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Abstract—We consider the video-on-demand streaming prob-
lem in a P2P network in a decentralized model, in which peers
have no global information about the network. Assuming that
only one server has all the chunks, the objective is to stream all
chunks to all peers in the network such that small latency and
good fluency are achieved by all peers.

We design a simple and decentralized protocol in which each
peer maintains a constant number of neighbors and only need
to communicate with one of them chosen uniformly at random
every time. Moreover, the maximum number of communications
established on each peer every time is also constant. We provide
theoretical and experimental analysis to show that almost all
peers achieve optimal latency and fluency under our protocol.

I. INTRODUCTION

The Peer-to-Peer (P2P) network has become a major player
on Internet in recent years. The efficiency of P2P assisted
downloading has already been proved by many popular P2P
file downloading systems like BitTorrent and Emule. Recent
attention is drawn by the P2P video-on-demand (VoD) in
which peers may be interested in playing different portions of
the same video [1], [2]. Peers in those systems contribute their
own upload bandwidths so that a large population of peers can
be served at the same time. To achieve perfect pipelining, the
video is divided into many small fractions, which are usually
called chunks. Each chunk can be transmitted in a short period
of time, which we denote by a round.

To overcome the difficulty of balancing the downloading
requests among all peers, it is implicitly assumed by past
researchers that there are many peers that have cached the
entire video (all chunks) and there exists a central entity that
controls and helps peers to make efficient communications [3],
[4], [5]. It is hence challenging and interesting to consider
decentralized systems in which peers have very limit view of
the whole network [6], [7], [8]. We consider in this paper a
highly decentralized model: (1) the tracker only knows the
identities of all peers currently in the network, and nothing
else; (2) each peer is randomly assigned a constant number
of peers as neighbors [9]; (3) each peer only knows its own
set of neighbors and makes communication with one of them
randomly chosen every round.

In contrast to live-streaming, under the VoD setting, peers
may start watching the video at different positions [1], [2].
Based on experimental results [1], it is assumed that about half
of the peers perform random-seek and the starting position
(chunk) follows some exponential distribution. In general,
peers will leave and join the system frequently, especially

when some peers have finished watching the whole video.
Based on the observation of steady networks, it is assumed
that the number of peers in the network is fixed [7], [8]. We
also adopt this assumption in our model.

A. Related Work

Huang et al. [1] analyzed the P2P VoD streaming in a
chunk-based model, in which peers can choose their starting
positions randomly and may jump back and forth. Assuming
the existence of a set of servers and trackers, they carried
out a large scale experimental analysis to quantify the user
behaviors, the effectiveness and the level of user satisfaction.
Compared to their settings, we assume in our model that
there is only one server and the streaming is carried out in
a fully decentralized setting. Similar model was also adopted
by Parvez et al. [10]. Our model is different from theirs in two
aspects: 1) in our model, peers not only help their neighbors
on buffering chunks, but also on spreading requests of chunks;
2) we measure our protocol by the latency and fluency of each
peer in the network, which are not quantified in their model.

A theoretical analysis is provided by Zhao et al. [8] for P2P
VoD under the decentralized assumption. Each peer is assigned
Θ(logN) number of neighbors, where N is the number of
peers in the network. Their flow-based analysis mainly focused
on achieving an optimal streaming rate for all peers, while the
details on how the chunks are selected and transmitted are not
mentioned. Our protocol improves their result by restricting
the number of neighbors of each peer and the connections
each peer can make during each round to constant.

Recently, Tang et al. [11] analyzed the P2P VoD problem
and proposed a similar chunk-based protocol. They showed
by experiments that their protocol achieves small latency and
good fluency for most of the peers. However, no theoretical
analysis is provided for their protocol and the comparison
provided is inadequate. We improve their result by providing
a simplified protocol, which is more efficient, together with
theoretical analysis on the performance.

B. Our Contribution

In this paper, we propose a simple protocol in which the
peers communicate with each other under fully decentralized
control. We provide theoretical analysis to show upper and
lower bounds for our protocol performance. Our proof also
provides insights into the efficiency of the protocol, which are
later verified by our simulation. We design detailed simulation



for the model and our protocol. Experimental result suggests
that peers achieve almost-optimal latency (≈ 0) and fluency
(≈ 1) under our protocol. Compared to past literatures, our
contributions can be summarized as follows.

