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Abstract

We study the efficiency of large file streaming in a peer-to-peer network in which a large
file is cut into many pieces of equal size, and initially all pieces are known only by one source
node. We analyze the number of rounds required, called the finishing time, for all nodes in the
network to collect all pieces in the default order.

Based on the basic PUSH-PULL protocol, we design the Constant Out-degree Protocol
(COP). At the beginning of the protocol, each node selects a constant number of neighbors,
with only whom communication will be initiated. We focus our analysis on the performance
of COP on preferential attachment graphs, which are believed to model peer-to-peer networks
well. We show that a tight bound of Θ(B+ log n) rounds can be achieved with high probability
for streaming B pieces in preferential attachment graphs with n nodes. Moreover, we show that
there is a dichotomy in the results depending on how neighbors are contacted in each round;
specifically, when each node avoids repeating initiation with neighbors in the previous M ≥ 2
rounds, then the finishing time is improved to Θ(B + logn

log logn ) with high probability.
For lower bounds, we show that there is a class of regular graphs in which perfect pipelining

is impossible for any PUSH-PULL protocols using random neighbor selection.

1 Introduction

The problem of information disseminating in a distributed network has been extensively studied.
It is assumed that this information, usually called a rumor, was known by only one node in a large
connected network. The goal is to disseminate this rumor to all nodes in the network, with bounded
bandwidth and number of communications. Many protocols have been proposed based on various
network topologies [7, 14, 15]. Among these protocols, distributed algorithms have gained more
attention since each node does not require global information about the network.

A gossip based protocol was first introduced by Demers et al. [7] for maintaining replicated
databases. In this protocol, each node is only allowed to communicate with its own neighbors
in each round. A similar distributed protocol called PUSH-PULL protocol was introduced later.
In this protocol, each node initiates communication with one of its neighbors per round; the node
pushes the rumor to the neighbor if it is informed of the rumor, or pulls the rumor from the neigh-
bor if the neighbor is informed. A common performance measure of protocols is the number of
rounds required to have all nodes informed, which is called the finishing time.

We consider the rumor spreading problem when the rumor is not a tiny piece of information, but
a large file which can not be transmitted from one node to another in one round. In this case,
we divide the file into B small pieces so that each piece can be transmitted in one round. This
problem can also be considered as the multiple-rumor version of the rumor spreading problem with
streaming requirement. We analyse the finishing time for all nodes in the network to collect all B
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pieces in the correct order. For instance, in peer-to-peer video streaming, a node needs to receive
earlier portions first and the next portion needs to arrive before all currently received portions have
been played. We consider two properties of a protocol that are important for streaming multiple
pieces: perfect pipelining and ordered pieces transmission, which we explain below.

1.1 Our Contribution and Results

We study the large file streaming problem in which B ordered pieces of information known to one
source node are to be spread in a graph with n nodes. We consider protocols that have the following
properties.

1. Loosely speaking, a (randomized) protocol for multiple pieces spreading achieves perfect
pipelining on G(V,E) if the following holds: if the finishing time for spreading one piece
is T (with high probability), then the finishing time for spreading B pieces is O(B+T ) (with
high probability) in G.

2. A protocol employs ordered pieces transmission if the pieces are transmitted and received in
the correct order.

Our results and contribution are summarized as follows.

Achieving perfect pipelining with COP. In Section 4, we modify the basic PUSH-PULL pro-
tocol and design the Constant Out-degree Protocol (COP). At the beginning of the protocol, each
node selects a constant number of neighbors, with only whom communications will be initiated.

We show that using COP, steaming B pieces in preferential attachment graphs requires O(B+log n)
rounds, which achieves perfect pipelining. We also prove a tight lower bound Ω(B + log n) for the
finishing time. As considered by Doerr et al. [8], if each node does not repeat neighbor initiation
from the previous 2 rounds, COP can achieve finishing time O(B + logn

log logn), which is also tight.
This theoretical gap in the finishing time between the two cases suggests that after the random
neighbor selection phase to identify out-going neighbors, deterministic round-robin for the pieces
streaming phase is optimal.

We briefly outline our technical contributions. According to Arthur and Panigrahy [1], spreading B
pieces in a graph with diameter d and maximum degree D using random PUSH requires O(D(B +
max{d, log n})) rounds with high probability (w.h.p.), no matter how the pieces are chosen for
transmission. For preferential attachment graphs, the resulting upper bound O(

√
n(B + log n)) is

loose because the maximum degree is as large as Ω(
√
n). However, the large degree nodes are crucial

for single piece spreading [8] since they are highly connected. To overcome this technical hurdle,
our protocol (COP) is based on the following two observations: (1) for single piece spreading, even
if each node is “active” for only a constant number of rounds, w.h.p., the piece can still reach all
nodes via paths of length O( logn

log logn); (2) we can direct the edges to achieve constant out-degree,
even when the underlying undirected graph has a high maximum degree; this allows us to achieve
the same result as in [1] if we use both PUSH and PULL.

Implication on the performance of streaming. We show that our protocol achieves tight
upper bound Θ(B + logn) when the ordered pieces transmission is adopted. In this case, all nodes
will receive all pieces of the file in the correct order and perfect pipelining is achieved. As far as
we know, this is the first time perfect pipelining is proved for streaming large file in peer-to-peer
network.
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Impossibility of perfect pipelining in some cases. In Section 3 we consider the basic PUSH-
PULL protocol for streaming B pieces in complete graphs. Unfortunately, perfect pipelining cannot
be achieved with this simple protocol. In Section 5, we give a lower bound for the finishing time in
a particular class of D-regular graphs, called Necklace Graphs. We show that spreading B pieces
under any PUSH-PULL protocol in which communication partners are chosen uniformly at random
in each round (no matter how those pieces are selected for transmission) in Necklace Graph requires
Ω(D(B + d)) rounds, where d is the diameter, for any ω(1) ≤ D ≤ o(n).

