
Finding k most Influential Edges on Flow Graphs

Petrie Wong∗∗, Cliz Sun∗, Eric Lo∗, Man Lung Yiu∗, Xiaowei Wu∗∗,
Zhichao Zhao∗∗, T-H. Hubert Chan∗∗, Ben Kao∗∗
∗ Department of Computing, Hong Kong Polytechnic University
∗∗ Department of Computer Science, University of Hong Kong

Abstract

In this paper, we formulate a novel question on maximum flow queries. Specifically,

this problem aims to find which k edges would have the largest impact on a maximum

flow query on a network. This problem has important applications in areas like so-

cial network and network planning. We show the inapproximability of the problems

and present our heuristic algorithms. Experimental evaluations are carried out on real

datasets and results show that our algorithms are scalable and return high quality solu-

tions.

Keywords: Graph

1. Introduction

A flow network (or a flow graph) is a directed graph where each edge has a non-

negative capacity and each edge receives a flow that does not exceed its capacity. The

maximum flow problem, which identifies the maximum flow from a source vertex to a

sink vertex in a flow network, has applications in web community detection [7, 10, 11],

link spam detection [23], social community detection [14], online content voting [28],

and network planning [18].

In this paper we study the problem of finding k edges that are the most influential to

the maximum flow in a flow networkG. Specifically, given a flow networkG = (V,E)

∗{csxzsun, ericlo, csmlyiu}@comp.polyu.edu.hk
∗∗{kfwong2, xwwu, zczhao, hubert, kao}@cs.hku.hk

Preprint submitted to Elsevier October 17, 2016

where V is the vertex set and E is the edge set with integer capacity, let F be the

maximum flow from a source s to a sink t, we formulate two questions:

• The k Most Beneficial New Edges (kMBNE) — Given an edge set P s.t. P ∩E =

∅, which k edges in P would maximize F (if they are inserted into G)?

• The k Most Lethal Existing Edges (kMLEE) — Given an edge set P ⊆ E, which

k edges in P would minimize F (if they are removed from G)?

These two questions are encountered in many decision-support applications, some of

which are discussed below.

Example 1. Social Network Marketing. Social networks, such as Facebook, are a pop-

ular platform for product marketing. Activities done by a user, e.g., liking a product

page, are made known to his/her friends. If some of these friends follow the action (and

like the product page), the product page is further made known to those friends’ friends.

We can represent a social network as a graph with users as vertices and friendships as

edges. The amount of marketing information (such as the number of advertisement

displayed to a user, or impressions from online advertising jargon) that passes on from

one user a to a friend b can be modeled as the edge (a,b)’s capacity. The network flow

out of a vertex set S ⊆ V into a vertex set T ⊆ V can be considered as the amount

of marketing information that percolates through the network from the users in S to

the users in T . If S is a set of users who are known to be interested in certain type of

products, say, tablets, while T is a set of users who are potentially interested in those

(e.g., T is a set of smartphone users), then a large max-flow from S to T would per-

colate more effectively the marketing effort done by a product manufacturer from S

to T . This facilitates cross-promotion and makes the social network a more effective

marketing platform.

One way to improve the flow from S to T is to add more edges (friendships) in

the network. This can be done by friend recommendation. Some social network (e.g.,

Facebook) employs its own algorithm to produce a complete set of friend recommenda-

tions, denoted by P . Typically, the number of friends to be recommended to a user is in

the hundreds, among which only a couple are displayed on the user’s screen. An inter-

esting question is which recommendations should the system pick and display? What

2

if the objective is to improve the network flow from a user set S to another set T ?1 The

friend recommendation selection problem is an example of the kMBNE problem.

Example 2. Network Planning. A computer network is often modeled as a flow net-

work where vertices are routers, edges are links between two routers, and edge capac-

ities are the links’ bandwidths. Recent works on network planning (e.g., [18]) focus

on localizing faulty links after they break. In practice, it is also important to identify

the set of the most risky links that will have the largest negative impact on the network

throughput if they are broken. In this application, we may configure the set P to the

entire set of edges E. This requires solving the kMLEE problem and the solutions

help derive effective preventive measures (e.g., more frequent inspections on high-risk

links) before any link break.

This paper investigates the kMBNE and kMLEE questions in the context of maxi-

mum flow queries. Our contributions are:

• First, we prove that kMBNE and kMLEE are inapproximable. It is hard to find

even an approximate solution (with constant approximation ratio), let alone find

the exact solution.

• For both kMBNE and kMLEE, we develop polynomial-time heuristic algorithms

that give high-quality solutions on real flow graphs. Moreover, we propose several

pruning and optimization techniques to speedup our proposed algorithms.

The rest of the paper is organized as follows. We present our inapproximability

results and heuristic solutions for the kMBNE and kMLEE problems in Sections 2 and

3, respectively. Section 4 presents the experiment results. Section 5 presents the related

work. Section 6 concludes the work.

2. The kMBNE Problem

We first study the kMBNE problem. Given a flow graph G = (V,E) and a candi-

date edge set P (with capacities) s.t. P ∩ E = ∅, the problem is to maximize the flow

1Multiple sources and sinks there can be captured by a flow network with a supersource s′ and supersink t′, by con-

necting s′ to each vertex in S, and each vertex in T to t′, with infinite-capacity edges.

3

increment from a source vertex s to a sink vertex t in G by choosing k edges in P and

inserting them into G. Note that P could be as large as all non-adjacent vertex-pairs

in G if it is not explicitly given. We call the edges in P new edges to distinguish them

from those already in G.

In this paper, we assume that edges have integer capacity ‖ei‖, for the sake of our

hardness proofs. Nevertheless, our proposed algorithms are applicable to edges with

non-integer capacity as well.

Let F (G) be the maximum flow of (s, t) in graph G, and let Gei = (V,E ∪ {ei})

be the graph with ei(ui, vi) ∈ P inserted. The benefit of ei, denoted by B(ei), is the

increase in the maximum flow of (s, t) in Gei :

B(ei) = F (Gei)− F (G). (1)

The total benefit of a k-edge set K ⊆ P is defined as:

B(K) = F (GK)− F (G), (2)

where GK is the graph with all the edges in K inserted into G.

PROBLEM 1 (kMBNE). Given a flow graph G = (V,E) with integer capacity, an

edge set P (with capacities) s.t. P ∩ E = ∅, a source vertex s, and a sink ver-

tex t; find a subset K ⊆ P of k new edges that gives the largest total benefit i.e.,

arg maxK⊆P,|K|=k B(K).

Note that in our basic definitions of kMBNE, increasing the network flow (F) is the

sole objective. If we consider different edges to bear different costs (e.g., the running

cost of a network link), then the flow network should be modeled as a weighted graph

with each edge be given a weight that models a cost. If we define the benefit of a k-

edge set K ⊆ P to be a function of two factors: (1) the flow increment obtained by

adding the edges in K to the network and (2) the total cost of the edges in K, then a

variation of the kMBNE problem would be to find the k-edge set that maximizes the

cost-accounted benefit. We remark that our algorithm can easily be extended to handle

this variation as long as a cost-accounted benefit function is defined. For simplicity,

we assume edge costs (weights) are 0 and focus on flow increment as the definition of

benefit.

4

We illustrate an example problem instance in Figure 1. It shows a flow graph G

and a set P of new edges (as dotted lines). The capacity of each edge is indicated by a

number next to the edge. The maximum flow value (from s to t) on G is: F (G) = 1.

When k = 2, the optimal solution is the set K = {(j, d), (i, a)}. After inserting K

into G, the maximum flow value becomes: F (GK) = 5. Thus, the benefit of K is:

B(K) = F (GK)− F (G) = 5− 1 = 4.

P = (b, g), (g, c), (j, d), (d, h), (i, a)

bs c d a
9

t

g h

ij

5

4 1
3 6 2 8

1 1 4 4

9

new edges

edges

Figure 1: Problem instance of kMBNE

2.1. Problem Inapproximability

The kMBNE problem is a challenging problem. It is hard to find even an approxi-

mate solution, let alone find the exact solution. Specifically, Theorem 1 states that the

kMBNE problem does not admit any polynomial-time algorithm with a constant ap-

proximation ratio, unless NP-complete problems can be solved in quasi-polynomial

time ZTIME(npolylog(n)).

