Revisiting Iso-Recursive Subtyping Yaoda Zhou, Jinxu Zhao and Bruno C. d. S. Oliveira In OOPSLA'20, TOPLAS'22

For SPLASH'22 Covid Time Papers The University of Hong Kong

Recursive types

* Recursive types $\mu\alpha$. τ are used to represent recursive data structures like sequences or trees.

◆ Binary tree with integer leaves:
★ Lists of integers:

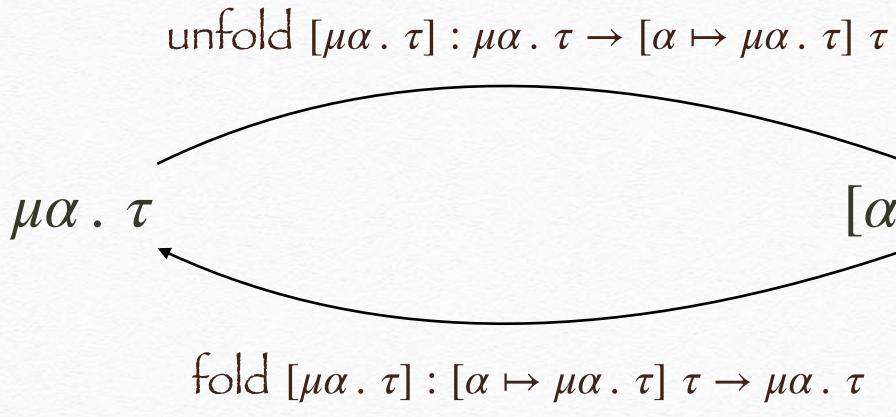
 $List \triangleq Unit + (Int x List)$

What is the relation between the type $\mu\alpha$. τ and its onestep unfolding [$\alpha \mapsto \mu \alpha \cdot \tau$] τ ?

equi-recursive:

μα.τ

iso-recursive:



$$[\alpha \mapsto \mu \alpha . \tau] \tau$$

$$[\alpha \mapsto \mu \alpha . \tau] \tau$$

Most mainstream languages employ iso-recursive setting

data List = Nil | Cons Int List

map :: (Int -> Int) -> List -> List map f Nil = Nil map f (Cons x xs) = Cons (f x) (map f xs)

Fold: Use of one of the constructors Unfold: Pattern matching for list

class Shape { int area() {...} boolean compareArea(Shape s) { return s.area() == area(); Shape clone() {return new Shape();}

Class definition

Method invoking

A natural question: can we define subtyping relations between recursive types?