1.2 Related Work

The single piece (usually called a rumor) spreading problem has been extensively studied. Using the
PUSH-PULL protocol, the finishing time (also called stopping time) is Θ(log n) for both complete
graphs [16, 13] and random graphs [9, 10]. Rumor spreading in preferential attachment graphs (PA-
graphs) was also studied and two tight upper bounds O(log n) and O( logn

log logn) for different protocols

were shown by Doerr et al. [8]. Given a graph with conductance φ, an O(φ−1 log n) upper bound
was proved by Giakkoupis [11], which is tight. For rumor spreading in general graphs, Censor-Hillel
et al. [4] gave an algorithm which constructs subgraphs along with the rumor spreading process
and showed that the finishing time is at most O(d + poly log n), where d is the diameter of the
underlying graph, with no dependence on the conductance.

Although observed by experiments [5] and extensively applied on the Internet, the high efficiency of
multiple-rumor spreading is hardly analyzed. Deb et al. [6] presented a protocol based on random
linear network coding and showed that in the complete graph spreading B = Θ(n) rumors requires
at most O(n) rounds, which is asymptotically optimal. Also using network coding, Haeupler [12]
gave a protocol that achieves perfect pipelining in many other graphs. In their protocol, communi-
cation partners exchange a random linear combination of rumors and they show that after receiving
enough combinations, all rumors can be decoded locally.

Given a graph with diameter d = Ω(log n) and maximum out-degree D, an O(D(B + d)) upper
bound on the finishing time was proved by Arthur and Panigrahy [1] for spreading B rumors with
PUSH. Since Ω(B+d) is a trivial lower bound, this upper bound is tight when D is a constant. This
result actually inspired the construction of our protocol COP, which attempts to find a subgraph
that has constant out-degree and small diameter in the first step.

2 Preliminaries

Consider a graph G with n nodes and B pieces indexed by {1, 2, . . . , B}; for streaming application,
we assume that smaller index means higher priority. Throughout this paper we suppose that
initially a single source node u0 ∈ V has all B pieces while other nodes have no pieces. We say a
node is waiting if it has no pieces, downloading if it has at least one piece, and finished if it has all
the pieces. We use log to denote the logarithm with base 2.

Pieces are transmitted in a round-by-round manner. During a round of the pieces streaming process,
we say there is a piece transmission between two nodes if some piece is transmitted from one node
to the other. The finishing time is the number of rounds required until all nodes in the graph
become finished.

The Basic PUSH-PULL Protocol. For each node u ∈ V and integer t ≥ 1, let put be the
current downloading position of u at time t. Note that pu0 = B if u = u0, and pu0 = 0 otherwise.
In each round each node independently selects a neighbor uniformly at random, and initiates
communication with that neighbor. In round t ≥ 1, for an instance of communication initiated by
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u between u and v, the transmission follows the following rules.

1. If put−1 = pvt−1, then no transmission is made;

2. If pvt−1 > put−1, then node u pulls from node v the piece with index put−1 + 1;

3. If pvt−1 < put−1, then node u pushes to node v the piece with index pvt−1 + 1.

Note that each node initiates communication with exactly one neighbor in each round and at
most one piece is transmitted. Also note that all B pieces are initiated by the source node at the
beginning and hence each node in the graph will receive all the pieces in the fixed order 1, 2, . . . , B.

In Section 3, we show that the basic PUSH-PULL protocol cannot achieve perfect pipelining on the
complete graph; in Section 4, we modify the basic PUSH-PULL protocol and design the Constant
Out-degree Protocol, which achieves perfect pipelining for directed random graphs and preferential
attachment graphs.

3 Low Efficiency of Basic PUSH-PULL

To motivate why we consider COP, we analyze the performance of the basic PUSH-PULL protocol
on complete graph Kn with source node u0 having all B pieces. We show that perfect pipelining
can not be achieved since (on average) each node has to wait for Ω(log n) rounds to get the next
piece.

Theorem 3.1 The finishing time for streaming B pieces from one source node in a complete graph
with n nodes using the basic PUSH-PULL protocol is Ω(B log n) with probability 1− exp(−Θ(B)).

Note that by experiments, Theorem 3.1 is not true if the pieces are spread randomly. We conjecture
that the finishing time for spreading B pieces with random pieces selection is O(B + log n). To
prove Theorem 3.1, we recall some known results for spreading a single rumor in the complete
graphs.

Fact 3.1 The finishing time for spreading one rumor from one source node in the complete graph
Kn using the basic PUSH-PULL protocol is

(1) ([9, Theorem 4.1]) Ω(log n) with probability 1− o(1).

(2) ([13, Theorem 2.1]) O(log n) with probability 1−O( 1
n3 ).

Proof of Theorem 3.1: Let T be the finishing time. Observe that every node will receive the
pieces in the order 1, 2, . . . , B. For each i ∈ {1, 2, . . . , B}, let Ti be the first round when piece i is
obtained by at least 2 nodes and ti = Ti−Ti−1, where we define T0 = 0. Note that t1 = T1 = 1 and
T ≥ TB =

∑B
i=1 ti. Since we are proving a lower bound, we make a speed up assumption that once

piece i is received by at least 2 nodes, all nodes in V immediately have all pieces j if j < i. Note
that this assumption will only make the pieces streaming process faster and under this assumption,
all tis are independent. Under the speed up assumption, we fix one i ∈ {2, . . . , B} and analyze ti.

As defined above, ti is the number of rounds needed from the time piece i− 1 leaves the source to
the time piece i leaves the source, which happens when the source node u0 contacts a node v that
has piece i− 1 or such a node v contacts u0. Suppose in a round between Ti−1 and Ti, at most εn
nodes has piece i− 1, where ε ∈ (0, 1

2), then the probability for a communication between u0 and a

4



node having piece i− 1 to appear is at most ε+ 1− (1− 1
n)εn = ε+ 1− (1− εn

n + εn(εn−1)
2n2 − . . .) ≤

(1 + ε)− (1− ε) = 2ε.

Let t be the number of rounds needed until
√
n nodes have piece i − 1 after Ti−1. Then with

probability 1−O( 1
n3 ), t = O(log n) and in each round, the probability for a communication between

u0 and a node having piece i− 1 to appear is at most 2ε = 2
√
n

n . Hence we have

Pr(ti ≥ t) ≥ (1− 2
√
n

n
)t ≥ 1− 2t

√
n

n
≥ 1

2
.