The model we consider is more general. The network in
which the peers are connected is sparse (constant in-degree)
and dynamic. Only one peer in the network has all chunks.
Moreover, only a constant number of connections can be
established on each peer every round, including the server.

Our theoretical analysis guarantees that the latency of each
peer in our protocol is at most O(log2N), which is an
O(logN) approximation of any optimal protocol.Moreover,
we provide non-trivial upper and lower bounds related to the
communication details, which give key insights as to why our
simple protocol achieves almost-optimal performance.

II. VIDEO STREAMING MODEL

Table I lists some important notations and their meanings
that will be used throughout this paper.

TABLE I: Summary of Notations

Notations Meaning
N The number of peers in the network
M The number of chunks to be transmitted
C The number of neighbors of each peer
K Maximum number of accepted connections for each peer
ε Fraction of peers that perform random-seek
Ci The ith chunk
Pi The ith peer
Si The start position of the ith peer
li The latency of the ith peer
fi The fluency of the ith peer
R Maximum number of requests transmitted per communication

We consider the video streaming problem in a network
consist of N peers {P1, P2, . . . , PN}. Assuming that at the
beginning, only the server P1 owns the video, which is divided
into M consecutive chunks {C1, C2, . . . , CM}, the problem is
to stream all the chunks to all peers in the network. To obtain
fluency, each peer will try to get the chunks after its current
viewing position as soon as possible.

To simplify the analysis, we discretize the continuous time
into rounds [12]. All communications between peers will be
made in a round-by-round manner. To simulate the video
streaming in a real network as detailed as possible, the
following settings are made.

1) Bounded Bandwidth: Although in real world, each peer
may have different bandwidth limit [13], to ensure that all
peers achieve perfect streaming, in our model each peer
(including the server) only utilizes a constant number K of
communications with its neighbors.

2) Decentralized Communication: We assume in our model
that all communications between peers are made in a de-
centralized manner. Each peer in the network only asks for
chunks from its own neighbors and has no global information
about the network. The selection of communication partners
and chunks are all made locally and randomly.

3) Video-on-Demand: It has been a common assumption
in recent years that a constant ε fraction of peers will start
watching the video from random positions [1], which is called
random-seek. Let Si ∈ [M ] be the starting position of peer
Pi. We assume that each Si is identically and independently
distributed as : Pr[Si ≥ j] = e−

3j
M ,∀j ∈ [M ]. The same

assumption is also made in [1], [8], [11].
4) Dynamic Network: Peers may leave the network during

downloading (with probability (prob.) Pr(exit)) or after the
watching (with prob. 1). To simplify the setting, we assume
that the number of peers in the network is always N .

A. Measurements

The protocol for the video streaming problem can be eval-
uated by the latency and fluency of each peer in the network.
We call a peer Pi waiting if it has not received CSi

(the chunk
at its start position) and downloading otherwise. If peer Pi has
collected all chunks after position Si, then we call it finished.

Let t(1)i be the round when Pi joins the network; t(2)i be the
round when CSi is received; t(3)i be the round when Pi leaves
the network. For each peer Pi that is downloading, we call a
round bad if Pi has consumed all chunks it has downloaded
and is trying to download the next chunk and good otherwise.

Definition 1 (Latency). The latency li for Pi is the number of
rounds before Pi receives chunk CSi , which is li = t

(2)
i − t

(1)
i

Definition 2 (Fluency). The fluency fi for Pi is defined to be
the ratio between the number of good rounds gi and the total
number of rounds after CSi

is received, which is fi = gi

t
(3)
i −t

(2)
i

.

In application, short latency implies that a peer can start
watching the video soon after it joins the network. Note that
fi ∈ (0, 1] for each peer Pi and larger fi implies a better
fluency since less time is spent on buffering. Based on the
above definition, we provide a lower bound for the average
latency under the problem setting, which is a generalized
version of the result obtained by Yang and Veciana [14].

Theorem 1. Assume that there are N waiting peers in the
Network. Under the limit of bandwidth (at most K accepted
connections every round), there does not exist any protocol
that achieves average latency o(logK N).

Proof. Notice that only the connection between a downloading
peer and a waiting peer can potentially increase the number
of downloading peers. Let Nt be the number of downloading
peers at the end of round-t. Then we have N0 = 1.