THEOREM 1. There are no approximation algorithms for the kMBNE problem that

run in polynomial-time and with constant approximation ratio, unless NP ⊆

ZTIME(npolylog(n)).

Proof: Observe that this theorem makes a stronger hardness assumption that NP is not

contained in quasi-polynomial time ZTIME(npolylog(n)), than the assumption that NP

is not in polynomial time ZTIME(nc). Hence, our reduction construction is allowed to

take O(npolylog(n)) time, instead of polynomial time.

First, we define a problem called MinEdge-MaxFlow. This problem aims at mini-

mizing the size of the set K such that B(K) = B(P); however, the size of K is not

necessarily k.

5

PROBLEM 2 (MINEDGE-MAXFLOW). Given a flow graph G and a set P of new

edges with integer capacities, find a subset K ⊆ P of minimum size such that B(K) =

B(P) (i.e., F (GK) = F (GP)).

Next, we present the main idea of the proof:

• We first show in Lemma 1 that MinEdge-MaxFlow cannot be approximated

within ratio log1+ε F (GP) (unlessNP-complete problems can be solved in quasi-

polynomial time).

• For the sake of contradiction, we assume that kMBNE can be approximated within

a constant ratio c. With this assumption, we show in Lemma 2 that MinEdge-

MaxFlow can be approximated within ratio O(logF (GP)).

• Since the ratio O(logF (GP)) (in Lemma 2) is smaller than the lower bound ratio

log1+ε F (GP) for MinEdge-MaxFlow (in Lemma 1), contradiction arises. There-

fore, kMBNE cannot be approximated within a constant ratio c.

We next present Lemma 1 and Lemma 2 and their proofs.

LEMMA 1. For any constant ε ∈ (0, 1), the MinEdge-MaxFlow problem cannot

be approximated within ratio log1+ε F (GP) in polynomial time, unless NP ⊆

ZTIME(npolylog(n)).

Proof 1. We prove this lemma by reducing the Group-Steiner-Tree problem [9] to

MinEdge-MaxFlow.

The Group-Steiner-Tree problem (GST) [9] Given an undirected graphG = (V,E),

a specified root vertex r, a collection of subsets (called groups) g1, . . . , gd ⊆ V and

a length we ≥ 0 for each edge e ∈ E, the problem is to construct a minimum-length

sub-tree T ∗ (rooted at r) that spans at least one vertex from every group.

Properties of GST [9] For every constant ε ∈ (0, 1), the GST problem cannot be ap-

proximated in polynomial time within ratio log1+ε d, where d is the number of groups,

unlessNP ⊆ ZTIME(npolylog(n)). This holds even when the input graph is a tree T and

all edge lengths are integers at most |V |polylog(|V |). Thus, we focus on such a subclass

6

of GST instances in the remaining proof.

Reduction from GST to MinEdge-MaxFlow Given an GST instance with input tree

T on V0 rooted at r, d groups g1, g2, . . . , gd ⊆ V0 and an integer length we ≥ 0 for

each edge e in T , we construct a MinEdge-MaxFlow instance of sizeO(|V0|polylog(|V0|))

in time O(|V0|polylog(|V0|)) such that the maximum possible flow is F (GP) = d. More-

over, any feasible solution with q edges for the MinEdge-MaxFlow instance implies a

feasible solution with total length at most q for the GST instance and also vice versa.

Having this reduction, the inapproximability of GST implies the inapproximability of

MinEdge-MaxFlow.

Next we give the reduction construction and prove its correctness.

First we change T to T ′(V ′, E′) by the following operations: (a) direct all edges

in T from parents to children; (b) replace each directed edge e = (x, y) of length we

with an edge-path of length we, adding we − 1 new vertices. Note that T ′ contains

O(|V0|polylog(|V0|)) number of vertices and edges.

Then for each group gi, i = 1, 2, . . . , d, we create a representative vertex vgi and

let Vg = {vg1 , vg2 , . . . , vgd} be the collection of all representatives. Define E1
g =

{(vgi , t)|1 ≤ i ≤ d} and E2
g = {(xij , vgi)|1 ≤ i ≤ d and xij ∈ gi}.

Define the input graph G(V,E) of the MinEdge-MaxFlow instance as follows.

• Let V = V ′ ∪ Vg ∪ {s, t} be the collection of vertices.

• Let E = E1
g ∪ E2

g ∪ {(s, r)} be the collection of edges.

• Let P = E′ be the collection of potential new edges.

• Let the capacities be 1 for all edges in E1
g and +∞ for all other edges (actually

setting them d works, too).

Note that F (GP) = d and F (G) = 0.

Notice that the construction time is O(|V0|polylog(|V0|)).

Obviously, given a solution for the GST instance with total length q, we can

construct a feasible solution for the MinEdge-MaxFlow instance with q edges by

choosing the corresponding edges. Next we show that for any subset Q ⊆ P , if

F (GQ) = F (GP) = d, then Q must contain a sub-tree of T with total length at

7

most |Q| that spans at least one vertex from every group.

Observe that there is no point for choosing an edge without choosing all other edges

in the same edge-path, or choosing an edge-path disconnected from r in Q (they are

useless for increasing the max flow). Hence, we assume any feasible solution Q ⊆ P

is a sub-tree of T ′ with edge-paths (which also implies a sub-tree of T).

Since F (GQ) = F (GP) = d, we know that exactly 1 flow will pass each represen-

tative vgi . Hence, for each group gi, at least one vertex xij ∈ gi is connected to r by

a path in Q from r to xij , which means that Q is a tree that spans at least one vertex

from every group. Hence, using the same solution Q (and replacing edge-paths in T ′

with edges in T), we get a sub-tree of T with total length q = |Q|.

Since the GST cannot be approximated in polynomial time within ratio

O(log1+ε d), MinEdge-MaxFlow cannot be approximated in polynomial time within

ratio O(log1+ε F (GP)), as d = F (GP).

LEMMA 2. If kMBNE can be approximated within some constant ratio c, then

MinEdge-MaxFlow can be approximated within ratio O(logF (GP)).

Proof 2. Assume that a polynomial time algorithm A approximates kMBNE within

some constant ratio c, then we design the following polynomial time algorithm B that

approximates MinEdge-MaxFlow within ratioO(logF (GP)). This algorithm executes

the following procedure for each k from 1 to |P |. For a fixed k, we run algorithmA on

G iteratively for N = d logF (GP)

log 1
1−c

+ 1e times; after each iteration, we include the set of

new edges to G and remove them from P . Let K∪k be the union of the sets of new edges

obtained at a fixed k. Finally, we output the smallest union K∪k of new edges, among

all values of k. Algorithm B runs in polynomial time because it calls A for |P | · N

times.

Notice that among all values of k, one of them, say k∗, is the optimal solution

of MinEdge-MaxFlow. Fix that k∗, we know that the optimal solution of k∗MBNE

is F (GP). Hence after running A on kMBNE for N times, the remaining target flow

increase is at most F (GP)(1−c)N ≤ 1−c < 1, which means that F (GK
∪
k∗) = F (GP)

and algorithm B will output a solution with size at most |K∪k∗ |. Since k∗ is the optimal

solution for MinEdge-MaxFlow, we know that |K∪k∗ | ≤ N · k∗, which guarantees

8

N = O(logF (GP)) approximation ratio.

2.2. Two-Phase Heuristics Algorithm (TPA)

Given the inapproximability result, it is highly likely that there does not exist a

polynomial time approximation algorithm for solving the kMBNE problem with a con-

stant approximation ratio. Therefore, our best hope in tackling the problem is to derive

a heuristic algorithm with the following properties: (1) it runs in polynomial time,

and (2) it scales well and returns high quality solutions in practice. In this section we

describe our heuristics algorithm. We first start with a basic algorithm that satisfies

property (1). Then, we add a heuristic in search of a high-quality answer and opti-

mize the algorithm by a number of pruning techniques so that the optimized algorithm

satisfies property (2).

