
A Calculus with Recursive Types,
Record Concatenation and Subtyping

Yaoda Zhou (The University of Hong Kong)

Bruno C. d. S. Oliveira (The University of Hong Kong)

Andong Fan (Zhejiang University)

Record calculi

▪ Record calculi with a concatenation operator

▪ give the semantics of object-oriented languages with multiple inheritance

▪ E.g. the semantics of the Obliq language (Cook and Palsberg 1989,
Cardelli 1995)

Record calculi

▪ Record calculi with a concatenation operator

▪ give the semantics of object-oriented languages with multiple inheritance

▪ E.g. the semantics of the Obliq language (Cook and Palsberg1989,
Cardelli 1995)

▪ Record calculi with a concatenation operator and subtyping?

▪ Subtyping can hide static type information that is needed to correctly
model record concatenation (Cardelli and Mitchell 1991)

An example

▪ What should the program evaluate to because of the extra field y in the
first argument?

 let f2 (r:{x:Int}) (s:{y:Bool}) : {x:Int} & {y:Bool}

 = r,,s in f2 ({x=3, y=4}) ({y=true, x=false})

An example

▪ What should the program evaluate to because of the extra field y in the first argument?

▪ Option 1:

▪ Symmetric record concatenation that only allows the concatenation of records without
conflicts

▪ The example cannot pass typed check

▪ Option 2:

▪ Asymmetric record concatenation that employs left or right bias concatenation

▪ The example will evaluate to {x=3, y=4}

 let f2 (r:{x:Int}) (s:{y:Bool}) : {x:Int} & {y:Bool}

 = r,,s in f2 ({x=3, y=4}) ({y=true, x=false})

we should now feel compelled to define R & S only when R
and S are disjoint: that is when any field present in an element
of R is absent from every element of S, and vice versa.

“

”
— Cardelli and Mitchell 1991

Disjoint intersection types

▪ Calculi with disjoint intersection types (Oliveira et al. 2016) and a merge
operator (Dunfield 2014) offers a solution to the Cardelli and Mitchell’s
problem for concatenation

▪ The calculus (Oliveira et al. 2016, Bi et al. 2018) adopts disjointness
and restricts subsumption to address the challenges of symmetric
concatenation/merge

▪ An important limitation of existing calculi: lack of recursive types

λi

Adding iso-recursive types to λi

▪ Object interface:

▪ Auxiliary functions:

▪ Recursive functions to encode expressions:

Exp := μExp . {eval : Int, dbl : Exp, eq : Exp → bool}

eval′￼e = (unfold [Exp] e) . eval dbl′￼e = (unfold [Exp] e) . dbl

eq′￼e1 e2 = (unfold [Exp] e1) . eq e2

lit n = fold [Exp] { eval := n, dbl := lit(n * 2), eq := λe′￼. (eval′￼e′￼= n) }

add e1 e2 = fold [Exp] { eval := eval′￼e1 + eval′￼e2, dbl := add (dbl′￼e1) (dbl′￼e2),

eq := λe′￼. (eval′￼e′￼= eval′￼e1 + eval′￼e2) }

Adding iso-recursive types to λi

▪ Recursive functions to encode expressions:

▪ Check if :2 * 7 = 2 * (3 + 4)

lit n = fold [Exp] { eval := n, dbl := lit(n * 2), eq := λe′￼. (eval′￼e′￼= n) }

add e1 e2 = fold [Exp] { eval := eval′￼e1 + eval′￼e2, dbl := add (dbl′￼e1) (dbl′￼e2),

eq := λe′￼. (eval′￼e′￼= eval′￼e1 + eval′￼e2) }

e1 := lit 7

e2 := add (lit 3) (lit 4)
eq′￼(dbl′￼e1) (dbl′￼e2)}

The calculusλμ
i

▪ In this work, we studies a calculus which combines:

▪ Iso-recursive types

▪ (Disjoint) intersection types with a merge operator

▪ Top-like types

▪ Bottom types

▪ We prove that subtyping relation is

▪ Transitive

▪ Decidable

λμ
i

Iso-recursive subtyping

▪ For checking if two iso-recursive types are subtype, we choose the
recent developed nominal unfolding rules (Zhou et al. 2022):

▪ The labelled types have two usage in this work:

▪ The label provides a unique identifier for recursive types being
compared.