Since each peer can establish at most K + 1 connections,
we have Nt+1 ≤ (K + 1)Nt for all t ≥ 0. Hence it is easy
to observe that the number of rounds before N

K+1 becomes
downloading is at least logK+1

N
K+1 = Θ(logK N).

Theorem 1 demonstrates that it is impossible to achieve a
constant latency when there are N waiting peers in the network
at the same time. The lower bound provided in the theorem
will be used later to show that our protocol obtains a non-
trivial approximation ratio compared to any other protocol.



B. Network Topology

There are N peers connected by a BTC network GN . Each
peer Pi is assigned a constant number of min{i − 1, C}
peers chosen uniformly at random from all existing peers
{P1, P2, . . . , Pi−1} as neighbors, for all i ≥ 2.

Definition 3 (BTC-Network). Stating from 1 source peer P1,
peer Pi (2 ≤ i ≤ N ) is added to the network and connected
to min{i− 1, C} peers chosen uniformly at random (without
replacement) from all existing peers {P1, P2, . . . , Pi−1}.

Next we analyze the diameter of GN and the degrees of
peers. We also show that these network properties hold even
when the network is dynamic. The following lemmas are
important for the performance analysis of our protocol.

Lemma 1. Diameter of GN is O(logC N) with prob. 1−o( 1
N ).

Proof. First we observe that each peer Pi will choose min{i−
1, C} peers from {P1, P2, . . . , Pi−1} as neighbors and hence
the graph GN must be connected. Let dist(i) be the shortest
distance between Pi and P1 in GN .

Let P̂ (i) = min{t|Pt is a neighbor of Pi} be the neighbor
of Pi, where i ≥ 2C, with smallest index. Note that P̂ (i) ∈
[i − 1] and E[P̂ (i)] = i

C . By Markov’s inequality, we have
Pr
[
P̂ (i) ≤ 2i

C

]
= 1 − Pr

[
P̂ (i) ≥ 2i

C

]
≥ 1

2 . We call peer Pi
good if P̂ (i) ≤ 2i

C . Hence for each i ≥ 2C, peer Pi is good
with prob. at least 1

2 and is independent of all other peers.
Let P̂ (1)(i) = P̂ (i) and P̂ (x)(i) = P̂ (P̂ (x−1)(i)) be the

peer obtained by applying P̂ (∗) for x times starting from Pi.
Note that if P̂ (x)(i) ≤ C, then we have dist(i) ≤ x.

Observe that if the number of good peers along the path
{i, P̂ (1)(i), P̂ (2)(i), . . . , P̂ (x)(i)} is at least log C

2
N , then

P̂ (x)(i) ≤ C. Let P̃ xi = {i, P̂ (1)(i), P̂ (2)(i), . . . , P̂ (x)(i)} be
the path of length x+ 1. Recall that each peer in P̃ xi is good
with prob. at least 1

2 , independently.
Hence by Chernoff Bound we have Pr[dist(i) >

8C log C
2
N ] ≤ Pr[P̂

(8C logC
2
N)

(i) > C] ≤ Pr[number of

good peers ∈ P̃
8C logC

2
N

i < log C
2
N ] ≤ exp(− 1

2×
(
8C−1
8C

)2×
4C log C

2
N) = o( 1

N2 ). By taking union bound over all peers
Pi with i ≥ 8C log C

2
N , we conclude that with prob. 1−o( 1

N ),
the diameter of GN is at most 8C log C

2
N = O(logC N).

The following two lemmas analyze the expected degree of
each node and the measure concentration.

Lemma 2. Let deg(i) be the degree (including out-edges and
in-edges) of peer Pi in GN . Then for all i > C we have
E[deg(i)] = C(1 +

∑N−1
j=i

1
j ) = Θ(C log N

i ).

Proof. For each i ≥ C + 1, we know that deg(i) = C when
Pi joins the network; for all j > i, Pj is connected to Pi with
prob. C

j−1 . Hence we have E[deg(i)] = C +
∑N
j=i+1

C
j−1 =

C(
∑N−1
j=1

1
j −

∑i−1
j=2

1
j ) = Θ(log N

i ).

By Lemma 2 and measure concentration results (i.e., Cher-
noff Bound), we obtain the following lemma immediately.

Lemma 3. With prob. 1 − o( 1
N ), the number of peers with

constant degree in GN is Θ(N); for each i = o(N), we have
deg(i) = Θ(log N

i ) with prob. 1− o(1).