P = (b, g), (g, c), (j, d), (d, h), (i, a)

bs c d a
9

t

g h

ij

5

4 1
3 6 2 8

1 1 4 4

9

new edges

edges

(a) problem instance, (initial) flow graphG

KBASE = {(d, h)}

bs c d a
8

t

g h

i
j

4 3 1
3 6 2 8

1
1

4 4

8

new edges

edges

1 1 1
1

j

(b) residual graph G w.r.t. the maximum flow

KGREEDY ={(i, a), (j, d)}

Iteration 1 Iteration 2

ei F (Gei) B(ei) F (Gei) B(ei)

(b, g) 1 1-1=0 4 4-4=0

(d, h) 3 3-1=2 4 4-4=0

(g, c) 1 1-1=0 4 4-4=0

(i, a) 4 4-1=3 - -

(j, d) 1 1-1=1 5 5-4=1

(c) running steps of TPA (k=2)

Figure 2: kMBNE Problem and TPA Running Steps

9

Given a flow graph G, we assume that the maximum flow F (G) from a source s to

a sink t has already been computed. Given G and F (G), the residual graph G consists

of edges that can admit non-zero flow [5]2. Figure 2(a) shows an example flow graph

G. The number printed next to an edge indicates the edge’s capacity. The dotted edges

are the new edges given by the edge-set P . In this example, the maximum flow is 1.

Figure 2(b) shows the residual graph G w.r.t. the maximum flow3. The edges in G

come in pairs: each edge e in G derives a backward edge (e.g., (c, b)), which carries

the flow amount used for e, and a forward edge (e.g., (b, c)), which carries the residual

capacity of e. The residual capacity is the original capacity of the edge minus the flow

amount going through it in G. Any edges (forward or backward) with 0 capacity are

removed from G. An augmenting path ρ is a path from s to t in the residual graph

G [5]. If F (G) is the maximum flow in G, then the residual graph w.r.t. F (G) has no

augmenting paths [5].

Our algorithm consists of two phases. In the first phase, our goal is to quickly find

a base solution with a non-zero benefit. The second phase is to apply certain heuristics

in search of a high-quality answer. The better of the two answers (from the two phases)

is taken as the solution.

In the first phase, we insert all the new edges from P into the residual graph G.

We then try to find a path ρ from s to t in G that uses the fewest number of the new

edges4. If such a path exists, then ρ forms an augmenting path of the residual graph if

those new edges in ρ had been inserted in P . This augmenting path brings at least an

extra flow of 1 unit from s to t because edges assume integral capacities. If ρ contains

not more than k new edges, then we can form a set K containing those new edges in

ρ as an answer to the kMBNE problem. This results in a benefit of at least 1 unit (i.e.,

non-zero benefit). On the other hand, if ρ contains more than k new edges from P ,

then we know that no benefit can be obtained by adding any set of k edges from P into

2 The residual graph G is a by-product of a typical max-flow algorithm. If it is not available, we execute a max-flow

algorithm onG to obtain it.
3Only the solid lines are considered parts of the residual graph. The dotted lines are those from the new edge set P .
4The path ρ can be found by regarding the lengths of all new edges as 1, and the lengths of all other edges as 0, and then

find the shortest path from s to t using a modified Breadth-First-Search, which takesO(|V |+ |E|) time.

10

the flow graph G.

After finding the base solution in the first phase, the second phase applies greedy

heuristics to look for an alternate (hopefully better) solution. Greedy heuristics are

known as a very practical heuristic to approach inapproximable problems [9]. We use

a helper function CalBenefit, which determines the edge e∗ ∈ P that gives the

maximum benefit among all edges in P . Algorithm 1 presents a naive implementation

of CalBenefit. The procedure goes through every edge ei ∈ P and computes the

benefit B(ei) of ei by invoking an incremental max-flow algorithm IncMaxFlow on

the graph Gei . The edge e∗ that gives the highest benefit is returned.

Algorithm 1 Naive-Benefit (G, s, t, P) implements CalBenefit
1: for each new edge ei in P do

2: IncMaxFlow(s, t,G, ei)

3: calculate the benefit B(ei) of ei

4: return the new edge whose benefit is the highest

We call the above naive implementation of CalBenefit Naive-Benefit. It runs

in polynomial-time O(|P |IMF (G)). We will present more efficient implementations

of CalBenefit in Section 2.2.2.

Algorithm 2 shows the pseudo-code of our two-phase heuristic algorithm (TPA).

Phase one (Lines 1–5) finds a base solutionKBASE , which provides a non-zero benefit.

Phase two (Lines 6–11) finds another solutionKGREEDY by greedy heuristic. In phase

two, the algorithm iterates k times. In each iteration, it invokes CalBenefit to

greedily select the new edge e∗ ∈ P that gives the highest benefit B(e∗). The edge e∗

is then removed from P and inserted into G. After the k iterations, k edges from P

would have been selected to form the set KGREEDY . Finally, the algorithm compares

the benefit of KBASE and KGREEDY , and returns the better one as the result (Lines

12–15).

Figure 2 demonstrates TPA. Suppose that k = 2. In the first phase, TPA considers

the residual graph G and adds to it all the new edges from P (Figure 2(b)). It then

attempts to find a path from s to t that uses the smallest number of new edges. In the

example, one such path ρ is s → b → c → d → h → a → t, which includes just one

11

Algorithm 2 TPA (G, s, t, P , k)
. Phase 1: Find a base solution with non-zero benefit

1: let G be the residual graph w.r.t. the maximum flow from s to t

2: insert all edges in P to G

3: find the shortest path ρ (from s to t) in G . by a modified breadth-first-search

4: if ρ exists and it contains at most k new edges then

5: KBASE = the new edges in ρ . base solution

. Phase 2: Apply greedy heuristic to refine the solution

6: set KGREEDY = ∅

7: for i = 1 to k do

8: e∗ = CalBenefit(G, s, t, P) . e∗ has the highest benefit B(e∗)

9: remove e∗ from P

10: insert e∗ into KGREEDY

11: insert e∗ into G . update G accordingly

12: if B(KBASE) > B(KGREEDY) then

13: return KBASE

14: else

15: return KGREEDY

new edge (d, h) ∈ P . As a result, KBASE = {(d, h)}. The benefit B(KBASE) is 2.

In the second phase, TPA iterates a for-loop k = 2 times. Figure 2(c) shows the

running steps of these two iterations. In the first iteration, TPA first invokes the function

CalBenefit to find the most beneficial new edge (i, a). The benefit of the edge is

B((i, a)) = F (G(i,a))−F (G) = 4−1 = 3. The edge (i, a) is removed from P and is

inserted into bothKGREEDY andG. In the second iteration, CalBenefit is invoked

the second time to find the next best edge in P that improves the flow of G(i,a). This

edge is (j, d) and so it is inserted into the answer set KGREEDY . Note that the benefit

of KGREEDY = {(i, a), (j, d)} is 4. Finally, TPA compares the benefits of KBASE

and KGREEDY and returns {(i, a), (j, d)}, as the final result.

2.2.1. Algorithm Analysis

Phase 1 of TPA takesO(|V |+|E|) to find a shortest path using a modified Breadth-

First-Search algorithm. Phase 2 of TPA calls CalBenefit k times. With the naive

implementation of CalBenefit (i.e., Algorithm 1), Phase 2 takesO(k·|P |·IMF (G))

12

time.

Thus, the worst-case time complexity of TPA is: O(k · |P | · IMF (G) + |V |+ |E|).

2.2.2. Efficiency Optimizations

Recall that the objective of CalBenefit is to determine the best new edge in P

that maximizes the benefit. To do so, the naive implementation (Algorithm 1) calls an

incremental max-flow algorithm IncMaxFlow |P | times. In this section we introduce

techniques that can achieve the same goal much more efficiently.

(a) Pruning (New) Edges in P

LEMMA 3. Let γ be the benefit of the best new edge found so far. Given a new edge

ei ∈ P , if its capacity ‖ei‖ is not greater than γ, then ei can be pruned because it

cannot be the best new edge.

In other words, during the process of finding the best new edge in P , we need not

execute IncMaxFlow for any new edge ei whose capacity ‖ei‖ is not greater than the

benefit of the best new edge found so far. With Lemma 3, our approach will process

the new edges in P in descending order of their capacities. This is because with such

a descending capacity order, once we encounter a new edge ei such that ‖ei‖ ≤ γ, all

subsequent new edges in P can be pruned.

We next introduce another trick to prune a candidate new edge ei, if it cannot be

pruned by Lemma 3.

LEMMA 4. A new edge ei = (ui, vi) can be pruned if there is no path from the source

s to ui, or from vi to the sink t, in the residual graph G.

