfish peers becomes 0.6,
in average every peer has to wait twice the length of time (3.5
seconds) before start watching. Similarly, while all peers (in
expectation) only stop for less than 1.6 seconds when p = 0,
if p = 0.6, then in average each peer will be stopped for
buffering for 4.6 seconds. In extreme case when all peers are
selfish, in average every peer need to wait more than 6 seconds
for the first chunk and (in total) has 6 seconds stopped during
watching the video. However, when the fraction of selfish peers
is less than 30 percent, our protocol still guarantees that the
average latency is upper bounded by 2 (which means waiting
0.8 seconds for the first chunk) and the average fluency is
lower bounded by roughly 0.999 (which means being stopped
for 1.6 seconds during watching the video).

Fig. 5. Average latency and fluency in BTC

ACKNOWLEDGMENT

We sincerely appreciate the discussions with Chenzi Zhang,
Weiqing Liu and Jian Zhao on the model and protocols.

REFERENCES

[1] Akamai. The state of the internet. 2ND QUARTER, 2013 REPORT.
[2] Béla Bollobás and Oliver Riordan. The diameter of a scale-free random

graph. Combinatorica, 24(1):5–34, 2004.
[3] Cisco. Cisco visual networking index: Forecast and methodology, 2012-

2017. white paper published on Cisco website, 2012.
[4] Bram Cohen. Incentives build robustness in bittorrent, 2003.
[5] Cheng Huang, Jin Li, and Keith W. Ross. Can internet video-on-demand

be profitable? In SIGCOMM, pages 133–144, 2007.
[6] Yan Huang, Tom Z. J. Fu, Dah-Ming Chiu, John C. S. Lui, and Cheng

Huang. Challenges, design and analysis of a large-scale p2p-vod system.
In SIGCOMM, pages 375–388, 2008.

[7] Michael Piatek, Tomas Isdal, Thomas E. Anderson, Arvind Krishna-
murthy, and Arun Venkataramani. Do incentives build robustness in
bittorrent? (awarded best student paper). In NSDI, 2007.

[8] Kai Wang and Chuang Lin. Insight into the p2p-vod system: Perfor-
mance modeling and analysis. In ICCCN, pages 1–6, 2009.

[9] Tin-Yu Wu, Wei-Tsong Lee, Nadra Guizani, and Tzu-Ming Wang.
Incentive mechanism for p2p file sharing based on social network and
game theory. Journal of Network and Computer Applications, 2013.

[10] Weijie Wu, John C. S. Lui, and Richard T. B. Ma. Incentivizing
upload capacity in p2p-vod systems: A game theoretic analysis. In
GAMENETS, pages 337–352, 2011.

[11] Jaewon Yang and Jure Leskovec. Patterns of temporal variation in
online media. In WSDM, pages 177–186, 2011.

[12] Can Zhao, Xiaojun Lin, and Chuan Wu. The streaming capacity of
sparsely-connected p2p systems with distributed control. In INFOCOM,
pages 1449–1457, 2011.

[13] Can Zhao, Jian Zhao, Xiaojun Lin, and Chuan Wu. Capacity of p2p
on-demand streaming with simple, robust and decentralized control. In
INFOCOM, pages 2697–2705, 2013.

