A Calculus with Recursive Types, Record Concatenation and Subtyping

Yaoda Zhou (The University of Hong Kong)Bruno C. d. S. Oliveira (The University of Hong Kong)Andong Fan (Zhejiang University)

Record calculi

- Record calculi with a concatenation operator
- give the semantics of object-oriented languages with multiple inheritance
- E.g. the semantics of the Obliq language (Cook and Palsberg 1989, Cardelli 1995)

Record calculi

- Record calculi with a concatenation operator
- give the semantics of object-oriented languages with multiple inheritance
- E.g. the semantics of the Obliq language (Cook and Palsberg 1989, Cardelli 1995)
- Record calculi with a concatenation operator and subtyping?
- Subtyping can hide static type information that is needed to correctly model record concatenation (Cardelli and Mitchell 1991)

An example

• What should the program evaluate to because of the extra field y in the first argument?

let f2 (r:{x:Int}) (s:{y:Bool}) : {x:Int} & {y:Bool}
 = r,,s in f2 ({x=3, y=4}) ({y=true, x=false})

An example

What should the program evaluate to because of the extra field y in the first argument?

let f2 (r:{x:Int}) (s:{y:Bool}) : {x:Int} & {y:Bool} = r,,s in f2 ({x=3, y=4}) ({y=true, x=false})

- Option I:
 - Symmetric record concatenation that only allows the concatenation of records without conflicts
 - The example cannot pass typed check
- Option 2:
 - Asymmetric record concatenation that employs left or right bias concatenation
 - The example will evaluate to {x=3, y=4}

"we should now feel compelled to define R & S only when R and S are disjoint: that is when any field present in an element of R is absent from every element of S, and vice versa.

- Cardelli and Mitchell 1991

Disjoint intersection types

- Calculi with disjoint intersection types (Oliveira et al. 2016) and a merge operator (Dunfield 2014) offers a solution to the Cardelli and Mitchell's problem for concatenation
- The λ_i calculus (Oliveira et al. 2016, Bi et al. 2018) adopts disjointness and restricts subsumption to address the challenges of symmetric concatenation/merge
- An important limitation of existing calculi: lack of recursive types

Adding iso-recursive types to λ_i

Object interface:

 $Exp := \mu Exp . \{eval : Int, dbl : Exp, eq : Exp \rightarrow bool\}$

Auxiliary functions:

 $eval' e = (unfold [Exp] e) \cdot eval$ $dbl' e = (unfold [Exp] e) \cdot dbl$ $eq' e_1 e_2 = (unfold [Exp] e_1) \cdot eq e_2$

Recursive functions to encode expressions:

 $\begin{array}{l} lit \ n = {\rm fold} \ [Exp] \ \{ \ eval := n, \ dbl := lit(n * 2), \ eq := \lambda e' \,. \, (eval' \ e' = n) \ \} \\ add \ e_1 \ e_2 = {\rm fold} \ [Exp] \ \{ \ eval := eval' \ e_1 + eval' \ e_2, \ dbl := add \ (dbl' \ e_1) \ (dbl' \ e_2), \\ eq := \lambda e' \,. \, (eval' \ e' = eval' \ e_1 + eval' \ e_2) \ \} \end{array}$

Adding iso-recursive types to λ_i

Recursive functions to encode expressions:

 $\begin{array}{l} lit \ n = {\rm fold} \ [Exp] \ \{ \ eval := n, \ dbl := lit(n * 2), \ eq := \lambda e' \,. \, (eval' \ e' = n) \ \} \\ add \ e_1 \ e_2 = {\rm fold} \ [Exp] \ \{ \ eval := eval' \ e_1 + eval' \ e_2, \ dbl := add \ (dbl' \ e_1) \ (dbl' \ e_2), \\ eq := \lambda e' \,. \, (eval' \ e' = eval' \ e_1 + eval' \ e_2) \ \} \end{array}$

• Check if 2 * 7 = 2 * (3 + 4):

The λ_i^{μ} calculus

• In this work, we studies a calculus λ_i^{μ} which combines:

- Iso-recursive types
- (Disjoint) intersection types with a merge operator
- Top-like types
- Bottom types
- We prove that subtyping relation is
 - Transitive
 - Decidable

Iso-recursive subtyping

 For checking if two iso-recursive types are subtype, we choose the recent developed nominal unfolding rules (Zhou et al. 2022):

 $[\Gamma, \alpha \vdash [\alpha \mapsto \{\alpha' : \tau\}] \ \tau \le [\alpha \mapsto \{\alpha' : \sigma\}] \ \sigma \qquad \text{fresh } a'$

 $\Gamma \vdash \mu \alpha \, . \, \tau \leq \mu \alpha \, . \, \sigma$

- The labelled types $\{\alpha : \tau\}$ have two usage in this work:
 - The label provides a unique identifier for recursive types being compared.
 - The record types and records can be encoded as the combination of labelled types, intersection types and merge (Dunfield 2014).