Lemma 2 indicates that most of peers in GN are of constant
degree. Moreover, the following dynamic setting guarantees
that all the above structural properties of GN will hold even
when GN is dynamic. Once a peer Pi leaves the network,
a new peer will join and make connections to C neighbors
chosen uniformly at random from all N − 1 existing peers.
For each Pj , j > i, that is a neighbor of Pi (before Pi
leaves), a new peer that is not neighbor of Pj will be chosen
uniformly at random from {P1, . . . , Pj−1}\{Pi} (if any) as
the new neighbor of Pj .

Lemma 4. The structural properties of GN as shown in
Lemma 1, 2, 3 hold after the dynamic reconstruction.

Proof. By the above restructuring, the network remains the
same capacity of N peers. More importantly, if we fix any
round and relabel all peers in the network as P1, P2, . . . , PN
in the order of peers sorted by the time they joined the
network (earliest to latest), then for all i ≥ C + 1, the C
neighbors of peer Pi are chosen uniformly at random from
{P1, P2, . . . , Pi−1}. Hence at any round when the network
is still running, all network topology properties (except for a
constant number of peers) proved above hold with the same
probabilities.

III. PRIORITIZED REQUEST QUEUE

In this section, we introduce the Prioritized Request Queue
(PRQ) protocol to disseminate requests and chunks.

The set of chunks each peer Pi has can be indicated by
a length M bit-set (chunk bit-set) {β1, β2, . . . , βM} where
βi = 1 if Pi has chunk Ci and 0 otherwise. During the stream-
ing procedure, each peer will choose one of its neighbors
uniformly at random every round and make communication.
The communication is divided into the following 3 steps.

1) Connection (Algo. 1): In the first step, the initiating
peer sends the connection request to its neighbor. Among all
connection requests, at most K will be chosen for acceptance.

Algorithm 1 PRQ Protocol: Step 1
1: procedure TRYCONNECTANEIGHBOR(Pi)
2: Pi.CONNECT(Pi.outNeighbors.RandomPick(1))
3: procedure PROCESSCONNECTIONREQUEST(Pi, K)
4: for Pj ∈ Pi.waitingList.RANDOMPICK(K) do
5: Pi.ACCEPT(Pj) . accept at most K connections
6: procedure CONNECTED(from: Pi, to: Pj)
7: EXCHANGEREQUEST(Pi, Pj)
8: EXCHANGECHUNK(Pi, Pj)
9: Pi.UPDATEPRQ

A set of requests and at most 2 chunks will be transmitted
for each established communication in the second step. Each
request has the following 3 attached fields.
• ID. The index of requested chunk: ID ∈ [M ].
• Time-Stamp (TS). The Time-Stamp of a request is set

to be the time by which the requested chunk should be



received so that the streaming can be carried out fluently.
Time-Stamp indicates how “urgent” the chunk is required.

• Time-To-Live (TTL). The maximum number of rounds a
request is allowed to live before it expires. We set TTL
to h when the request is generated and then decrease it
by 1 every round.

Note that since the bandwidth of each peer is limited, TS
helps us to identify those “urgent” requests and hence can pre-
vent the “race condition” [15], which would hurt the network
performance, from happening. Requests with TTL= 0 will be
deleted. We will later show that TTL plays an important role
in controlling the number of copies of one request (Lemma 7).

2) Exchange Data (Algo. 2): In the second step, only the
top-R requests from the sorted requests list will be chosen for
transmission, where R is a constant. When the R requests are
received, the peer will try to send back the chunk it owns that
is required by a request with a priority as high as possible.

Algorithm 2 PRQ Protocol: Step 2
1: procedure SENDREQUEST(from: Pi, to: Pj , R)
2: Pi.SENDTO(Pj , Pi.Req.top(R)) . send R requests
3: procedure SENDCHUNK(from: Pi, to: Pj , sent← false)
4: for r ∈ Pi.REQUESTFROM(Pj) do
5: if r.ID /∈ Pi.chunks then
6: Pi.Req.ADD(r) . add requests to PRQ
7: if !sent and chunk ← Pi.chunks.FIND(r.ID) then
8: Pi.SENDCHUNKTO(Pj , chunk)
9: sent = true . send at most one chunk

3) Update Requests (Algo. 3): In the third step, the chunk
bit-set will be updated to indicate the acquisition of new
chunks. To help disseminating requests from neighbors, the
list of requests will be updated as follows.
• The TTL of all requests are decreased by 1.
• Each peer that is not finished will generate a new request

for the chunk after its current downloading position.
• Delete the requests with TTL= 0 and requests asking for

chunks that is already received.
• Merge the requests with the same ID into one: set its

TTL to the highest and TS to the lowest.
Requests are sorted according to the following rules: (1)

smaller TS first; (2) smaller TTL first; (3) smaller ID first.