▪ The record types and records can be encoded as the combination of
labelled types, intersection types and merge (Dunfield 2014).

{α : τ}

Γ, α ⊢ [α ↦ {α′￼: τ}] τ ≤ [α ↦ {α′￼: σ}] σ fresh a′￼

Γ ⊢ μα . τ ≤ μα . σ

Top-like types and disjointness

▪ A type is top-like type if it is the supertype of

▪ Specification of disjointness:

▪ Allowing a larger set of top-like types enables more types to be disjoint

A ⊤

⌉τ⌈
⌉τ → σ⌈

⌉τ⌈ ⌉σ⌈
⌉τ & σ⌈

⌉τ⌈
⌉μα . τ⌈

⌉τ⌈
⌉{α : τ}⌈⌉ ⊤ ⌈

Two types and are disjoint
if all common supertypes of them are top-like types

τ σ

Disjointness

▪ Without top-like types, any two function types are disjoint:

▪ Without top-like types, any two recursive types are disjoint

▪ Algorithmic formulation of disjointness, for example:

▪ Our disjointness rules are sound w.r.t the specification

 is the supertype of all function types⊥ → ⊤

is the supertype of all recursive typesμα . ⊤

Γ ⊢ σ2 * τ2

Γ ⊢ τ1 → σ1 * τ2 → σ2

Γ, α ⊢ σ * τ
Γ ⊢ μα . τ * μα . σ

Completeness of disjointness

▪ Two recursive types and satisfy the specification implies

▪ For any type , if and then is top-like type

▪ By the disjointness rules for recursive types, we want to prove

▪ For any type , if and then is top-like type

▪ is the supertype of two recursive types

▪ is the supertype of two bodies of recursive types

▪ What is the relation between and ?

μα . τ μα . σ

ρ Γ ⊢ μα . τ ≤ ρ Γ ⊢ μα . σ ≤ ρ ρ

ϑ Γ, α ⊢ τ ≤ ϑ Γ, α ⊢ σ ≤ ϑ ϑ

ρ

ϑ

ρ ϑ

Lower common supertype

▪ We define a function to compute a lower supertype of type and

▪ Function computes a common suppertype for two types whose
contravariant positions are all

▪ For example,

▪ Two properties:

▪ For any and , and

▪ If and and is top-like then is top-like

⊔ τ σ

⊔
⊥

τ σ Γ ⊢ τ ≤ τ ⊔ σ Γ ⊢ τ ≤ σ ⊔ σ

Γ ⊢ τ ≤ ρ Γ ⊢ σ ≤ ρ τ ⊔ σ ρ

τ1 → σ1 ⊔ τ2 → σ2 = ⊥ → (σ1 ⊔ σ2) μα . τ ⊔ μα . σ = μα . (τ ⊔ σ)

Informal proof for recursive case

1. We know for any , if and then is top-like type

2. We assume that and

3. From the disjointness rule, for proving the goal, we need to prove is top-like type

4. We know that and

5. From (1) and (4), we know that is a top-like type

6. According to the definition of lower common supertype, is a top-like type

7. By inversion, is a top-like type

8. Form (8) and (2), we claim that is top-like type

ρ Γ ⊢ μα . τ ≤ ρ Γ ⊢ μα . σ ≤ ρ ρ

Γ, α ⊢ τ ≤ ϑ Γ, α ⊢ σ ≤ ϑ

ϑ

Γ ⊢ μα . τ ≤ μα . τ ⊔ μα . σ Γ ⊢ μα . σ ≤ μα . τ ⊔ μα . σ

μα . τ ⊔ μα . σ

μα . (τ ⊔ σ)

(τ ⊔ σ)

ϑ

Summary

▪ In summary, the contributions of this paper are

▪ Iso-recursive subtyping with intersection types

▪ The calculus and show it is type safety

▪ Algorithmic disjointness for iso-recursive types

▪ Mechanical formalization for all theorems

λμ
i

Thank you for your listening