Hence with probability at least 1
2 , ti ≥ t. Since by part 2 of the proof of [13, Theorem 2.1], with

probability 1− o(1), t = log3

√
n+O(ln lnn) = Ω(log(

√
n)) = Ω(log n), we have ti = Ω(log n) with

probability at least 1
2(1− o(1)) ≥ 1

3 .

By Chernoff bound, we conclude that with probability at least 1− exp(−B−1
48 ) = 1− exp(−Θ(B)),

there are at least B−1
4 of ti’s satisfying ti = Ω(log n) and hence the finishing time T ≥ TB =∑B

i=1 ti ≥
(B−1)

4 Ω(log n) = Ω(B log n).

However, if we can guarantee that at least a constant fraction of communications are useful, then
after O(B) rounds, all nodes will become finished. Following this idea, we define in Section 4
a protocol that constructs a constant maximum out-degree subgraph before applying the basic
PUSH-PULL protocol. We show that in several cases, the subgraph constructed by our protocol
has small diameter and using basic PUSH-PULL protocol, perfect pipelining can be achieved.

4 Constant Out-degree Protocol

In this section, we propose a simple but efficient randomized protocol called Constant Out-degree
Protocol (COP).

Constant Out-degree Protocol. Let D be a fixed constant parameter used in the protocol.
Suppose we are given an input graph with one source node.

(1) Out-going Edge Selection Phase. A directed subgraph H is formed, where each node
u chooses independently its outgoing edges and outgoing neighbors, with only whom node u will
initiate communications in the next phase. We consider all input graphs as multi-graphs. Each node
u chooses min{D, deg(u)} (out-going) edges incident to u uniformly at random without replacement.
The chosen edges are the outgoing edges and the incident nodes (excluding u) are the outgoing
neighbors of u in H.

(2) Pieces Streaming Phase. In each round, each node chooses one of its sampled outgoing edges
uniformly at random to initiate communication. In round t ≥ 1, for an instance of communication
initiated by u between nodes u and v, the transmission follows as the basic PUSH-PULL protocol.

In other words, we construct a directed subgraph H and apply the basic PUSH-PULL protocol to
H, where the directions of initiation coincide with the directions of edges. Since the only difference
between COP and the basic PUSH-PULL protocol is an extra neighbor selection process, we know
that if perfect pipelining can be achieved in the (random) subgraph H using basic PUSH-PULL,
then perfect pipelining is achieved by COP in the input graph. We show in this section that perfect
pipelining can be achieved by applying COP to stream multiple pieces in directed random graphs
and preferential attachment graphs. Unless otherwise specified, the diameter of a graph refers to
that of the underlying induced undirected graph.

Deterministic Rumor Spreading Phase. Suppose we consider the case that after the random
subgraph H is constructed in the first phase each node initiates communication with its outgoing
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neighbors in a round-robin way. Recall that since the out-degree of the subgraph H is at most D,
there is communication between two neighboring nodes at most every D rounds. It follows that if
the diameter of H is at most d, all nodes will become finished after D(B + d) rounds.

Fact 4.1 Given any input graph with n nodes, if the underlying undirected graph of the subgraph
constructed by COP with constant parameter D has diameter d and each node contacts its neighbors
in a round-robin way, then for all B ≥ 1, the finishing time for streaming B pieces starting from one
source node u0 in the input graph using COP with parameter D is at most D(B + d) = O(B + d).

Note that Fact 4.1 holds with probability 1 since it is deterministic. If the diameter of the graph is
Ω(log n), the random neighbor chosen process achieves a similar upper bound w.h.p.. We use the
following fact [1, Proposition 4.1] on streaming multiple pieces along a path.

Fact 4.2 (Streaming Multiple Pieces on a Path) Suppose there exists a path P (v0, vs) = {v0,
v1, . . . , vs} of length s between two nodes v0 and vs such that in each round, communication between
any two adjacent nodes vi and vi+1 is performed with probability at least p independently for each
pair of adjacent nodes. Assume only v0 has all B pieces and all other nodes are waiting. Then if

s′ ≥ s, with probability 1− 2 exp(− s′

2 ), node vs will become finished after 4(B+4s′)
p rounds.

The fact above implies that by using COP protocol, perfect pipelining can be achieved in any graph
if the subgraph H constructed has a small diameter d.

Theorem 4.1 Suppose the subgraph constructed by COP has diameter d, then for all B ≥ 1,
the finishing time for streaming B pieces starting from one source node u0 is at most O(B +
max{d, log n}) with probability 1−O( 1

n).

Proof: We denote the subgraph constructed by COP with constant parameter D by H, which
has diameter d. Hence for any node v, there exists a path P = (u0, u1, . . . , us−1, us = v) in the
undirected graph induced by H between u0 and v, where s ≤ d is the length of the path.

Hence, in the directed graph H, for any i = {0, 1, . . . , s − 1}, there is a directed edge between
nodes ui and ui+1. Since both nodes ui and ui+1 have out-degree at most D, which is a constant,
communication between ui and ui+1 will be performed with probability at least 1

D in each round.
However, if there exists two directed edges (ui, ui+1) and (ui, ui−1) that start at ui, then the
communications between ui and ui+1, ui and ui−1 are not independent (only one of them can
happen in each round). To make the communications independent, we define phases such that
each phase consist of two rounds. In each phase, for each i = {1, . . . , s − 1}, we assume that the
communication between ui and ui+1 is invalid in the first round and the communication between ui
and ui−1 is invalid in the second round. Note that the assumption will only make the downloading
process slower. Under this assumption, we know that for each i = {0, 1, . . . , s− 1}, in each phase,
communication between ui and ui+1 will be performed with probability at least 1

D , independently.