Algorithm 3 PRQ Protocol: Step 3
1: procedure UPDATEPRQ(Pi, Req, L← List) . queued requests
2: if !Pi.finished then . generate its own request
3: L.ADD(Pi.NewRequest)
4: for r ∈ Pi.Req do . Pi.Req - buffered requests
5: r.TTL -= 1
6: if r.TTL > 0 and r.ID /∈ Pi.chunks then
7: if t← L.FIND(r.ID) then . merge same ID
8: t.TTL = MAX(t.TTL, r.TTL)
9: t.TS = MIN(t.TS, r.TS)

10: else
11: L.ADD(r)
12: Pi.Req = L.PRIORIZEDBY(small TS, small TTL, small ID)

The next theorem provides an upper bound for the latency
of our protocol (assume that K and h are constant).

Theorem 2. With prob. 1− o(1), latency of each peer in our
protocol is O(log2N).

Proof. By lemma 2, we have E[deg(i)] = Θ(C log N
i ).

Let δ = 4C2 logN
E[deg(i)] − 1, we have δ2

2+δ ≥ 1+δ
2 . By

Chernoff Bound we have Pr[deg(i) > 4C2 logN ] =

Pr[deg(i) > (1 + δ)E[deg(i)]] ≤ exp(− δ2

2+δE[deg(i)]) ≤
exp(− 1+δ

2 E[deg(i)]) = exp(−2C2 logN) = o( 1
N2 ). Taking

union bound over all peers, then with prob. 1 − o( 1
N ), the

maximum degree of GN is at most 4C2 logN = O(logN).
If a connection request is sent to a peer of degree O(logN),
then the request will be accepted with prob. Ω( 1

logN ).
By Lemma 1 we know that with prob. 1− o( 1

N ), each peer
Pi is connected to the server P1 by a path of length O(logN).
Since each peer along the path between Pi and P1 has constant
out-degree C, a connection request will be sent between any
two consecutive peers with prob. 1

C and accepted with prob.
at least Ω( 1

logN ). Moreover, by Lemma 7, we know that each
request will be sent with a constant prob. via each established
connection. By Fact 4.2 of [16], with prob. 1−o(1), the request
for CSi will be sent to P1 in O(log2N) rounds and the chunk
CSi

will be sent to Pi in O(log2N) rounds.

Theorem 1 implies that our protocol is an O(logN) ap-
proximation of any optimal protocol in terms of latency.

Corollary 1. The PRQ protocol achieves an average latency
that is an O(logN) approximation of the latency of any
optimal protocol.

Insights into the efficiency of our protocol are provided by
the next few lemmas. We prove that in each round, the number
of connection requests received by each peer, the fraction of
idle peers in the whole network and the length of the PRQ of
each peer are all bounded as follows.

Lemma 5. The number of connection requests Pi receives
each round follows a binomial distribution B(deg(i)−C, 1

C ),
which has expectation E[deg(i)−C]

C ≈ ln N
i .

Proof. Note that Pi has deg(i) − C out-neighbors and each
of them has C neighbors, from which one of them will
chosen uniformly at random each round for communication,
independently for each out-neighbor of Pi. Hence the number
of connection requests Pi will receive each round follows the
binomial distribution B(deg(i)− C, 1

C ).
By Lemma 2 we know that E[deg(i)−C] = C(

∑N−1
j=1

1
j −∑i−1

j=1
1
j ) ≈ C ln N

i , which means the expected number of
connection requests Pi receives each round is E[deg(i)−C]

C ≈
ln N

i (for i� N ).

We call a peer Pi idle in a round if there is no connection
built between Pi and any other peer. The fraction of idle
peers is an indicator of network efficiency since no chunk
will be transmitted from or towards an idle peer, which can
be regarded as a loss of network efficiency.

Lemma 6. The expected fraction of idle peers in each round
is at most e−

K+C
4C + e−

K+C
6 + o(1).



