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Record calculi

- re——— = - —— - ——— -

= Record calculi with a concatenation operator
= give the semantics of object-oriented languages with multiple inherrtance

= E.g the semantics of the Oblig language (Cook and Palsberg 19389,
Cardelli 1995)
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= Record calculi with a concatenation operator
= give the semantics of object-oriented languages with multiple inherrtance

= E.g the semantics of the Oblig language (Cook and Palsberg| 939,
Cardelli 1995)

= Record calculi with a concatenation operator and subtyping?

= Subtyping can hide static type information that is heeded to correctly

model record concatenation (Cardelli and Mitchell 1991)



An example
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= What should the program evaluate to because of the extra field y in the
first argument? -

Let f2 (r:{x:Int}) (s:{y:Bool}) : {x:Int} & {y:Bool}
=r,,s in f2 ({x=3, y=4}) ({y=true, x=false})



An example

= What should the program evaluate to because of the extra field y in the first argument?

Let f2 (r:{x:Int}) (s:{y:Bool}) : {x:Int} & {y:Bool}
=r,,s in f2 ({x=3, y=4}) ({y=true, x=false})

= Option [:

= Symmetric record concatenation that only allows the concatenation of records without
conflicts

= [he example cannot pass typed check

= Option 2:

= Asymmetric record concatenation that employs left or right bias concatenation

= The example will evaluate to {x=3, y=4}



we should now ]CCCI coml:)e”ecl todefineR & S onlg when R
and S are &isjoint: that is when any field Present in an element

of R is absent from every element of S, and vice versa. 3

= Cordeliand Michelb 99



Disjoint intersection types
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= Calculi with disjoint intersection types (Oliveira et al. 201 6) and a merge
operator (Dunfield 2014) offers a solution to the Cardelli and Mitchell’s
problem for concatenation

= The 4, calculus (Oliveira et al. 2016, Bi et al. 2018) adopts disjointness
and restricts subsumption to address the challenges of symmetrlc
concatenation/merge

= An important limitation of existing calculi: lack of recursive types



Adding iso-recursive types to 4,
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= Object interface:

Exp := uExp . {eval : Int, dbl : Exp, eq : Exp — bool}
. Auxiliary funcfions:
~eval’ e = (unfold [Exp] e) . eval dbl’ e = (unfold [Exp] e).dbl
eq' e, e, = (unfold [Exp] e,).eq e,
= Recursive functions to encode expressions: |

lit n =fold [Exp] { eval :=n, dbl :=lit(n*2), eq := Ae’'.(eval e =n) }

add e, e, =fold [Exp] { eval :=eval’ e; + eval’ e,, dbl := add (dbl’ e)) (dbl’ e,),
eq := Ae'.(eval’ e’ =eval e, +eval' e,) }



Adding iso-recursive types to 4,
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= Recursive functions to encode expressions:

lit n = fold [Exp] { eval :=n, dbl := lit(n*2), eq := Ae'.(eval e’ =n) }

add e ey =fold [Exp] { eval := eval’ e, + eval’ e,, dbl := add (dbl’ e;) (dDl’ e,),
eq = Ae'.(eval e’ = eval e, + eval' e,) }

¥ hack.if-2 * = 2&63 4 4):

el = llt 7

} eq’ (dbl' e,) (dbl' e,)
e, 1= add (lit 3) (lit 4)



The /11” calculus
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= |In this work, we studies a calculus /ll.’“’ which combines:
= Iso-recursive 'types
= (Disjoint) intersection types with a merge operator
= Jop-like types
= Bottom types
= We prove that subtyping relation is

= [ransitive

= Decidable



Iso-recursive subtyping
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= For checking if two iso-recursive types are subtype, we choose the
recent developed nominal unfolding rules (Zhou et al. 2022):

F,- abFlam {ad: t}]t<[a— {a': c}] o fresh a’

I'Fpua. 7 <ua. o

= The labelled types {a : 7} have two usage in this work:

= The label provides a unique identifier for recursive types being
compared.

* The record types and records can be encoded as the combination of |
labelled types, intersection types and merge (Dunfield 20[4).



Top—liketypes and disjointness

= A type A is top-like type if it is the supertype of T
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= Specification of disjointness:

Two types 7 and ¢ are disjoint

it all common supertypes of them are top-like types

= Allowing a larger set of top-like types enables more types to be disjoint -



Disjoilintness
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Without top-like types, any two function types are disjoint:
L = T is the supertype of all function types
Without top—like types, any two recursive types are disjoint
pa . T is the supertype of all recursive types
Algorithmic formulation of disjointness, for example:

I'o,*1, [LakFo*t

I'F71 - 0%70 > 0, I'Fpa.t*ua. o

Our disjointness rules are sound w.rit the specification



Completeness of disjointness
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Two recursive types pa . T and ua . o satisfy the specification implies

Foranytype p,if ' Fua. 7 <pandl - pua. o < p then p is top-like type

By the disjointness rules for recursive types, we want to prove

Forany type 3,ifI', a =7 < d and I, a = 6 < J then J is top-like type

p is the supertype of two recursive types
J is the supertype of two bodies of recursive types

What is the relation between p and 9 ?



Lower common supertype
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= We define a function LI to compute a lower supertype of type 7 and o

= fFunction L computes a common suppertype for two types whose
contravariant positions are all L

= For example,

‘oo U, > o0,=1 - (6,U0,) pa. tllpua. o = pa. (7 Uo)

= [wo properties:

 Foranyrtando, ' Ft<tUocandl'F7<olUo

 fI'F7<pandl'F o6 < pand7Uoistop-like then p is top-like



Informal proof for recursive case
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. We know forany p,if ' ua. 7 < pandI' + ua. o < p then p is top-like type

We assume that [, a7 <9 andT, a0 <3

From the disjoi'ntness rule, for proving the goal, we need to prove 9 is top-like type
We know thatl' Fpua. t S pua. tlpua. candl' Fua. o S pua.tlua. o

Frbm (1) and (4), we know that pa. 7 Ll ua. o is a top-like type

According to the definition of lower common supertype, ua . (z L o) is a top-like type
By inversion, (7 Ll 6) is a top-like type |

Form (8) and (2), we claim that & is top-like type

e



summary
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= |n summary, the contributions of this paper are
= |so-recursive subtyping with intersection types

= [he /11.” calculus and show it Is type safety

= Algorithmic disjointness for iso-recursive types

= Mechanical formalization for all theorems



Thank you for your listening