Hence, for each node v in H, there is a path of length s ≤ d between u0 and v such that in each
phase, communications between any two adjacent nodes will be performed with probability at least
1
D , independently for each pair of adjacent nodes. Hence by Fact 4.2, if s′ ≥ s, with probability

1− 2 exp(− s′

2 ), node v will become finished after 4D(B+ 4s′) phases. If s ≥ 4 log n, then set s′ = s
and node v will become finished after 4D(B + 4s) = O(B + d) phases with probability 1−O( 1

n2 ).
If s < 4 log n, then set s′ = 4 log n and node v will become finished after 4D(B + 16 log n) =
O(B+ log n) phases with probability 1−O( 1

n2 ). Therefore, with probability 1−O( 1
n2 ), node v will

become finished after O(B + max{d, log n}) phases, which means O(B + max{d, log n}) rounds. A
union bound on n− 1 nodes in H yields the result.
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By Theorem 4.1, we know that the finishing time of COP is highly related to the diameter d of
the subgraph constructed in the first step. If d = Ω(log n), then using round-robin in the pieces
streaming phase has the same bound as random neighbor selection. However, as we shall later see,
the PA-graphs have diameter O( logn

log logn) w.h.p., and indeed we show that there is a dichotomy in
the finishing times between deterministic and random pieces streaming phases.

4.1 COP on Directed Random Graphs

We apply COP with D = 8 to stream B pieces in directed random graphs Gn,p with p ≥ 6 logn
n .

Observe that the neighbor selection phase actually constructs a random D-out-degree subgraph.

Theorem 4.2 (Finishing Time of COP in Gn,p) For all B ≥ 1, the finishing time for stream-
ing B pieces starting from one source node in directed random graphs Gn,p with n nodes and

p ≥ 6 logn
n using the constant out-degree protocol with D = 8 is at most O(B + log n) with probabil-

ity 1−O( 1
n).

Note that for large enough n and p, all nodes in Gn,p have out-degrees at least D w.h.p..

Proposition 4.1 (Directed Gn,p Has Large Out-degree) Consider a directed Gn,p graph with

p ≥ 6 logn
n . Then, with probability 1−O( 1

n) the out-degree dout(u) ≥ D = 8 for every node u.

Proof: Fix a node u. Since each edge with tail at u appears independently with probability p,
we have E[dout(u)] = np. Since p ≥ 6 logn

n ≥ 6D
n , by Chernoff bound we have Pr(dout(u) < D) ≤

Pr(dout(u) < 1
6E[dout(u)]) ≤ exp(−1

2(5
6)2 · 6 log n) = O( 1

n2 ). That is, we have dout ≥ D with failure
probability at most O( 1

n2 ). Applying a union bound over all nodes in Gn,p yields the result.

In the rest of this section we assume that the directed Gn,p graph under consideration has the
property as stated in Proposition 4.1, i.e., the out-degree dout(u) ≥ D for each node u. This
immediately implies that in the subgraph H each node has an out-degree of exactly D. Next we
show some properties of the subgraph H constructed by COP and then use these properties to give
an upper bound of the finishing time T .

The following easy observation implies that given the event of Proposition 4.1, the subgraph H can
be constructed in an alternative procedure, which will be employed in our proofs.

Lemma 4.1 Let H be a directed subgraph of Gn,p which is constructed by sampling a uniform set
of D outgoing edges independently for each node. Then for each (ordered) pair of nodes u and v,
the edge (u, v) appears in H with probability D

n−1 .

Proof: The independence follows from independence of the sampling procedures for constructing
Gn,p and the subgraph H. Consider a pair of nodes u and v. Since in Gn,p the out-degree dout(u)
of u is at least D, we know that the probability of (u, v) appears in H equals to

∑n−1
d=D Pr((u, v) ∈

E | dout(u) = d) · Pr(dout(u) = d) =
∑n−1

d=D
(n−2
d−1)

(n−1
d )
· ( d−1

D−1)
( dD)

· Pr(dout(u) = d) = D
n−1 .

We define some useful notations to analyze the diameter of the subgraph H.

Definition 4.1 (Directed Distance) For nodes u, v ∈ V , the directed distance d(u, v) from node
u to node v is the length of a shortest directed path from u to v. In particular, let d(u, v) = 0 when
u = v. If there is no directed path from u to v, then d(u, v) =∞.
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Definition 4.2 (Level and Neighborhood) For a node u ∈ V and integer k ≥ 0, a node v is at
level k with respect to u if the distance from u to v is d(u, v) = k. Let Luk := {v ∈ V : d(u, v) = k}
be the set of nodes at level k with respect to u. In particular, let Lu0 = {u}. The k-neighborhood
Hu
k := ∪i≤kLui of u is the set of nodes at levels at most k with respect to u. Also define `uk := |Luk |

and huk := |Hu
k |.

Equivalent Construction of H. Consider a directed complete graph Kn with n nodes. Each
node u independently samples a set of D edges from all outgoing edges of u (i.e., edges with tail at
u) uniformly at random, and include these D edges in H.

According to the Equivalent Construction of H, for u ∈ V and k ≥ 0, the set Luk+1 can be
constructed in the following manner. During the sampling procedure for outgoing neighbors, if a
node v ∈ Luk selects a neighbor w and if w /∈ Hu

k , then w is included in Luk+1. Let γu be the smallest
integer such that huγu ≥

n
8 . Next we prove some connectivity properties of H in Lemmas 4.2 and

4.3, which imply that the graph has O(log n) diameter.

Lemma 4.2 (Nodes in log n-Neighborhood) ∀u ∈ V , hulogn ≥
n
8 with probability 1−O( 1

n2 ).

Proof: For convenience we drop the superscript u in this proof. We first show that for each
i ∈ {0, 1, . . . , γ − 1}, hi+1 ≥ 2hi with probability at least 1 − O( 1

n3 ). For i = 0, note that h0 = 1
and `1 = D. Therefore h1 = D + 1 ≥ 2h0 with probability 1.

For i ≥ 1, we show that given hi′+1 ≥ 2hi′ for all i′ ≤ i−1, then Pr(hi+1 < 2hi) ≤ O( 1
n4 ). To see this,

observe that hi+1 < 2hi implies the following event: the set of nodes selected by nodes in Li contains
at most hi nodes in Hi and at most hi nodes in V \Hi. The probability that a node in Li selects its

D neighbors within a particular set with size 2hi is
(

2hi
D

)
/
(
n−1
D

)
= 2hi

n−1 ·
2hi−1
n−2 · · ·

2hi−D+1
n−D ≤

(
2hi
n−1

)D
.

