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Record calculi

▪ Record calculi with a concatenation operator

▪ give the semantics of object-oriented languages with multiple inheritance

▪ E.g. the semantics of the Obliq language (Cook and Palsberg 1989, 
Cardelli 1995)



Record calculi

▪ Record calculi with a concatenation operator

▪ give the semantics of object-oriented languages with multiple inheritance

▪ E.g. the semantics of the Obliq language (Cook and Palsberg1989, 
Cardelli 1995)

▪ Record calculi with a concatenation operator and subtyping?

▪ Subtyping can hide static type information that is needed to correctly 
model record concatenation (Cardelli and Mitchell 1991)



An example

▪ What should the program evaluate to because of the extra field y in the 
first argument?

 let f2 (r:{x:Int}) (s:{y:Bool}) : {x:Int} & {y:Bool}

   = r,,s in f2 ({x=3, y=4}) ({y=true, x=false})



An example

▪ What should the program evaluate to because of the extra field y in the first argument?

▪ Option 1:

▪ Symmetric record concatenation that only allows the concatenation of records without 
conflicts

▪ The example cannot pass typed check

▪ Option 2:

▪ Asymmetric record concatenation that employs left or right bias concatenation

▪ The example will evaluate to {x=3, y=4}

 let f2 (r:{x:Int}) (s:{y:Bool}) : {x:Int} & {y:Bool}

   = r,,s in f2 ({x=3, y=4}) ({y=true, x=false})



we should now feel compelled to define R & S only when R 
and S are disjoint: that is when any field present in an element 
of R is absent from every element of S, and vice versa.

“

”
— Cardelli and Mitchell 1991



Disjoint intersection types

▪ Calculi with disjoint intersection types (Oliveira et al. 2016) and a merge 
operator (Dunfield 2014) offers a solution to the Cardelli and Mitchell’s 
problem for concatenation

▪ The  calculus (Oliveira et al. 2016, Bi et al. 2018) adopts disjointness 
and restricts subsumption to address the challenges of symmetric 
concatenation/merge

▪ An important limitation of existing calculi: lack of recursive types

λi



Adding iso-recursive types to λi

▪ Object interface:

▪ Auxiliary functions:

▪ Recursive functions to encode expressions:

Exp := μExp . {eval : Int, dbl : Exp, eq : Exp → bool}

eval′￼e = (unfold [Exp] e) . eval dbl′￼e = (unfold [Exp] e) . dbl

eq′￼e1 e2 = (unfold [Exp] e1) . eq e2

lit n = fold [Exp] { eval := n, dbl := lit(n * 2), eq := λe′￼. (eval′￼e′￼= n) }

                                      
add e1 e2 = fold [Exp] { eval := eval′￼e1 + eval′￼e2, dbl := add (dbl′￼e1) (dbl′￼e2),

eq := λe′￼. (eval′￼e′￼= eval′￼e1 + eval′￼e2) }



Adding iso-recursive types to λi

▪ Recursive functions to encode expressions:

▪ Check if :2 * 7 = 2 * (3 + 4)

lit n = fold [Exp] { eval := n, dbl := lit(n * 2), eq := λe′￼. (eval′￼e′￼= n) }

                                      
add e1 e2 = fold [Exp] { eval := eval′￼e1 + eval′￼e2, dbl := add (dbl′￼e1) (dbl′￼e2),

eq := λe′￼. (eval′￼e′￼= eval′￼e1 + eval′￼e2) }

e1 := lit 7

e2 := add (lit 3) (lit 4)
eq′￼(dbl′￼e1) (dbl′￼e2)}



The  calculusλμ
i

▪ In this work, we studies a calculus  which combines:

▪ Iso-recursive types

▪ (Disjoint) intersection types with a merge operator

▪ Top-like types

▪ Bottom types

▪ We prove that subtyping relation is

▪ Transitive

▪ Decidable

λμ
i



Iso-recursive subtyping

▪ For checking if two iso-recursive types are subtype, we choose the 
recent developed nominal unfolding rules (Zhou et al. 2022):

▪ The labelled types  have two usage in this work:

▪ The label provides a unique identifier for recursive types being 
compared.