Pruning using Lemma 4 incurs a small cost: we need to check in the residual graph

G, whether ui is reachable from s, and whether t is reachable from vi. Although a BFS

is needed to perform this checking, the cost is significantly smaller than executing the

more expensive IncMaxFlow algorithm.

(b) “Solving Two Small Problems is Faster Than Solving One Big Problem” State-

of-the-art (incremental) max-flow related algorithms all have super-linear time com-

13

plexity. Therefore, solving two half-sized max-flow problems would generally be faster

than solving a full-sized one. The following lemma states a useful property:

LEMMA 5. Given a flow graph G and its maximum flow F (G), let G be the residual

graph w.r.t. the maximum flow F (G). Let e = (u, v) be a new edge in P and let

F(x,y)(G) be the maximum flow from a vertex x to a vertex y in the residual graph G.

The benefit B(e) of e is equal to min(F(s,u)(G), ‖e‖, F(v,t)(G)).

Lemma 5 allows us to calculate the benefit of e by calling IncMaxFlow on two

small problem instances: once using s as the source and u as the sink, and another

one using v as the source and t as the sink. This generally is faster than calling

IncMaxFlow on one large problem instance, which uses s as the source and t as

the sink.

Lastly, we remark that, although we often use augmenting path to explain some

concepts in this paper, all our lemmas and techniques are not specific to augmenting-

path based (incremental) maxflow algorithms. That is because the residual graph,

where the augmenting paths are found, can be deduced solely from the flow, which

can be computed by push-relabel based (incremental) maxflow algorithms, too.

Algorithm Fast-Benefit Putting things above all together, we name this efficient im-

plementation of CalBenefit as Fast-Benefit (see Algorithm 3). TPA uses this as its

CalBenefit implementation.

Algorithm 3 Fast-Benefit(G, s, t, P) implements CalBenefit
1: γ = 0 . the best benefit found so far

2: sort new edges of P in descending order of capacity ‖ei‖

3: for each new edge ei = (ui, vi) of P do

4: if ‖ei‖ ≤ γ then

5: break . Lemma 3

6: if ¬(ui reachable from s) or ¬(t reachable from vi) in G then

7: continue . Lemma 4

8: F(s,ui)
(G) = IncMaxFlow(s, ui,G, {})

9: F(vi,t)
(G) = IncMaxFlow(vi, t,G, {})

10: B(ei) = min(F(s,ui)
(G), ‖ei‖, F(vi,t)

(G)) . Lemma 5

11: update γ

14

3. The kMLEE Problem

We next study the kMLEE problem, which aims at minimizing the maximum flow

of an integer-capacity flow graph G = (V,E) from a source vertex s to a sink vertex

t by choosing k existing edges in a given set P ⊆ E and removing them from G. As

before, we assume that the edges have integer capacities. Note that P could be equal

to E if it is not explicitly given.

Although some edges, i.e., E\P , are not removable in our setting, we can show

that the problem when all edges are removable is no easier.

Given an instance of the kMLEE problem, we can multiply all capacities of edges

with a large integer, e.g., kε , so that all edges have integer capacity at least k
ε . Then

for all e ∈ E\P with capacity ce, we replace it with ce parallel edges with capacity

1, and make all edges removable. Then in the new instance, all edges are removable,

while the total contribution (to the decrease of maximum flow) of any set of at most k

parallel edges of capacity 1 is at most an ε fraction of the total decrease.

Hence for small enough ε (while guaranteeing that 1
ε is polynomially bounded),

the solutions and objectives of the two problems are arbitrarily close. For presentation

convenience, from now on we only consider the case when non-removable edges are

allowed.

Let ei = (ui, vi) be an existing edge in P . Let Gei = (V,E − {ei}) be the graph

with ei removed. (Note: here we put ei as a subscript of G, i.e., Gei , to denote the

removal of ei from G, whereas in the previous section we used ei as a superscript of

G, i.e., Gei to denote the addition of ei into G). The damage of disconnecting ui and

vi by removing ei (or simply the damage of ei), denoted by D(ei) is defined as:

D(ei) = F (G)− F (Gei) (3)

Let GK be the graph G with a set of edges K removed from it. The total damage

of a set K of existing edges is defined as:

D(K) = F (G)− F (GK) (4)

PROBLEM 3 (kMLEE). Given a flow graph G = (V,E) with integer capacity, an

15

edge set P ⊆ E, a source vertex s, and a sink vertex t; find a subset K ⊆ P of k edges

that gives the largest total damage, i.e., arg maxK⊆P,|K|=kD(K).

We illustrate an example problem instance in Figure 3. It shows a flow graphG and

a set P of removable edges (as double-lines). The capacity of each edge is indicated by

a number next to the edge. The maximum flow value (from s to t) on G is: F (G) = 5.

When k = 2, the optimal solution is the set K = {(d, h), (i, a)}. After removing K

from G, the maximum flow value becomes: F (GK) = 0. Thus, the damage of K is:

D(K) = F (G)− F (GK) = 5− 0 = 5.

P = (j, d), (d, h), (i, a)

h2 8
edges

removable edges

bs c d a
9

t

h

ij

5

4 1

2 8

1 1 4 4

9

edges

Figure 3: Problem instance of kMLEE

The kMLEE problem has been studied under the name Network Interdiction Prob-

lem [29, 22] and Network Inhibition Problem [20]. Wood [29] showed that the kMLEE

problem is strongly NP-hard, and gave a mixed integer programming formulation of

the problem. However, no algorithm was given for solving the integer program. For

efficient approximation algorithms, an FPTAS for the network inhibition problem is

proposed in [20] for planar graphs.

THEOREM 2 ([29, 20]). The kMLEE problem is strongly NP-hard.

In the following section, we strengthen the hardness results of the problem. In con-

trast to the problem on planar graphs [20], we show that unless NP = P , achieving

an FPTAS for general flow networks is impossible. Indeed, we show that it is impossi-

ble to achieve any (non-zero) constant approximation ratio in polynomial time, unless

NP = P .

3.1. Problem Inapproximability

THEOREM 3. There is no polynomial time approximation algorithm for the kMLEE

problem with non-zero constant approximation ratio, unless NP = P .

16

Proof 3. Consider the following simpler problem:

PROBLEM 4. Given a flow graph G(V,E), a source vertex s, a target vertex t and a

given set of edges P ⊆ E, find a subset of k edges in P whose removal decreases the

maximum flow from s to t by at least 1; or certify that it is impossible to do so.

We show that the above problem is NP-hard, which implies that it is NP-hard to

get any non-zero constant approximation ratio for the kMLEE problem in polynomial

time, as otherwise the approximation algorithm can be used to solve the above problem

in polynomial time.

Next we prove the NP-hardness of Problem 4, by a reduction from the kMLEE

problem (Theorem 2). For the sake of contradiction, assume that we have a polynomial-

time algorithmA for Problem 4. Given an instanceG of the kMLEE problem, we show

that the problem can be solved by a polynomial number of calls of algorithm A.

Recall that F (G) is the maximum flow from s to t inG. For all f = 1, 2, . . . , F (G),

we create the following instance of Problem 4 with G′(V ′, E′), s′, t and the same set

of removable edges P .

Let V ′ = V ∪ {s′} and E′ = E ∪ {(s′, s)}. Let the capacity of (s′, s) be F (G)−

f + 1. Note that the maximum flow from s′ to t on G′ is exactly F (G)− f + 1.

If there is a subset X ⊆ P of size k such that the maximum flow from s to t on

(V,E\X) is at most F − f (a solution for the kMLEE problem with objective f), then

the maximum flow from s′ to t on (V ′, E′\X) is decreased by at least 1.

If there is a subset Y ⊆ P of size k such that the maximum flow from s′ to t on

(V ′, E′\Y) is decreased by at least 1 (a solution for Problem 4), then the maximum

flow from s to t on (V,E\Y) is at most F − f (a solution for the kMLEE problem with

objective at least f).

Hence we can solve the kMLEE problem by calling A on all F (G) instances of

Problem 4 and returning the solution with the maximum decrease in maximum flow,

which contradicts Theorem 2.