Note that `i = hi− hi−1 ≥ hi
2 . Also recall that D = 8 and hi ≤ n

D . Conditioned on the inequalities
hi′+1 ≥ 2hi′ , we have

Pr(hi+1 < 2hi) ≤
(
n−hi
hi

)
( 2hi
n−1)D`i ≤

(
n

2hi

)
( 2hi
n−1)4hi ≤ ( en2hi

)2hi( 2hi
n−1)4hi ≤ (6hi

n )2hi

Note that hi ∈ [2, n8 ). If hi = Θ(n), then Pr(hi+1 < 2hi) ≤ (3
4)Θ(n) = O( 1

n4 ); if hi = o(n), then
Pr(hi+1 < 2hi) ≤ (12

n )4 = O( 1
n4 ). Hence Pr(hi+1 < 2hi) = O( 1

n4 ). By induction we conclude that
for any i ∈ {0, 1, . . . , γ − 1}, with failure probability at most (i + 1) · O( 1

n4 ) = O( 1
n3 ), we have

hi+1 ≥ 2hi.

Recall that γ is the smallest integer such that hγ ≥ n
8 . Applying a union bound we have hi+1 ≥ 2hi

for all i ∈ {0, . . . , γ−1} with failure probability at most O( 1
n2 ). Therefore with probability 1−O( 1

n2 )
we have γ ≤ log n, which implies hlogn ≥ hγ ≥ n

8 .

Lemma 4.3 (Reachability of log n-Neighborhood) Fix a node u ∈ V . Then with probability
1−O( 1

n), the following event happens: for each w ∈ V \Hu
logn, there exists a node v ∈ Hu

logn such
that d(w, v) ≤ log n+ 1.

Proof: Consider a fixed node w. To find a node v ∈ Hu
logn with d(w, v) ≤ log n + 1, it suffices

to show that the intersection Hw
logn+1 ∩ Hu

logn 6= ∅. Recall that Lwk is the set of nodes to which
the distance from w is exactly k and Hw

k is the set of nodes to which the distances from w are
at most k. Then hwk = hwk−1 + `wk and hwk ≥ 2hwk−1 implies `wk ≥

1
2h

w
k for k ≥ 1. Note that each

node samples its outgoing neighbors independently. By Lemma 4.2, with probability 1 − O( 1
n2 ),

the following events happen: (1) hulogn ≥
n
8 , and (2) there exists γw ≤ log n such that `wγw ≥

n
16 .

Assuming (1) and (2), the probability that a node in Lwγw selects its D neighbors within the set
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V \ Hu
logn is

(n−hulogn
D

)
/
(
n−1
D

)
=

n−hulogn
n−1 · · · n−h

u
logn−D+1

n−D ≤ (
n−hulogn
n−1 )D. Then the probability that

Lwγw+1 contains no nodes in Hu
logn is at most (

n−hulogn
n−1 )D·`

w
γw ≤ ( 7n

8(n−1))
Dn
16 = exp(−Θ(n)) This

implies that Hw
logn+1 ∩Hu

logn 6= ∅ with failure probability at most O( 1
n2 ) + exp(−Θ(n)) = O( 1

n2 ).
Applying a union bound over all nodes in V \Hu

logn yields the result.

The connectivity properties of H in Lemmas 4.2 and 4.3 imply that the graph has O(log n) diameter.

Proof of Theorem 4.2: Lemma 4.2 and 4.3 states that with probability 1 − O( 1
n), for any

two distinct nodes, there exists another node such that can be reached by those two nodes via
directed paths of lengths at most logn + 1, which means that the underlying undirected graph of
the subgraph H has diameter at most 2(log n+ 1) = O(log n).

Then by Theorem 4.1, the finishing time of streaming B pieces in a directed random graph Gn,p
with n nodes and p ≥ 6 logn

n using COP with D = 8 is at most O(B + log n) with probability
1−O( 1

n)−O( 1
n) = 1−O( 1

n).

4.2 COP on Preferential Attachment Graphs

Next we consider the finishing time of multiple-piece streaming in Preferential Attachment graphs
(PA-graphs). The notion of preferential attachment graphs was first introduced by Barabási and
Albert [2], and they have been used to model social and peer-to-peer networks. In this work, we
follow the formal definition by Bollobás et al. [3]. Let Gnm be a PA-graph. We denote by degG(v)
the degree of a vertex v in Gnm.

Definition 4.3 (Preferential Attachment Graphs) Let m ≥ 2 be a fixed constant parameter.
The random graph Gnm is an undirected graph on the vertex set V := {1, . . . , n} inductively defined
as follows.

1. G1
m consists of a single vertex with m self-loops.

2. For all n > 1, Gnm is built from Gn−1
m by adding the new node n together with m edges

e1
n = {n, v1}, . . . , emn = {n, vm},inserted one after the other in this order. Let Gnm,i−1 denote

the graph right before the edge ein is added. Let Mi =
∑

v∈V degGnm,i−1
(v) be the sum of the

degrees of all the nodes in Gnm,i−1. The endpoint vi is selected randomly such that vi = u with

probability
degGn

m,i−1
(u)

Mi+1 , except for n that is selected with probability
degGn

m,i−1
(n)+1

Mi+1 .

It can be easily seen that for m = 1 the graph is disconnected w.h.p.; so we focus on the case m ≥ 3.
For each node i and k ∈ [m], let τi,k be the node chosen by i in the k-th rounds after i is added to
Gnm. We call the first node added to Gnm node v1. Bollobás et al. [3] introduced an equivalent way
of generating Gnm that is more accessible. In that model, each node i is assigned a random variable
ωi ∈ (0, 1) following some distribution and edges are added to node i with probability proportional
to ωi. The formal definition of the new model is given in [3]. Under this equivalent model, a node

i is called useful if ωi ≥ log2 n
n and non-useful otherwise.

We apply COP with D = 3 to stream B pieces in PA-graph and show that the finishing time in
a PA-graph is at most O(B + log n). Note that the PA-graph is a multi-graph and the outgoing
neighbors of a node is a multiset in the subgraph constructed by COP.