Top-like types and disjointness

• A type A is top-like type if it is the supertype of T

 $\frac{\tau}{\tau} \qquad \frac{\tau}{\tau} \qquad \frac{\tau}$

Specification of disjointness:

Two types au and $m \sigma$ are disjoint if all common supertypes of them are top-like types

Allowing a larger set of top-like types enables more types to be disjoint

Disjointness

Without top-like types, any two function types are disjoint:
⊥ → T is the supertype of all function types
Without top-like types, any two recursive types are disjoint
µα. T is the supertype of all recursive types

Algorithmic formulation of disjointness, for example:

$$\frac{\Gamma \vdash \sigma_2 * \tau_2}{\Gamma \vdash \tau_1 \to \sigma_1 * \tau_2 \to \sigma_2} \qquad \qquad \frac{\Gamma, \ \alpha \vdash \sigma * \tau}{\Gamma \vdash \mu \alpha . \ \tau * \mu \alpha . \ \sigma}$$

Our disjointness rules are sound w.r.t the specification

Completeness of disjointness

- Two recursive types $\mu\alpha$. τ and $\mu\alpha$. σ satisfy the specification implies
- For any type ρ , if $\Gamma \vdash \mu \alpha$. $\tau \leq \rho$ and $\Gamma \vdash \mu \alpha$. $\sigma \leq \rho$ then ρ is top-like type
- By the disjointness rules for recursive types, we want to prove
- For any type ϑ , if Γ , $\alpha \vdash \tau \leq \vartheta$ and Γ , $\alpha \vdash \sigma \leq \vartheta$ then ϑ is top-like type
- ρ is the supertype of two recursive types
- artheta is the supertype of two bodies of recursive types
- What is the relation between ho and artheta ?

Lower common supertype

- We define a function $oldsymbol{\sqcup}$ to compute a lower supertype of type au and σ
- Function L computes a common supportype for two types whose contravariant positions are all L
- For example,

 $\tau_1 \to \sigma_1 \sqcup \tau_2 \to \sigma_2 = \bot \to (\sigma_1 \sqcup \sigma_2) \qquad \qquad \mu \alpha \,. \, \tau \sqcup \mu \alpha \,. \, \sigma = \mu \alpha \,. \, (\tau \sqcup \sigma)$

- Two properties:
 - For any τ and σ , $\Gamma \vdash \tau \leq \tau \sqcup \sigma$ and $\Gamma \vdash \tau \leq \sigma \sqcup \sigma$
 - If $\Gamma \vdash \tau \leq \rho$ and $\Gamma \vdash \sigma \leq \rho$ and $\tau \sqcup \sigma$ is top-like then ρ is top-like

Informal proof for recursive case

- 1. We know for any ρ , if $\Gamma \vdash \mu \alpha$. $\tau \leq \rho$ and $\Gamma \vdash \mu \alpha$. $\sigma \leq \rho$ then ρ is top-like type 2. We assume that Γ , $\alpha \vdash \tau \leq \vartheta$ and Γ , $\alpha \vdash \sigma \leq \vartheta$
- From the disjointness rule, for proving the goal, we need to prove θ is top-like type
 We know that Γ ⊢ μα. τ ≤ μα. τ ⊔ μα. σ and Γ ⊢ μα. σ ≤ μα. τ ⊔ μα. σ
 From (1) and (4), we know that μα. τ ⊔ μα. σ is a top-like type
 According to the definition of lower common supertype, μα. (τ ⊔ σ) is a top-like type
 By inversion, (τ ⊔ σ) is a top-like type
- 8. Form (8) and (2), we claim that ϑ is top-like type

Summary

In summary, the contributions of this paper are

- Iso-recursive subtyping with intersection types
- The λ_i^{μ} calculus and show it is type safety
- Algorithmic disjointness for iso-recursive types
- Mechanical formalization for all theorems

Thank you for your listening