Recall that we can reduce the kMLEE problem to the case when all edges are

removable, i.e., P = E, by multiplying all capacities by a large integer kε , and splitting

17

non-removable edges. In this case, by changing the definition of Problem 4, i.e., to

distinguish the case when we can decrease the maximum flow by at least kε , and the

case when it is impossible to decrease the maximum flow by more than k, we have the

following immediate corollary of Theorem 3.

COROLLARY 1. There is no polynomial-time approximation algorithm for the kMLEE

problem when all edges are removable, i.e., P = E, with approximation ratio

Ω(1
poly(|V |)), unless NP = P .

3.2. Greedy Algorithm

Since we have proven that the kMLEE problem does not admit any polynomial

time algorithm with non-zero approximation ratio unless P = NP , we directly devise

a heuristic solution for the problem. In fact, the greedy heuristics employed in TPA for

the kMBNE problem (see Section 2.2) can be applied here, resulting in a GREEDY

algorithm for the the kMLEE problem.

Algorithm 4 is the pseudo-code of GREEDY. Specifically, it greedily chooses an

edge e ∈ P with the largest damage, removes e fromG, and repeats k times to form the

set K. In each iteration, the edge with the largest damage can be identified by calling

a function, CalDamage.

A naive implementation of CalDamage is to calculate the damage of each edge

in P one-by-one, like the naive implementation of CalBenefit (Algorithm 1).

We call this implementation Naive-Damage. It invokes IncMaxFlow5 on graphs

Ge1 , · · · ,Ge|P | , where Gei is the graph obtained by removing ei from the residual graph

G. We will present more efficient implementations for CalDamage in Section 3.2.2.

3.2.1. Algorithm Analysis

GREEDY calls an implementation of CalDamage k times. A naive implementa-

tion of CalDamage invokes an incremental max-flow algorithm |P | times. Thus, the

worst-case time complexity of GREEDY is: O(k · |P | · IMF (G)).

5A typical incremental algorithm can also handle edge removal with the same complexity as the case of edge insertion.

18

Algorithm 4 kMLEE-Greedy (G, s, t, P , k)
1: set KGREEDY = ∅

2: for i = 1 to k do

3: e∗ = CalDamage(G, s, t, P) . e∗ has the largest damage

4: remove e∗ from P , remove e∗ from G

5: insert e∗ into KGREEDY

6: return KGREEDY

3.2.2. Efficiency Optimizations

Recall that the objective of CalDamage is to determine the edge in P that has the

largest damage for G. A naive implementation, Naive-Damage, calls an incremental

algorithm |P | times. We introduce techniques to achieve the same goal much more

efficiently.

(a) Pruning (Existing) Edges in P

Let G be the residual graph w.r.t. the maximum flow F (G), and let the graph

G∗ be the corresponding maximum flow network. Given an edge ei = (ui, vi), we

define fei(G
∗) as the flow value of ei in G∗, which is equal to the residual capacity

of the backward edge (vi, ui) in the residual graph G. For example, Figure 2(b), the

backward edge (d, c) in G has a residual capacity of 1 unit, thus the flow through the

edge (c, d) in the corresponding maximum flow network G∗ is 1.

We use Lemma 6 to order and prune the edges in P .

LEMMA 6. Let γ be the damage of the edge in P that has the highest damage found

so far. Given an edge ei ∈ P , if fei(G
∗) ≤ γ, then ei can be pruned because it cannot

give the highest damage.

(b) Damage Calculation Using a Shortcut in Incremental MaxFlow Algorithm

LEMMA 7. Let e = (u, v) be an edge in P and Ge be the graph obtained from remov-

ing the edge e (and its backward edge) from the residual graph G. The damage D(e)

of e is equal to max(fe(G
∗)− F(u,v)(Ge), 0).

To explain the usage of Lemma 7, we first revisit the common two-step ap-

proach used in traditional incremental maxflow algorithms (both push-relabel-based

19

and augmenting-path-based) when handling the removal of an edge ei: (Step 1) first

push the existing flow via ei back from the sink to the source and then remove ei, to

get an intermediate residual graph G̃ei ; (Step 2) resume maxflow calculation using G̃ei .

When that finishes, we obtain an updated residual graph G′ and the updated maximum

flow. Note that these two steps are necessary because for the incremental maxflow

problem, we are expected to handle another edge insertion or edge deletion on Gei

next. This makes the acquisition of G′ for processing the next update necessary. In

our context of computing CalDamage, there is a subtle difference with the above:

we only care about the updated maxflow value, but we don’t need G′ because our next

edge to be deleted, say, ej , is not picked from Gei , but from the original input graph G.

Therefore, Lemma 7 provides us a “shortcut” — we can skip Step 1 above and resume

maximum flow calculation on Ge, using u as the source and v as the sink (a twist of

Step 2).

Algorithm Fast-Damage Putting all the optimizations above together, we name our ef-

ficient implementation of CalDamage as Fast-Damage (see Algorithm 5). GREEDY

uses this as its CalDamage implementation.

Algorithm 5 Fast-Damage(G, s, t, P) implements CalDamage
1: γ = 0 . the largest damage found so far

2: sort edges in P in descending order of their flow fei (G
∗)

3: for each edge ei = (ui, vi) of P do

4: if fei (G∗) ≤ γ then

5: break . Lemma 6

6: F(ui,vi)
(Gei) = IncMaxFlow(ui, vi,Gei , {})

7: D(ei) = max(fei (G
∗)− F(ui,vi)

(Gei), 0) . Lemma 7

8: update γ

4. Experiments

In this section we present experiment results on real graphs. All experiments were

conducted on a 2.5 GHz Intel PC running Ubuntu with 8 GB of RAM. We evaluated

our algorithms TPA and GREEDY for the problems kMBNE and kMLEE, respectively.

We measured the solution quality and the running time of our methods.

20

Our experiments use real directed graphs of different sizes and types. These

datasets are listed in Figure 4. The source and the sink are selected randomly and

the capacities are given in the datasets LINK and WAS or we randomly assign capac-

ities [1..10000] for edges in other datasets.6 To simulate the kMBNE problem, we

randomly pick an edge set P from existing edges of the graph. Then, we remove those

edges from the graph and make the resulting graph the input to the kMBNE problem

with P representing the set of new edges. For the kMLEE problem, the edge set P is

selected randomly from existing edges of the graph.

Directed Graphs Vertex # Edge # Avg. Degree

Washington flow network (WAS) 131,074 392,960 5.57

http://dimacs.rutgers.edu/Challenges

CAIDA internet router topology (LINK) 190,914 607,609 6.36

http://www.caida.org/tools/measurement/skitter

Stanford.edu web graph (SFW) 281,903 2,312,497 16.40

http://snap.stanford.edu/data/

Epinions.com social network (ESN) 75,879 508,837 13.41

http://snap.stanford.edu/data/

Pokec online social network (POK) 1,632,803 30,622,564 37.50

http://snap.stanford.edu/data/

LiveJournal online social network (LIVE) 4,847,571 68,993,773 28.46

http://snap.stanford.edu/data/

Figure 4: Real Graph Data Sets

4.1. The kMBNE Problem

In order to evaluate the solution quality of our TPA algorithm, we have imple-

mented an impractical brute-force algorithm (BF) that exhaustively tries all combina-

6Experiments with capacities [1..1000], [1..100000], and [1..1000000] are also conducted and the re-

sults are largely similar.

21

tions to find the optimal solution. The complexity of BF is O(
(|P |
k

)
IMF (G)), where

IMF (G) denotes the time complexity of an incremental maximum flow algorithm. We

then measured the solution quality of TPA as the actual approximation ratio (A.A.R.),

i.e., the solution benefit returned by TPA over the optimal benefit computed by BF.

For comparison, we also implemented a Monte-Carlo heuristic algorithm, MCx, that

randomly selects x edge-sets (each of size k) from P , evaluates the benefit of each

edge-set, and returns the one with the highest benefit. MCx yields the best (1/x)·100%

solution out of all possible edge-sets. Since our optimization techniques (Lemmas 3

and 4) are quite general, we also optimize MCx using them for fairness.

Initially, we first set P = 25 so that BF can compute the optimal solution in rea-

sonable time. Figure 5 shows the solution quality (A.A.R.) of the methods on four real

graphs from k=1 to 4.7 Only A.A.R up to k=4 can be reported because BF cannot

compute the optimal within weeks when k≥5. For the sake of comparison, we include

the method TPA-BASE, which represents the first phase of TPA (see Algorithm 2).