▪ The record types and records can be encoded as the combination of 
labelled types, intersection types and merge (Dunfield 2014).

{α : τ}

Γ, α ⊢ [α ↦ {α′￼: τ}] τ ≤ [α ↦ {α′￼: σ}] σ fresh a′￼

Γ ⊢ μα . τ ≤ μα . σ



Top-like types and disjointness

▪ A type  is top-like type if it is the supertype of 

▪ Specification of disjointness:

▪ Allowing a larger set of top-like types enables more types to be disjoint

A ⊤

⌉τ⌈
⌉τ → σ⌈

⌉τ⌈ ⌉σ⌈
⌉τ & σ⌈

⌉τ⌈
⌉μα . τ⌈

⌉τ⌈
⌉{α : τ}⌈⌉ ⊤ ⌈

Two types  and  are disjoint 
if all common supertypes of them are top-like types

τ σ



Disjointness

▪ Without top-like types, any two function types are disjoint:

▪ Without top-like types, any two recursive types are disjoint

▪ Algorithmic formulation of disjointness, for example:

▪ Our disjointness rules are sound w.r.t the specification

 is the supertype of all function types⊥ → ⊤

is the supertype of all recursive typesμα . ⊤

Γ ⊢ σ2 * τ2

Γ ⊢ τ1 → σ1 * τ2 → σ2

Γ, α ⊢ σ * τ
Γ ⊢ μα . τ * μα . σ



Completeness of disjointness 

▪ Two recursive types  and  satisfy the specification implies

▪ For any type , if   and  then  is top-like type

▪ By the disjointness rules for recursive types, we want to prove

▪ For any type , if  and  then  is top-like type

▪  is the supertype of two recursive types

▪  is the supertype of two bodies of recursive types

▪ What is the relation between  and  ?

μα . τ μα . σ

ρ Γ ⊢ μα . τ ≤ ρ Γ ⊢ μα . σ ≤ ρ ρ

ϑ Γ, α ⊢ τ ≤ ϑ Γ, α ⊢ σ ≤ ϑ ϑ

ρ

ϑ

ρ ϑ



Lower common supertype

▪ We define a function  to compute a lower supertype of type  and 

▪ Function  computes a common suppertype for two types whose 
contravariant positions are all 

▪ For example,

▪ Two properties:

▪ For any  and ,   and 

▪ If  and  and  is top-like then  is top-like

⊔ τ σ

⊔
⊥

τ σ Γ ⊢ τ ≤ τ ⊔ σ Γ ⊢ τ ≤ σ ⊔ σ

Γ ⊢ τ ≤ ρ Γ ⊢ σ ≤ ρ τ ⊔ σ ρ

τ1 → σ1 ⊔ τ2 → σ2 = ⊥ → (σ1 ⊔ σ2) μα . τ ⊔ μα . σ = μα . (τ ⊔ σ)



Informal proof for recursive case 

1. We know for any , if   and  then  is top-like type

2. We assume that  and  

3. From the disjointness rule, for proving the goal, we need to prove  is top-like type

4. We know that  and 

5. From (1) and (4), we know that   is a top-like type

6. According to the definition of lower common supertype,  is a top-like type

7. By inversion,  is a top-like type

8. Form (8) and (2), we claim that  is top-like type

ρ Γ ⊢ μα . τ ≤ ρ Γ ⊢ μα . σ ≤ ρ ρ

Γ, α ⊢ τ ≤ ϑ Γ, α ⊢ σ ≤ ϑ

ϑ

Γ ⊢ μα . τ ≤ μα . τ ⊔ μα . σ Γ ⊢ μα . σ ≤ μα . τ ⊔ μα . σ

μα . τ ⊔ μα . σ

μα . (τ ⊔ σ)

(τ ⊔ σ)

ϑ



Summary

▪ In summary, the contributions of this paper are

▪ Iso-recursive subtyping with intersection types

▪ The  calculus and show it is type safety

▪ Algorithmic disjointness for iso-recursive types

▪ Mechanical formalization for all theorems

λμ
i



Thank you for your listening