Proof. Fix one round. By definition, peer Pi is idle if (a)
no connection request is sent towards Pi; (b) the connection
request sent by Pi is rejected. Let Pi(idle) be the prob. that
peer Pi is idle. Note that each peer Pi will choose C peers
as neighbors uniformly at random from {P1, P2, . . . , Pi−1}
and then one of them will be chosen uniformly at random
for communication. Hence the connection request from Pi
will be sent to one of {P1, P2, . . . , Pi−1} that is chosen
uniformly at random. By condition (a), for each i ≥ C + 1,
we have Pi(idle) ≤

∏N−1
j=i

(
1− 1

j

)
≈

∏N−1
j=i e−

1
j ≈

exp
(
− ln N−1

i−1

)
= i−1

N−1 ≤
i
N . Note that if deg(i) ≤ K + C,

then any connection requests sent to Pi will be accepted
(with prob. 1). By Lemma 2, we have E[deg(i)] ≤ K+C

2

for all i ≥ e−
K+C
2C · N . By Chernoff Bound, we have

Pr[deg(i) > K + C] ≤ e−
K+C

6 for all i ≥ e−
K+C
2C N . Hence

condition (b) implies that for all i ≥ e−
K+C
4C N , Pi(idle) ≤

1 − (1 − e−
K+C
2C +K+C

4C )(1 − e−
K+C

6 ) ≤ e−
K+C
4C + e−

K+C
6 .

Recall that for all i ≤ e−K+C
4C N , we have Pi(idle) ≤ e−K+C

4C ,
which finishes the proof.

Note that Lemma 6 only gives a very loose upper bound on
the fraction of idle peers and it is not hard to see from the proof
that the exact fraction of idle peers should be much smaller
than the upper bound proved above. Next we show how TTL
helps us to avoid flooding of requests in our protocol.

Lemma 7. Under our protocol, the number of requests at each
peer is at most h ·K ·R.

Proof. We call a request disappears if it is deleted since its
TTL= 0, or it is merged with another request with a larger
TTL value. Since TTL = h for each newly generated request,
a request must disappear h rounds after it is generated.

Consider the set of request at a fixed peer Pi at the end
of some round t. By the above argument, we know that each
request must be generated and transmitted to Pi at some round
after t− h. Since at most K connections are build on Pi and
at most R requests are sent to Pi, we know that the number
of requests at Pi is at most h ·K ·R.

IV. PERFORMANCE EVALUATION

We provide an accurate simulation and comparison in this
section. We compare the performance with the lower bound
proved in Theorem 1, and show how our protocol works by
partially eliminating some important modules of the original
model. Since we assume peers join the network incrementally
at the beginning of the process, our experiment performs better
than the lower bound in Theorem 1, which is based on the
assumption that all N peers join the network at the same time.

A. Simulation Setting

We set N = 215 = 32768 in all our experiments. A larger
N means that a larger population of peers can be served at the
same time by our protocol. We set the number of chunks M =
1000. At the beginning only the server is in the network. We
incrementally build the network by adding 10 new peers each

round to the network until it reaches the maximum capacity
N . We simulate all our experiments by running our protocol
for 30000 rounds, which is sufficiently large to make sure that
the (dynamic) network is stabled. We collect the fluency and
latency of each peer when it leaves the network. More than
400000 data points are collected during our simulation. We
also record information related to the network, including the
number of requests, number of chunks transmitted, and so on.

As defined before, we set the fraction of random seekers
to ε = 0.5 and prob. of leaving during downloading to
Pr(exit) = 1/4000, which ensures that the fraction of peers
that finish the watching is at least 1/e. Each peer is assigned
C = 4 different neighbors randomly when it joins the network.
Each peer only initiates one communication and responds to a
maximum number of K = 4 connection requests every round.
We assume that it takes 4 rounds to consume (watch) one
chunk. To reduce the network traffic, we set R = 20 to be
the maximum number of requests each peer can send in each
communication; h = 10 to be the initial TTL for each request,
which is roughly the diameter of the network, by Lemma 1.

B. PRQ Performance: Latency and Fluency

The objective of our protocol is to reduce the latency
(Fig 1a) and ensure the fluency (Fig 1b) while only make use
of constant number of connections and communications. To
illustrate the importance of the fields TS and TTL in a request,
we examine the performance of PRQ by partially disable some
fields of a request. More details can be found in the figure 1c.
We denote by fr(∗) the fraction of peers.