The A.A.R. of TPA is consistently equal to or close to 1.0 on all graphs on all

k values. In contrast, MCx achieves an A.A.R of 1.0 only when k ≤ 2, but that is

simply because MCx has exhausted all cases as BF does. When k ≥ 3, while MC2000

could still barely cover all cases as BF does, but MC500 and MC1000 could no longer

cover all cases, and sharp drops in A.A.R are observed. As BF cannot compute optimal

solutions (and thus A.A.R.) within feasible time when k > 4, so we directly compare

the benefit of TPA and MCx after k > 4 and find that TPA consistently returns benefit

at least 20 times better than MC2000 in all cases.

Figure 6 plots the running times of BF, TPA-BASE, TPA, and MCx for k = 1 to

20. We discard BF when k ≥ 5 because it takes weeks. Even with our optimization

techniques, MCx may be slower than BF (e.g., k = 1) because the value x there is

larger than all possible cases—it manifests the difficulty of setting a practical x value

for MCx.

From Figures 5 and 6, we see that TPA is clearly better than MCx because its solu-

7 The conclusions obtained from datasets WAS and ESN are similar to the conclusions obtained from

datasets LINK, SFW, POK and LIVE.

22

tions are consistently close to the optimal, more efficient, and get rid of the parameter

x. TPA is slightly more expensive than TPA-BASE because TPA executes the second

phase to refine the solution quality (see Algorithm 2). This additional computation is

well paid off because TPA gives a close-to-optimal solution quality.

0

0.2

0.4

0.6

0.8

1

1 2 3 4

[LINK]

A
c
tu

a
l
A

p
p
ro

x
.
R

a
ti
o

K Value

MC500
MC1000
MC2000

TPA-BASE
 TPA

BF

0

0.2

0.4

0.6

0.8

1

1 2 3 4

[SFW]

A
c
tu

a
l
A

p
p
ro

x
.
R

a
ti
o

K Value

MC500
MC1000
MC2000

TPA-BASE
 TPA

BF

(a) on LINK (b) on SFW

0

0.2

0.4

0.6

0.8

1

1 2 3 4

[POK]

A
c
tu

a
l
A

p
p
ro

x
.
R

a
ti
o

K Value

MC500
MC1000
MC2000

TPA-BASE
 TPA

BF

0

0.2

0.4

0.6

0.8

1

1 2 3 4

[LIVE]

A
c
tu

a
l
A

p
p
ro

x
.
R

a
ti
o

K Value

MC500
MC1000
MC2000

TPA-BASE
 TPA

BF

(c) on POK (d) on LIVE

Figure 5: Quality vs. k, fixing |P | = 25 [for kMBNE problem]

As the performance of TPA is mainly k times the execution time of CalBenefit

(Lines 8–9, Algorithm 2), we thus evaluate the scalability of two implementations of

CalBenefit: Naive-Benefit (Algorithm 1) and Fast-Benefit (Algorithm 3). Figure

7 shows the scalability of these two implementations on four real graphs, by varying

|P | from 50 to 5000. Fast-Benefit is much more efficient than Naive-Benefit. The

optimizations (in Fast-Benefit) are very effective so that many edges are pruned. Thus,

Fast-Benefit can often stop early, and its running time is insensitive to the number of

edges.

23

10
0

10
1

10
2

10
3

10
4

10
5

 1 2 3 4 5 10 20

(logscale)

[LINK]

T
im

e
 i
n
 S

e
c
o
n
d
s

K Value

MC1000
MC2000

TPA-BASE

 MC500
 TPA

BF

10
0

10
1

10
2

10
3

10
4

10
5

 1 2 3 4 5 10 20

(logscale)

[SFW]

T
im

e
 i
n
 S

e
c
o
n
d
s

K Value

MC1000
MC2000

TPA-BASE

 MC500
 TPA

BF

(a) on LINK (b) on SFW

10
1

10
2

10
3

10
4

10
5

 1 2 3 4 5 10 20

(logscale)

[POK]

T
im

e
 i
n
 S

e
c
o
n
d
s

K Value

MC1000
MC2000

TPA-BASE

 MC500
 TPA

BF

10
1

10
2

10
3

10
4

10
5

 1 2 3 4 5 10 20

(logscale)

[LIVE]

T
im

e
 i
n
 S

e
c
o
n
d
s

K Value

MC1000
MC2000

TPA-BASE

 MC500
 TPA

BF

(c) on POK (d) on LIVE

Figure 6: Time vs. k, fixing |P | = 25 [for kMBNE problem]

Figure 8 (left) shows the scalability of Naive-Benefit and Fast-Benefit on all six

real graphs (|P | = 500). Since real graphs are different in size and density, we first

executed a maxflow algorithm (with random sources and sinks) on these graphs to

measure the execution time and repeat the experiments many times to get an average.

Then, we place those real graphs on the x-axis according to the average execution time.

Figure 8 (left) shows that both implementations are scalable to graphs of different sizes

and densities but Fast-Benefit outperforms Naive-Benefit by more than two orders of

magnitude.

4.2. The kMLEE Problem

We next study the solution quality and the performance of the algorithms for the

kMLEE problem. For this problem, our algorithm is GREEDY (Algorithm 4) and

24

10
-1

10
0

10
1

10
2

10
3

 50 100 500 1000 5000

T
im

e
 i
n

 S
e

c
o

n
d

s

|P|

[LINK]

(logscale)

(logscale) Naive-Benefit
Fast-Benefit

10
-1

10
0

10
1

10
2

10
3

10
4

 50 100 500 1000 5000

T
im

e
 i
n

 S
e

c
o

n
d

s

|P|

[SFW]

(logscale)

(logscale) Naive-Benefit
Fast-Benefit

(a) on LINK (b) on SFW

10
0

10
1

10
2

10
3

10
4

 50 100 500 1000 5000

T
im

e
 i
n

 S
e

c
o

n
d

s

|P|

[POK]

(logscale)

(logscale) Naive-Benefit
Fast-Benefit

10
0

10
1

10
2

10
3

10
4

 50 100 500 1000 5000

T
im

e
 i
n

 S
e

c
o

n
d

s

|P|

[LIVE]

(logscale)

(logscale) Naive-Benefit
Fast-Benefit

(c) on POK (d) on LIVE

Figure 7: Time vs. |P | [for kMBNE problem]

we again implemented a brute-force optimal algorithm BF. The complexity of BF is

O(
(|P |
k

)
IMF (G)), where IMF (G) denotes the time complexity of an incremental

maximum flow algorithm. We also implemented a Monte-Carlo algorithm, MCx, that

applies our optimization (Lemma 6), for comparison.

We measure the solution quality of GREEDY as the actual approximation ratio

(A.A.R.), i.e., the solution damage returned by GREEDY over the optimal damage

computed by BF. Initially, we again first set |P | = 25 so that BF can report the optimal

solution in reasonable time. Figure 9 shows the solution quality of BF, GREEDY, and

MCx on four real graphs. Again, only A.A.R up to k = 4 can be reported because

BF cannot compute the optimal within weeks when k ≥ 5. The kMLEE problem is so

hard that there are no approximation algorithms with non-zero approximation ratio (see

Theorem 3). Nevertheless, GREEDY achieves an A.A.R of 1.0 or close to 1.0 in all

25

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

W
A

S

L
IN

K

E
S

N

S
F

W

P
O

K

L
IV

E

T
im

e
 i
n

 S
e

c
o

n
d

s

Average MF-Running Time

(logscale)

(logscale)

Naive-Benefit
Fast-Benefit

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

W
A

S

L
IN

K

E
S

N

S
F

W

P
O

K

L
IV

E

T
im

e
 i
n

 S
e

c
o

n
d

s

Average MF-Running Time

(logscale)

(logscale)

Naive-Damage
Fast-Damage

(a) for kMBNE problem (b) for kMLEE problem

Figure 8: Scalability of CalBenefit and CalDamage

0

0.2

0.4

0.6

0.8

1

1 2 3 4

A
c
tu

a
l
A

p
p
ro

x
.
R

a
ti
o

K Value

[LINK]

MC500
MC1000
MC2000

GREEDY
BF

0

0.2

0.4

0.6

0.8

1

1 2 3 4

A
c
tu

a
l
A

p
p
ro

x
.
R

a
ti
o

K Value

[SFW]