Theorem 4.3 (Finishing Time of COP In PA-graphs) For all B ≥ 1, the finishing time for
streaming B pieces starting from any source node in a PA-graph Gnm using the constant out-degree
protocol with D = 3 is at most O(B + log n) with probability 1− o(1).
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Communication Initiation without Repeat. In each round of the downloading process, each
node initiates communication uniformly at random with an outgoing neighbor that is not initiated
with in the last min{M,degG(u) − 1} rounds; for a multi-set of outgoing neighbors, multiplicities
are respected. For D = 3 and M = 2, this is equivalent to round-robin neighbor selection.

Lemma 4.4 [8, Lemma 5.8] There exists a property P of Gnm that holds with probability 1− o(1)
such that conditioning on P, with probability at least 1−n−Ω(n), using only PUSH on Gnm (avoiding
repeated neighbor initiation from the previous M ≥ 2 rounds), a piece initiated at a node u reaches
a useful node in O(log log n) rounds.

Lemma 4.5 [8, Lemma 5.11] If each node v in Gnm receives an independent random variable xv
such that xv = 1 with constant probability p and xv = 0 otherwise, then with probability 1 − o(1),
for each useful node u, there exists a path of length O( logn

log logn) between u and node v1 such that
every second node v in the path has degree m, its two neighbors in the path are τv,1 and τv,2 and
has xv = 1.

Note that all xv’s are independent and the randomness of xv comes from the behavior of node v. In
the rest of the section, we assume the PA-graph Gnm under consideration has the properties stated
above.

4.3 Upper Bound for the Stopping Time

First, it is obvious that each node in Gnm has degG(u) ≥ m ≥ 3 and the out-degree of each node in
H is min{D, degG(u)} = 3, for the case D = 3. A node v in H is called a fast node if degG(v) = m
and it chooses both τv,1 and τv,2 as its outgoing neighbors in H.

In Lemma 4.6, we show that for each non-useful node v, there is at least one useful node u that
can be reached from v by a directed path of length O(log log n). In Lemma 4.7, we show that all
useful nodes are connected to node v1 by paths of length O( logn

log logn) in H and every second node in

the paths is fast. These two lemmas imply that the diameter of H is at most O( logn
log logn). Given a

node u and an integer k, we denote by Hu
k the set of nodes that can be reached by a directed path

of length at most k in the subgraph H.

Lemma 4.6 (Useful Node in O(log log n)-Neighborhood) With probability 1− o(1), for each
non-useful node u, at least one useful node will be included in Hu

K for some K = O(log log n)
following the constant out-degree protocol.

Proof: We shall use Lemma 4.4 [8, Lemma 5.8] to prove this result. We condition on the same
property P on Gnm as in Lemma 4.4. In the proof of [8, Lemma 5.8], the authors consider a restricted
version of PUSH strategy on Gnm with one piece starting at a fixed node u ∈ V . We show that there
is a correspondence between their restricted piece streaming process and our outgoing neighbor
selection process. Note that in the proof of [8, Lemma 5.8], the authors assume that each node
performs only PUSH and each node is active for only 3 rounds after it start downloading. With the
memory property, this means the node contacts three random distinct neighbors in those 3 rounds
(if the node has degree at least 3); this corresponds to the selection of D = 3 outgoing neighbors
uniformly at random in COP.

Hence, the single rumor spreading process in [8, Lemma 5.8] can be coupled with our outgoing
neighbor selection phase such that if a node v becomes downloading after 3K rounds in [8, Lemma
5.8], then there is a path from u to v of length K such that the next node in the path is an
outgoing neighbor of the previous node selected by COP. With this coupling argument, we know
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that conditioning on property P, with probability 1−n−Ω(n), a useful node will be included in Hu
K

for some K = O(log log n). By union bound on all nodes in V , the conditional probability that
this holds for all Hu

K ’s is at least 1 − n−Ω(n) · n. Since property P holds with probability at least
1− o(1), our result follows.

Lemma 4.7 (Distances Between Useful Nodes) With probability 1 − o(1), for each useful
node u, there exists a path of length O( logn

log logn) between u and 1 such that every second node
in the path is fast.

Proof: We show that such paths exist by using Lemma 4.5 with appropriately defined independent
random variables xv’s. For each node v, we define xv to an independent {0, 1}-random variable that
takes 1 with probability p := 6

m(m−1) . Since the outgoing neighbor selection process is independent
of the randomness of the PA-graph, we can couple the randomness of the xv’s with the neighbor
selection process as follows.

For a node v with degree not equal to m, we ignore xv and perform outgoing neighbor selection
as before. Suppose node v has degree m; observe that p = (m − 2)/

(
m
3

)
is exactly the probability

of the event that both τv,1 and τv,2 are chosen as outgoing neighbors of v. Hence, we couple xv
with the outgoing neighbor selection for node v such that xv = 1 iff both τv,1 and τv,2 are chosen.
By Lemma 4.5, with probability 1 − o(1), each useful node in Gnm is connected to v1 via a path
such that every second node v in the path has degree m, its two neighbors in the path are τv,1 and
τv,2 and has xv = 1. By our coupling argument, this means node v is fast and we have proved the
result.

Proof of Theorem 4.3: By Lemma 4.6 and 4.7, we know that with probability 1 − o(1), each
non-useful node can reach a useful node by a path of length at most O(log log n) and all useful
nodes are connected to node v1 by paths of length at most O( logn

log logn) in H, which implies that the

underlying undirected graph of H has diameter at most O(log log n) +O( logn
log logn) = O( logn

log logn). By
Theorem 4.1, the finishing time of streaming B pieces in a PA-graph Gnm using COP with D = 3
is at most O(B + log n) with probability 1− o(1)−O( 1

n) = 1− o(1).