1) PRQ\TS\TTL: A request in this case has no TS or TTL,
and is only attached with the chunk ID it is requesting. As
discussed in Section III, some issues will occur in this case: (1)
flooding nature of request dissemination: a request at peer Pi
will only be deleted when Pi receives the requested chunk. (2)
race condition: the request generated earliest (which normally
should be considered as “urgent” request) is not processed with
a higher priority. As show in Fig 1c, it is unacceptable that
more than 7% of the peers suffer from large latency (≥ 20).

2) PRQ\TTL: With the help of TS, it is easier to identify
the requests generated earlier. However, without TTL, the
number of requests at each peer may grow as large as Θ(M),
which means that if a peer is under bad network condition
(surrounded by peers with Θ(M) requests), then its latency
can be really large. However, it can be seen that the latency and
fluency are dramatically improved, compared to PRQ\TS\TTL.

3) PRQ\TS: Compared to PRQ\TTL the average latency
is decreased from 7.3 to 2.2, while the average fluency
increases from 0.968 to 0.978. However, the race condition
hinders the performance of the whole network. It is interesting
that PRQ\TS outperforms PRQ\TTL in improving the latency
of peers under bad condition while PRQ\TTL outperforms
PRQ\TS in improving the latency of peers under good con-
dition. This is indeed natural: TS helps peers under good
condition by identifying their requests as “urgent” while TTL
prevents the requests of peers under bad condition from being
submerged by enormous number of requests.
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(b) CDF of fluency

Latency =0 ≤1 ≤2 ≤3 ≤4 ≤5
PRQ 2.5% 75.2% 89.0% 96.3% 98.5% 99.3%
\TS 2.5% 75.9% 81.7% 88.2% 91.8% 93.9%

\TTL 2.4% 75.5% 87.7% 93.9% 96.0% 96.8%
\TS\TTL 2.5% 76.9% 81.6% 86.4% 88.6% 89.8%

Fluency =1 ≥0.99 ≥0.98 ≥0.97 ≥0.96 ≥0.95
PRQ 97.8% 99.2% 99.3% 99.4% 99.5% 99.5%
\TS 62.2% 77.5% 82.6% 85.9% 88.3% 90.1%

\TTL 85.3% 87.7% 88.6% 89.3% 89.9% 90.4%
\TS\TTL 45.2% 53.3% 56.6% 59.0% 61.1% 63.0%

(c) Details on latency and fluency
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Fig. 1: Performance of PRQ, Number of Idle Peers and Overload Peers

4) PRQ: The average latency is 1.6 and average fluency
is 0.998. According to figure 1c, fr(lu ≤ 5) ≈ 0.993 and
fr(fu ≥ 0.95) ≈ 0.995, which means that only 0.7% +
0.5% = 1.2% of the peers are less-satisfied. Since no protocol
can achieve 0 average latency together with 1 fluency, at least
75.2% of peers under our protocol achieve optimal latency
(≤ 1) and at least 99.2% of peers achieve optimal fluency
(≥ 0.99). The above result suggests that our protocol achieves
a great succeed in distributing requests evenly in the network.

C. Network Communication Details
Each point in Fig. 1d is the average value of the correspond-

ing variable over 1000 rounds and rescaled by log2(∗).
1) Number of requests: It can be observed from Fig. 1d that

after the first 5000 rounds, the average number of requests each
peer maintains has dropped from 11 to less than one, which
means that when the network is stabled, more requests are
satisfied than generated. The observation implies that the total
number of requests in the network is well controlled (O(N)),
as theoretically analyzed in Lemma 7.

2) Number of chunks: The number of chunks transmitted
every round is always proportional to the number of peers,
as shown in Fig. 1d. We can see that roughly N

2 chunks are
transmitted when there are N peers in the network.

3) Idle and overload peers: As upper bounded in Lemma 6,
the fraction of idle peers fr(idle), is extremely small in our
protocol. Further more, as the number of peers in the network
increases to N , fr(idle) decreases from 0.055 to 0.014, by
Fig. 1e. According to Fig. 1f, fr(idle) remains almost the
same for peers of different in-degree. Note that a peer is idle
only if its connection request is sent to an overload peer
(and hence rejected). Hence the fraction of overload peers
fr(overload) ≤ fr(idle), which is shown by Fig. 1e.
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