MC500
MC1000
MC2000

GREEDY
BF

(a) on LINK (b) on SFW

0

0.2

0.4

0.6

0.8

1

1 2 3 4

A
c
tu

a
l
A

p
p
ro

x
.
R

a
ti
o

K Value

[POK]

MC500
MC1000
MC2000

GREEDY
BF

0

0.2

0.4

0.6

0.8

1

1 2 3 4

A
c
tu

a
l
A

p
p
ro

x
.
R

a
ti
o

K Value

[LIVE]

MC500
MC1000
MC2000

GREEDY
BF

(c) on POK (d) on LIVE

Figure 9: Quality vs. k, fixing |P | = 25 [for kMLEE problem]

cases. In contrast, MCx shows sharp drop of quality once k gets larger. As BF cannot

compute optimal solutions (and thus A.A.R.) within feasible time when k > 4, we

26

10
0

10
1

10
2

10
3

10
4

10
5

 1 2 3 4 5 10 20

T
im

e
 i
n
 S

e
c
o
n
d
s

K Value

(logscale) [LINK] MC500
MC1000
MC2000

GREEDY
BF

10
1

10
2

10
3

10
4

10
5

 1 2 3 4 5 10 20

T
im

e
 i
n
 S

e
c
o
n
d
s

K Value

(logscale) [SFW] MC500
MC1000
MC2000

GREEDY
BF

(a) on LINK (b) on SFW

10
3

10
4

10
5

 1 2 3 4 5 10 20

T
im

e
 i
n
 S

e
c
o
n
d
s

K Value

(logscale) [POK] MC500
MC1000
MC2000

GREEDY
BF

10
3

10
4

10
5

 1 2 3 4 5 10 20

T
im

e
 i
n
 S

e
c
o
n
d
s

K Value

(logscale) [LIVE] MC500
MC1000
MC2000

GREEDY
BF

(c) on POK (d) on LIVE

Figure 10: Time vs. k, fixing |P | = 25 [for kMLEE problem]

directly compare the benefit of GREEDY and MCx after k > 4 and find that GREEDY

consistently returns benefit at least 17 times better than MC2000 in all cases.

Figure 10 shows the running times of the methods for k = 1 to 20. We discard

BF when k ≥ 5 because it takes weeks. We observe that GREEDY clearly outper-

forms MCx in all cases. So, we conclude that GREEDY is clearly better than MCx for

this kMLEE problem because its solutions are consistently close to the optimal, more

efficient, and get rid of the parameter x.

As the performance of GREEDY is mainly k times the execution time of

CalDamage (Lines 3–4; Algorithm 4), we thus evaluate the scalability of the two

implementations of CalDamage: Naive-Damage and Fast-Damage (Algorithm 5).

Figure 11 shows the scalability of these two implementations, by varying |P | from 50

to 5000. Fast-Damage is much more efficient than Naive-Damage. Due to our opti-

27

10
-1

10
0

10
1

10
2

10
3

 50 100 500 1000 5000

T
im

e
 i
n

 S
e

c
o

n
d

s

|P|

[LINK]

(logscale)

(logscale) Naive-Damage
Fast-Damage

10
0

10
1

10
2

10
3

10
4

 50 100 500 1000 5000

T
im

e
 i
n

 S
e

c
o

n
d

s

|P|

[SFW]

(logscale)

(logscale) Naive-Damage
Fast-Damage

(a) on LINK (b) on SFW

10
1

10
2

10
3

10
4

10
5

 50 100 500 1000 5000

T
im

e
 i
n

 S
e

c
o

n
d

s

|P|

[POK]

(logscale)

(logscale) Naive-Damage
Fast-Damage

10
1

10
2

10
3

10
4

10
5

 50 100 500 1000 5000

T
im

e
 i
n

 S
e

c
o

n
d

s

|P|

[LIVE]

(logscale)

(logscale) Naive-Damage
Fast-Damage

(c) on POK (d) on LIVE

Figure 11: Time vs. |P | [for kMLEE problem]

mization technique, Fast-Damage is not very sensitive to the number of edges in the

candidate set P . It is thus very scalable w.r.t. P . Figure 8 (right) shows the scalability

of Naive-Damage and Fast-Damage on all six real graphs (|P | = 500). The results

show that both implementations are scalable to graphs of different sizes and densities.

We see that Fast-Damage outperforms Naive-Damage in all cases.

5. Related Work

The broad applications of maximum flow make our work relevant to a number of

areas:

Spatial Database Optimal-location problems (e.g., [8]) are a class of spatial decision-

support problems where users look for the best location, l, out of a spatial extent, for

28

a new facility such that the greatest benefit is obtained. For example, [8] considers

the benefit of a location as the total weight of its reverse nearest neighbors (i.e., the

total weight of objects that are closer to l than to any other data point in the dataset).

Our work resembles optimal-location problems in terms of finding the edges (instead

of points) to insert/remove from graph data (instead of spatial data) with the greatest

benefit/damage.

Graph Processing There is a plethora of work on efficient graph processing, such as

sub-graph matching (e.g., [32]), super-graph matching (e.g., [24]), and graph similar-

ity search (e.g.. [34]). The focus of these works is to reduce the number of calls to

some expensive procedures (e.g., graph isomorphism tests) in order to speed up the

processing time. In this respect, our proposed optimizations have similar flavor as

those because we also aim to reduce the number of calls to the expensive maximum

flow algorithm. GConnect [1] is a work for supporting connectivity queries on disk-

resident flow graphs. It can complement the incremental maximum flow algorithm that

we currently employed as a procedure when dealing with disk-resident graphs.

The studies of dynamic graph maintenance provide efficient algorithms to update a

certain graph measure (e.g., maximum flow [12]) with respect to the updates on nodes

and edges in the graph. However, dynamic graph maintenance problems do not tell

users which set of graph elements is worthwhile to get updated, which is the objective

of this work.

Graph augmentation problems find a set of edges to add to a graph to satisfy a

specified property. For instance, Meyerson and Tagiku [17] consider the problem of

finding k edges to add to the graph in such a way to minimize the average distance be-

tween the nodes. Laoutaris et al. [13] examine a game theory problem where multiple

players compete for purchasing links and each player attempts to minimize her dis-

tances to other nodes. Demaine and Morteza [6] study the problem of adding k edges

to minimize the diameter with the goal of speeding up communication in an existing

network design. Papagelis et al. [19] add k edges to minimize the characteristic paths.

Tong et al. [27] investigate how to influence the spread of information in a network by

inserting or deleting k edges. These works are orthogonal to us because they have not

29

considered the network flow as the property.

The goal of graph simplification is to prune edges while preserving some proper-

ties. For instance, Toivonen et al. [26] as well as Zhou et al. [33], prune edges while

keeping the quality of best paths between all pairs of nodes, where quality is defined

on concepts such as shortest path or maximum flow. Mathioudakis et al. [16] sparsify

a network while taking care of maintaining the information propagation properties of

the network. However, these works are different from our problem and they have not

derived corresponding pruning techniques like us.

Finally, the network inhibition problem (NIP) [21] and its variant [2] delete edges

from flow graphs in order to minimize the network flow, such that the total deletion

cost (of selected edges) is within a specified budget. Our kMLEE problem is different

from NIP in two aspects: (i) the hardness for approximation, (ii) the types of solutions.

First, there exist approximation algorithms for NIP [21, 3]. In contrast, for our kMLEE

problem, it is hard to find a polynomial-time approximation algorithm with a non-zero

approximation ratio (cf. Theorem 2). Such a proof cannot be found in [21, 3]. Second,

kMLEE and NIP have different types of solutions. kMLEE requires making binary

decisions on edges; either remove an edge completely or keep it. NIP allows making

fractional decisions on edges; it is possible to remove a fractionα (where 0 ≤ α ≤ 1) of

capacity of an edge. One might use a heuristic to convert a NIP solution into a kMLEE

solution (e.g., keeping k edges with the largest reduction on capacity). However, it

is challenging to prove that such a heuristic can always preserve the quality of the

solution. Thus, we consider this issue beyond the scope of our manuscript.

Social Networks and Information Propagation Tian et al. [25] study the link revival

problem, where the objective is to turn existing edges with a few interactions to be more

active, so that the resulted connection will improve the social network connectivity.