4.4 Lower Bound for the Stopping Time

We have shown that streaming B pieces in a PA-graph Gnm using COP with D = 3 requires at
most O(B + log n) rounds. However, the PA-graph and the subgraph H of the PA-graph have
diameter O( logn

log logn), which is o(log n). Note that by Fact 4.2, each node v will become finished

after O(B + logn
log logn) with probability 1 − exp(− logn

log logn). However, since the failure probability is

ω( 1
n) and there are n nodes, we cannot use union bound to show that w.h.p., all nodes will be

finished after O(B+ logn
log logn) rounds. Indeed, we show that the finishing time of streaming B pieces

in a PA-graph Gnm using COP with D = 3 needs Ω(B + log n) rounds, which implies that the
upper bound we have proved in the last section is tight and perfect pipelining is achieved. More
specifically, we prove the following result.

Theorem 4.4 (Lower Bound For COP in PA-Graphs) With probability 1− o(1), COP with
any constant parameter D needs Ω(B + log n) rounds to get all nodes in a PA-graph Gnm finished.

Proof: It is obvious that if the protocol needs Ω(log n) rounds to spread 1 piece to all nodes in
Gnm, then Ω(B + log n) rounds are required for the same protocol to stream B pieces to all nodes
in Gnm. Hence, we only consider the case when B = 1 in the following proof.
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By the proof of [8, Theorem 3.3], we know that with probability 1− o(1), there are Ω(n) edges in
Gnm whose incident nodes are of degree at most m+ c, where c is a constant. We call those edges
links and let L ⊆ E be the collection of links, where |L| = Ω(n). Note that for any two edges
e1 and e2 in L, e1 and e2 may have common endpoints or the endpoints of e1 and e2 may have
common neighbors. To avoid this and make the proof simpler, we remove one of those two edges if
such a situation happens. Let L̃ be the collection of links after the removals. Since each endpoint
of a link is of degree at most m + c, we conclude that |L̃| ≥ 1

(m+c−1)2+1
|L| = Ω(n) (to keep one

edge, at most (m + c − 1)2 edges will be deleted). Note that any two links in L̃ have no common
endpoint and the endpoints of any two edges have no common neighbor.

Fix one link in L̃, denoted by (u, v), u will choose v as an outgoing neighbor with probability at least
D
m+c and v will choose u as an outgoing neighbor also with probability at least D

m+c , independently
in COP. Hence for each of those links, with constant probability, the two endpoints of the link
will choose each other as outgoing neighbor in the protocol, independently for all links in L̃. If
that happens, we call the link preserved in H. By Chernoff bound, we know that with probability
1− exp(−Ω(n)), there are Ω(n) preserved links.

Fix one pair of nodes (u, v) that are connected by a preserved link, in each round, if the two
nodes are waiting, then with probability at least ( 1

D )2(1− 1
D )2(D−1) = δ, they will remain waiting.

Note that δ is a constant. The probability that (u, v) remains waiting for logn
2 ln δ−1 is therefore at

least n−
1
2 . Since each of those pairs are disjoint and the choices of communications are made

independently, the probability that none of the Ω(n) pairs remains waiting after logn
2 ln δ−1 is at most

(1−n−
1
2 )Ω(n) ≤ exp(−n−

1
2 Ω(n)) ≤ exp(−Ω(n

1
2 )). Hence with probability 1− o(1)− exp(−Ω(n))−

exp(−Ω(n
1
2 )) = 1 − o(1), COP needs Ω(log n) rounds to spread one piece to all nodes in Gnm and

Ω(B+log n) rounds to stream B pieces to all nodes in Gnm using COP with any constant parameter
D.

4.5 Improving the Upper Bound

It is established by Doerr et al. [8] that if each node in Gnm avoid repeated neighbor initiation from
the previous M ≥ 2 rounds, the upper bound of the finishing time of spreading one piece in Gnm
can be improved to O( logn

log logn), which is tight up to a constant factor. Note that with M = 2 and
D = 3, the pieces streaming phase of COP is the same as round-robin and by Fact 4.1, the next
theorem follows immediately.

Theorem 4.5 For all B ≥ 1, the finishing time for streaming B pieces starting from any source
node in a PA-graph Gnm using COP with round-robin pieces streaming phase is at most O(B +

logn
log logn) with probability 1− o(1).

5 Lower Bound

In Section 4 we show that perfect pipelining can be achieved using protocols based on the basic
PUSH-PULL protocol when streaming multiple pieces in directed random graphs and preferential
attachment graphs. In this section we give a class of D-regular graphs, where ω(1) ≤ D ≤ o(n), with
diameter d and show that perfect pipelining is impossible in those regular graphs for any protocols
in which communication partners are chosen uniformly at random in each round. We show that
streaming B pieces from one source node in those regular graphs requires at least Ω(D(B + d))
rounds, no matter how the pieces are chosen to be transmitted. We denote those protocols by
PUSH-PULL based protocols. Note that by the upper bound proved by [1], our lower bound is
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actually tight.

The Necklace Graph. A D-regular necklace graph N(V,E) with n nodes consists of ` := n
D+1

units U1, U2, . . . , U`. Each unit Ui for i ∈ [`] contains D + 1 nodes, numbered by 1, 2, . . . , D + 1.
Within a unit Ui, there is an edge between each pair of nodes except the pair {1, D + 1}. That is,
the subgraph of N(V,E) induced by nodes in Ui is KD+1\1, D + 1. For each i ∈ {1, 2, . . . , ` − 1},
the two units Ui and Ui+1 are connected via an edge between node D+ 1 of Ui and node 1 of Ui+1.
Units U` and U1 are connected via an edge between node D + 1 of U`+1 and node 1 of U1.

Theorem 5.1 (Lower Bound for PUSH-PULL) Let D be an integer such that ω(1) ≤ D ≤
o(n). Let N(V,E) be a D-regular necklace graph with |V | = n and diameter d. Then for all
B ≥ 1, the finishing time for streaming B pieces starting from one source node in N(V,E) using
any PUSH-PULL based protocol is at least Ω(D(B + d)) with probability at least 1− o(1).

Since there are n
D+1 units in the necklace graph and each unit has diameter 2, the diameter of

the graph is d = Θ( nD ). Hence given any ω(1) ≤ D ≤ o(n), for example, D =
√
n, the finishing

time for streaming B pieces requires at least Ω(D(B + d)) = Ω(B
√
n+ n) and perfect pipelining is

impossible in this case.

