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Recursive types

Recursive types  are used to represent recursive 
data structures like sequences or trees. 

Binary tree with integer leaves: 

Lists of integers:

μα . τ

Tree  Int + (Tree x Tree)≜

List  Unit + (Int x List)≜
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What is the relation between the type  and its one-
step unfolding  ? 

μα . τ
[α ↦ μα . τ] τ

μα . τ [α ↦ μα . τ] τ≜

equi-recursive:

iso-recursive:

μα . τ [α ↦ μα . τ] τ

unfold [μα . τ] : μα . τ → [α ↦ μα . τ] τ

fold [μα . τ] : [α ↦ μα . τ] τ → μα . τ
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Most mainstream languages employ iso-recursive setting

data List = Nil | Cons Int List 

map :: (Int -> Int) -> List -> List 
map f Nil = Nil 
map f (Cons x xs) = Cons (f x) (map f xs)

class Shape { 
   int area() {...} 
   boolean compareArea(Shape s) { 
      return s.area() == area(); 
   } 
   Shape clone() {return new Shape();} 
}

Fold:  

Unfold:  

Use of one of the constructors

Pattern matching for list

Class definition

Method invoking
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A natural question: can we define subtyping 
relations between recursive types?
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The Amber rules

First (briefly) mentioned in “Amber” in 1985 by Luca Cardelli 

The most famous comprehensive study of recursive subtyping 

“Subtyping recursive types”, in TOPLAS 1993, by Roberto 
M. Amadio and Luca Cardelli 

using an equi-recursive treatment of recursive types in 
-calculus

λ
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Tree view
μα . ⊤ → α μα . nat → α
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μα . nat → (μα . nat → α)

Unrolling to the limit, then subtying for the whole tree
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Equi-recursive Amber rules

τ ≜ σ
Γ ⊢ τ ≤ σ

Amber-refl
Γ ⊢ τ ≤ ϕ Γ ⊢ ϕ ≤ σ

Γ ⊢ τ ≤ σ
Amber-trans

α ≤ β ∈ Γ
Γ ⊢ α ≤ β

Amber-assump
Γ, α ≤ β ⊢ τ ≤ σ

Γ ⊢ μα . τ ≤ μβ . σ
Amber-rec

E.g.          
                         

μα . nat → α ≜ μα . nat → nat → α
μα . nat → α ≜ μα . nat → (μα . nat → α)
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Iso-recursive Amber rules

τ = σ
Γ ⊢ τ ≤ σ

Amber-refl Γ ⊢ τ ≤ ϕ Γ ⊢ ϕ ≤ σ
Γ ⊢ τ ≤ σ

Amber-trans

α ≤ β ∈ Γ
Γ ⊢ α ≤ β

Amber-assump
Γ, α ≤ β ⊢ τ ≤ σ

Γ ⊢ μα . τ ≤ μβ . σ
Amber-rec
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Drawback of Iso-recursive Amber rules

Iso-recursive Amber rules are simple, fast, easy to implement, but: 

Reflexivity cannot be eliminated. 

Finding an algorithmic formulation: transitivity elimination is non-trivial. 

Proofs of transitivity and other lemmas are hard. 

Non-modularity of the proofs.

α ≤ β ⊢ β ≤ α(fail!) …
⊢ μα . α → ⊤ ≤ μβ . β → ⊤
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Iso-recursive subtyping should

Fact 1: Any type should be a subtype of itself 

 

 

 

Fact 2: Positive subtyping should be accepted 

μα . α → α ≤ μα . α → α

μα . α → nat ≤ μα . α → nat

μα . nat → α ≤ μα . nat → α

μα . ⊤ → α ≤ μα . nat → α
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Iso-recursive subtyping should

Fact 3: Many forms of negative subtyping should be rejected 

 

Unfolding lemma:   

    If  then 

μα . α → nat ≰ μα . α → ⊤

μα . σ ≤ μα . τ [α ↦ μα . σ] σ ≤ [α ↦ μα . τ] τ
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Novel specification

We propose a new formal specification for iso-recursive 
subtyping, called finite unfolding rule:

Γ, α ⊢ [α ↦ τ]n τ ≤ [α ↦ σ]n σ ∀n = 1,2,⋯, ∞
Γ ⊢ μα . τ ≤ μα . σ

S-rec

[α ↦ τ]n τ ≜ [α ↦ τ][α ↦ τ]⋯[α ↦ τ]

n−1

τwhere

13



Finite unfolding

Two recursive types are subtype if and only if  

all their 𝑛-times finite unfoldings are subtypes  

for any positive integer 𝑛
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Tree view — for iso-recursive subtyping
μα . ⊤ → α μα . nat → α
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Rank 1:
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Tree view — for iso-recursive subtyping
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μα . ⊤ → α μα . nat → α
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Tree view — for iso-recursive subtyping
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μα . ⊤ → α μα . nat → α
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Tree view — for iso-recursive subtyping
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In a tree view

Equi-recursive: 

Iso-recursive:

Unrolling to the limit, then subtying for all rank-n subtrees

Unrolling to the limit, then subtying for the whole tree
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Tree model — comparison
μα . ⊤ → α μα . nat → α
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μα . nat → (μα . nat → α)
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Advantages of new specification

Reflexivity is derivable. 

Transitivity (and other lemmas) is easy to prove. 

Enable modular proofs. 

Are applicable to non-antisymmetric subtyping relations.
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Algorithmic Iso-Recursive Subtyping

Our new specification is not algorithmic, because it 
need to test infinite subtyping 

Checking rank-n (n > 2) subtrees repeats checking 
rank-1 and rank-2 subtrees 

Double unfolding:
Γ, α ⊢ τ ≤ σ Γ, α ⊢ [α ↦ τ] τ ≤ [α ↦ σ] σ

Γ ⊢ μα . τ ≤ μα . σ
S-double
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Nominal unfolding

We use an extra label to help compare corresponding subtree 

We call it nominal unfolding: 

The nominal unfolding is proven to have same expressiveness as double unfolding 
in a simple setting (like Simply Typed Lambda Calculus). 

The  in the labels is fresh and is different from  as the recursive variableα α

Γ, α ⊢ [α ↦ τα] τ ≤ [α ↦ σα] σ
Γ ⊢ μα . τ ≤ μα . σ

S-nominal
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Weakly Positive Subtyping
We prove that our new specification has same expressiveness as iso-
recursive Amber rules 

Directly equivalence proof is difficult 

The key idea in this relation is to have a special rule for recursive types: 

 means  exists in positive(m is +) or negative(m is -) position in 
the weakly positive subtyping. 
α ∈m τ ≤ σ α

Γ, α ⊢ τ ≤+ σ α ∈+ τ ≤ σ
Γ ⊢ μα . τ ≤+ μα . σ
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Weakly Positive Restriction

: we never find a contravariant subderivation  
for recursive types except for: 

Equal types, i.e. two recursive types are equal. 

E.g.   

The recursive type variable is a subtype of the top. 

E.g.  

α ∈+ τ ≤ σ α ≤ α

μα . α → nat ≤ μα . α → nat

μα . ⊤ → nat ≤ μα . α → nat
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Equivalence of all formulations

Finite Unfolding 
(The New Specification) Double Unfolding

Nominal Unfolding

Weakly Positive SubtypingAmber Rules
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Follow-up work

With intersection types: 

A Calculus with Recursive Types, Record Concatenation 
and Subtyping (Zhou et al. 2022, APLAS 2022) 

With bounded quantification: 

Recursive Subtyping for All (Zhou et al. 2023, POPL 
2023)
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Thanks for listening!