Chaoji et al. [4] and Li et al. [15] study the problem of recommending connections that

boost content propagation in a social network without compromising on the relevance

of the recommendations. These works generally focus more on how to model the

information as the edge weights. This paper, however, focuses more on the problem

30

hardness and the efficient algorithms to approach the problem.

Operations Research Our work bears resemblance to two problems in operations re-

search (OR) and we explain the differences as follows. In OR, an inverse optimization

problem takes a feasible solution x as input and then tunes the problem’s parameters,

with as low of a cost as possible, such that x becomes the optimal solution. For ex-

ample, an inverse maximum flow problem [30], takes a feasible flow, f , and outputs

a set of edge weight adjustments that make f become the maximum flow. In reverse

optimization problems, users input a target value v, and then the problem’s parameters

are tuned, with as low cost as possible, such that v becomes either the optimal value or

an upper bound of the optimal value for the problem. For example, in reverse shortest-

path problems [31], an input of the desired shortest-path distance d to a shortest-path

query q yields an output of a set of edge weight adjustments that make the shortest-path

distance of q shorter than d. These OR problems require the user to explicitly input

the target to be tuned (e.g., a feasible maximum flow f or the desired shortest-path

distance d). In contrast, our work devises scalable, efficient and practical algorithms

to tell the user the target’s identity as well as its optimized value.

Network Planning Most network maintenance works (e.g., [18]) aim to localize faulty

links after some links break. Our proposed kMLEE problem can be used to determine

critical links in a network such that effective preventive maintenance measures can be

implemented before any link breaks.

6. Conclusions

In this paper we study two interesting problems related to maximum flow F in

a flow network G = (V,E): the k Most Beneficial New Edges (kMBNE) problem

and the k Most Lethal Existing Edges (kMLEE) problem. The two problems have ap-

plications including social network marketing and network planning. Our theoretical

results show that the two problems are inapproximable. Thus, we devise polynomial-

time heuristic algorithms to solve the kMBNE and kMLEE problems. We also devise

optimization techniques to significantly speedup our algorithms. We evaluate our al-

gorithms using real datasets that embrace the motivating applications. Experimental

31

results show that our algorithms run efficiently and yield high quality solutions.

References

[1] C. Aggarwal, Y. Xie, and P. S. Yu. Gconnect: a connectivity index for massive disk-resident

graphs. PVLDB, 2(1):862–873, 2009.

[2] D. S. Altner, Ö. Ergun, and N. A. Uhan. The maximum flow network interdiction problem:

Valid inequalities, integrality gaps, and approximability. Oper. Res. Lett., 38(1):33–38,

2010.

[3] C. Burch, R. Carr, S. Krumke, M. Marathe, C. Phillips, and E. Sundberg. A decomposition-

based pseudoapproximation algorithm for network flow inhibition. Network Interdiction

and Stochastic Integer Programming, 22:51–68, 2003.

[4] V. Chaoji, S. Ranu, R. Rastogi, and R. Bhatt. Recommendations to boost content spread in

social networks. In WWW, pages 529–538, 2012.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT

Press, 2001.

[6] E. D. Demaine and M. Zadimoghaddam. Minimizing the diameter of a network using

shortcut edges. In SWAT, pages 420–431, 2010.

[7] G. W. Flake, S. Lawrence, and C. L. Giles. Efficient identification of web communities. In

KDD, pages 150–160, 2000.

[8] Y. Gao, B. Zheng, G. Chen, and Q. Li. Optimal location selection query processing in

spatial databases. TKDE, 21:1162–1177, 2009.

[9] E. Halperin and R. Krauthgamer. Polylogarithmic inapproximability. In STOC, pages 585–

594, 2003.

[10] N. Imafuji and M. Kitsuregawa. Effects of maximum flow algorithm on identifying web

community. In WIDM, pages 43–48, 2002.

[11] N. Imafuji and M. Kitsuregawa. Finding a web community by maximum flow algorithm

with hits score based capacity. In DASFAA, pages 101–106, 2003.

32

[12] S. Kumar and P. Gupta. An incremental algorithm for the maximum flow problem. Journal

of Mathematical Modeling and Algorithms, 2:1–16, 2003.

[13] N. Laoutaris, L. J. Poplawski, R. Rajaraman, R. Sundaram, and S.-H. Teng. Bounded

budget connection (bbc) games or how to make friends and influence people, on a budget.

In PODC, pages 165–174, 2008.

[14] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Statistical properties of com-

munity structure in large social and information networks. In WWW, pages 695–704, 2008.

[15] D. Li, Z. Xu, S. Li, X. Sun, A. Gupta, and K. P. Sycara. Link recommendation for promot-

ing information diffusion in social networks. In WWW, pages 185–186, 2013.

[16] M. Mathioudakis, F. Bonchi, C. Castillo, A. Gionis, and A. Ukkonen. Sparsification of

influence networks. In KDD, pages 529–537, 2011.

[17] A. Meyerson and B. Tagiku. Minimizing average shortest path distances via shortcut edge

addition. In APPROX-RANDOM, pages 272–285, 2009.

[18] A. Pal, A. Paul, A. Mukherjee, M. Naskar, and M. Nasipuri. Fault detection and localization

scheme for multiple failures in optical network. In ICDCN, pages 464–470, 2008.

[19] M. Papagelis, F. Bonchi, and A. Gionis. Suggesting ghost edges for a smaller world. In

CIKM, pages 2305–2308, 2011.

[20] C. A. Phillips. The network inhibition problem. In Proceedings of the Twenty-Fifth Annual

ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA, USA, pages

776–785, 1993.

[21] C. A. Phillips. The network inhibition problem. In STOC, pages 776–785, 1993.

[22] J. O. Royset and R. K. Wood. Solving the bi-objective maximum-flow network-interdiction

problem. INFORMS Journal on Computing, 19(2):175–184, 2007.

[23] H. Saito, M. Toyoda, M. Kitsuregawa, and K. Aihara. A large-scale study of link spam

detection by graph algorithms. In AIRWeb, 2007.

[24] H. Shang, K. Zhu, X. Lin, Y. Zhang, and R. Ichise. Similarity search on supergraph con-

tainment. In ICDE, pages 637–648, 2010.

33

[25] Y. Tian, Q. He, Q. Zhao, X. Liu, and W.-c. Lee. Boosting social network connectivity with

link revival. In CIKM, pages 589–598, 2010.

[26] H. Toivonen, S. Mahler, and F. Zhou. A framework for path-oriented network simplifica-

tion. In IDA, pages 220–231, 2010.

[27] H. Tong, B. A. Prakash, T. Eliassi-Rad, M. Faloutsos, and C. Faloutsos. Gelling, and

melting, large graphs by edge manipulation. In CIKM, pages 245–254, 2012.

[28] D. N. Tran, B. Min, J. Li, and L. Subramanian. Sybil-resilient online content voting. In

NSDI, pages 15–28, 2009.

[29] R. K. Wood. Deterministic network interdiction. Mathematical and Computer Modelling,

17(2):1–18, 1993.

[30] C. Yang and J. Zhang. Inverse maximum flow and minimum cut problems. Optimization,

40:147–170, 1997.

[31] J. Zhang and Y. Lin. Computation of reverse shortest-path problem. Journal of Global

Optimization, 25:243–261, 2003.

[32] S. Zhang, J. Yang, and W. Jin. Sapper: Subgraph indexing and approximate matching in

large graphs. PVLDB, 3(1):1185–1194, 2010.

[33] F. Zhou, S. Mahler, and H. Toivonen. Network simplification with minimal loss of connec-

tivity. In ICDM, pages 659–668, 2010.

[34] Y. Zhu, L. Qin, J. X. Yu, Y. Ke, and X. Lin. High efficiency and quality: large graphs

matching. In CIKM, pages 1755–1764, 2011.

34

	Introduction
	The kMBNE Problem
	Problem Inapproximability
	Two-Phase Heuristics Algorithm (TPA)
	Algorithm Analysis
	Efficiency Optimizations

	The kMLEE Problem
	Problem Inapproximability
	Greedy Algorithm
	Algorithm Analysis
	Efficiency Optimizations

	Experiments
	The kMBNE Problem
	The kMLEE Problem

	Related Work
	Conclusions