Consider a D-regular necklace graph N(V,E) with |V | = n and the source node u0. Recall that at
the beginning node u0 has all B pieces and all other nodes are waiting. Also recall that N(V,E)
consists of ` = n

D+1 units U1, . . . , U`. Without loss of generality, suppose u0 ∈ U1. Let v ∈ V be a
node such that the distance, i.e. the length of a shortest (undirected) path, between u0 and v is d.
Let k be such that v ∈ Uk, then k = Θ(d).

Let T1 be the number of rounds required until the first time node v receives at least one piece, and
T2 the number of rounds required after the T1 rounds until the first time node v becomes finished.
Then the finishing time T satisfies T ≥ T1 + T2. To give lower bounds on T1 and T2, we make an
assumption that can only speed up the actual pieces streaming process.

Speed-up Assumption. Assume that once a node in unit Ui receives a particular piece for the
first time, all nodes in Ui have the same piece immediately. Under this assumption, we can simply
ignore intra-unit communication since piece transmissions occur only in inter-unit communication.
We can view each unit Ui as a super node. In each round, the unit Ui independently initiates an
instance of communication to Ui−1 with probability 1

D and an instance of communication to Ui+1

with probability 1
D .

Recall that node v is in Uk such that the distance between u0 and v is d. Let T ′1 be the number of
rounds required until the first time unit Uk receives at least one piece, and T ′2 the number of rounds
required after the T ′1 rounds until the first time unit Uk receives all B pieces under the speed-up
assumption. It follows that T1 ≥ T ′1 and T2 ≥ T ′2.

Lemma 5.1 (Expected Number of Tosses for m Heads) Suppose there is a biased coin where
the probability of heads is p. Let Xi be the number of tosses made to see the i-th head after seeing
the (i − 1)-th head. Let the total number of tosses made to see m heads be Z :=

∑m
i=1Xi. Then,

for any 0 < ε < 1, we have Pr(Z ≤ (1− ε)E[Z]) ≤ exp
(
− ε2m

8

)
.

Proof: Note that the random variables Xi’s follow the geometric distribution with success prob-
ability p. Then E[Z] = m

p . Let t < 0. Then by Markov’s inequality and independence of Xi’s, we
have that

Pr(Z ≤ (1− ε)E[Z]) ≤ (E[exp(tX1)])m · exp

(
− t(1− ε)m

p

)
.
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Next we give an upper bound on E[exp(tX)]. Since t < 0, we have

E
[
etX
]

=
∞∑
i=1

(1− p)i−1peti = pet
∞∑
i=1

[(1− p)et]i−1 =
p

p− (1− e−t)

≤ p

p− t
=

1

1− t
p

≤ 1 +
t

p
+

2t2

p2
≤ exp

(
t
p + 2t2

p2

)
.

Hence we have

Pr(Z ≤ (1− ε)E[Z]) ≤ exp

(
m

(
2t2

p2
+
εt

p

))
.

Setting t = − εp
4 yields Pr(Z ≤ (1− ε)E[Z]) ≤ exp

(
− ε2m

8

)
.

Proof of Theorem 5.1: From the above analysis it suffices to give a lower bound on T ′1+T ′2 under
the speed-up assumption. Note that the necklace graph N(V,E) is a simple cycle with ` = n

D+1
super nodes U1, . . . , U`.

First we give a lower bound on T ′1. Note that there are two paths between U1 and Uk, the lengths
of which are Θ(d), where d is the diameter of N(V,E). Without loss of generality suppose unit
Uk receives the first piece from U1 via the path P = {U1, U2, . . . , Uk}. Note that for Uk to become
downloading, at least k − 1 times of transmissions (PUSH or PULL) between an downloading unit
and an waiting unit are required. Also observe that for i = {1, 2, . . . , k − 1}, if Ui is downloading
and Ui+1 is waiting, the probability that Ui+1 becomes downloading in a round is at most 2

D .
Let Xi be a random variable following the geometric distribution with success probability 2

D .

Define S :=
∑k−1

i=1 Xi. Then T ′1 stochastically dominates S. Since E[S] = D(k−1)
2 , by Lemma 5.1,

it follows that Pr(S ≤ D(k−1)
4 ) ≤ exp(−k−1

32 ) = o(1). Therefore we have Pr
(
T ′1 >

D(k−1)
4

)
≥

Pr
(
S > D(k−1)

4

)
≥ 1− o(1). Since k = Θ(d), we have T ′1 ≥ Ω(Dd) with probability 1− o(1). If B

is a constant, then we already have T ≥ T ′1 ≥ Ω(D(B + d)) with probability 1− o(1).

Suppose B ≥ ω(1). We give a lower bound on T ′2. Recall that T ′1 is the first time when Uk becomes
downloading. After round T ′1, at least B − 1 times of communication must be performed between
Uk−1 or Uk+1 and Uk for Uk to become finished. Suppose, in the best case, that both Uk−1 and
Uk+1 are finished at time T ′1. Observe that in a round Uk independently pulls a piece from Uk−1

(or Uk+1) with probability at most 1
D and is pushed a piece by Uk−1 (or Uk+1) with probability at

most 1
D . For j ∈ {1, 2, . . . , B−1

4 }, let Yj be a random variable following the geometric distribution

with success probability 1
D . Define S′ :=

∑B−1
4

j=1 Yj . Then T ′2 stochastically dominates S′. Since

E[S′] = D(B−1)
4 , by Lemma 5.1 it follows that Pr(S′ ≤ D(B−1)

8 ) ≤ exp(−B−1
32 ) = o(1). Therefore

we have Pr
(
T ′2 >

D(B−1)
8

)
≥ Pr

(
S′ > D(B−1)

8

)
≥ 1 − o(1). Since M ′ = Θ(DB), it follows that

T ′2 ≥ Ω(DB) with probability at least 1 − o(1). Therefore, we have T ≥ T ′1 + T ′2 ≥ Ω(D(B + d))
with failure probability at most o(1).

Theorem 5.1 indicates that perfect pipelining is impossible when streaming multiple pieces in
necklace graphs using any PUSH-PULL based protocol.
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