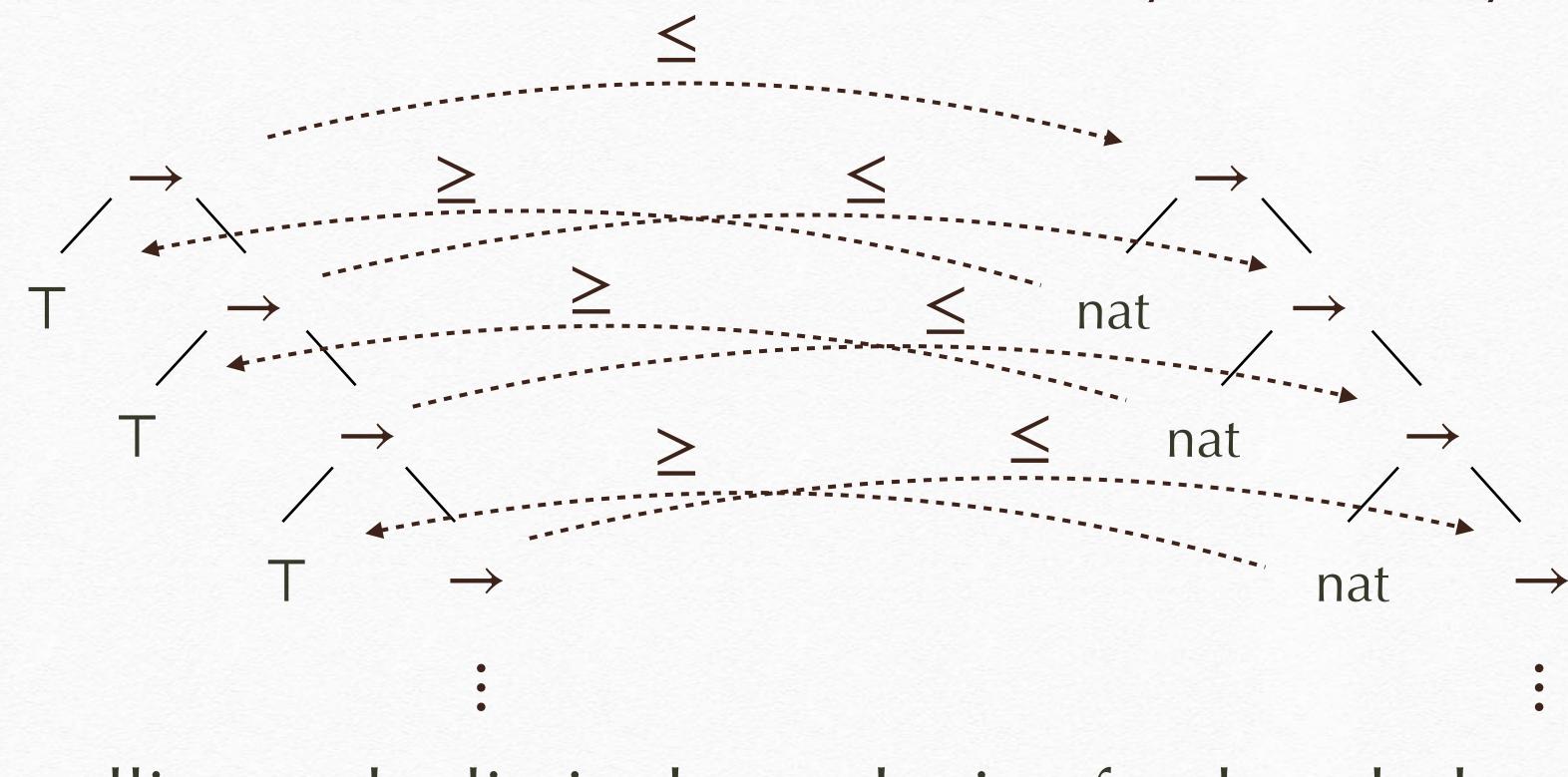
The Amber rules

M. Amadio and Luca Cardelli

-calculus

- First (briefly) mentioned in "Amber" in 1985 by Luca Cardelli
- The most famous comprehensive study of recursive subtyping
- "Subtyping recursive types", in TOPLAS 1993, by Roberto
- \Rightarrow using an equi-recursive treatment of recursive types in λ

 $\mu\alpha$. T $\rightarrow \alpha$



Unrolling to the limit, then subtying for the whole tree

Tree view

$\mu\alpha$. nat $\rightarrow \alpha$ $\mu\alpha$. nat $\rightarrow (\mu\alpha$. nat $\rightarrow \alpha)$

Equi-recursive Amber rules

 $\frac{\tau \triangleq \sigma}{\Gamma \vdash \tau \leq \sigma} \text{Amber-refl}$

 $\frac{\alpha \leq \beta \in \Gamma}{\Gamma \vdash \alpha \leq \beta}$ Amber-assump

 $\frac{\Gamma \vdash \tau \leq \phi \quad \Gamma \vdash \phi \leq \sigma}{\Gamma \vdash \tau \leq \sigma}$ Amber-trans

 $\frac{\Gamma, \alpha \leq \beta \vdash \tau \leq \sigma}{\Gamma \vdash \mu \alpha \, . \, \tau \leq \mu \beta \, . \, \sigma} \text{Amber-rec}$

E.g. $\mu\alpha$. nat $\rightarrow \alpha \triangleq \mu\alpha$. nat \rightarrow nat $\rightarrow \alpha$ $\mu\alpha$. nat $\rightarrow \alpha \triangleq \mu\alpha$. nat $\rightarrow (\mu\alpha$. nat $\rightarrow \alpha)$

Iso-recursive Amber rules

 $\frac{\tau = \sigma}{\Gamma \vdash \tau \leq \sigma} \text{Amber-refl}$

 $\frac{\alpha \leq \beta \in \Gamma}{\Gamma \vdash \alpha \leq \beta}$ Amber-assump

$\frac{\Gamma \vdash \tau \leq \phi \quad \Gamma \vdash \phi \leq \sigma}{\Gamma \vdash \tau \leq \sigma}$ Amber-trans

 $\frac{\Gamma, \alpha \leq \beta \vdash \tau \leq \sigma}{\Gamma \vdash \mu \alpha \,.\, \tau \leq \mu \beta \,.\, \sigma} \text{Amber-rec}$

Drawback of Iso-recursive Amber rules

Reflexivity cannot be eliminated.

Proofs of transitivity and other lemmas are hard.

Non-modularity of the proofs.

- Iso-recursive Amber rules are simple, fast, easy to implement, but:

 - $\alpha \leq \beta \vdash \beta \leq \alpha (fail!) \dots$ $\vdash \mu \alpha . \alpha \to \mathsf{T} \leq \mu \beta . \beta \to \mathsf{T}$
 - * Finding an algorithmic formulation: transitivity elimination is non-trivial.

Fact 1: Any type should be a subtype of itself

 $\ast \mu \alpha . \alpha \rightarrow \alpha \leq \mu \alpha . \alpha \rightarrow \alpha$

* $\mu\alpha . \alpha \rightarrow \text{nat} \leq \mu\alpha . \alpha \rightarrow \text{nat}$

* $\mu\alpha$. nat $\rightarrow \alpha \leq \mu\alpha$. nat $\rightarrow \alpha$

Fact 2: Positive subtyping should be accepted

* $\mu\alpha$. T $\rightarrow \alpha \leq \mu\alpha$. nat $\rightarrow \alpha$

Iso-recursive subtyping should

Fact 3: Many forms of negative subtyping should be rejected

* $\mu\alpha . \alpha \rightarrow \text{nat} \not\leq \mu\alpha . \alpha \rightarrow \mathsf{T}$

Unfolding lemma:

Iso-recursive subtyping should

If $\mu\alpha . \sigma \leq \mu\alpha . \tau$ then $[\alpha \mapsto \mu\alpha . \sigma] \sigma \leq [\alpha \mapsto \mu\alpha . \tau] \tau$

Novel specification

subtyping, called finite unfolding rule:

$$\frac{\Gamma, \alpha \vdash [\alpha \mapsto \tau]^n \ \tau \leq [\alpha \mapsto \sigma]^n \ \sigma \quad \forall n = 1, 2, \cdots, \infty}{\Gamma \vdash \mu \alpha \ \tau \leq \mu \alpha \ \sigma} S\text{-rec}$$
where
$$[\alpha \mapsto \tau]^n \ \tau \triangleq [\alpha \mapsto \tau][\alpha \mapsto \tau] \cdots [\alpha \mapsto \tau] \tau$$

We propose a new formal specification for iso-recursive

n-1

all their n-times finite unfoldings are subtypes

Finite unfolding

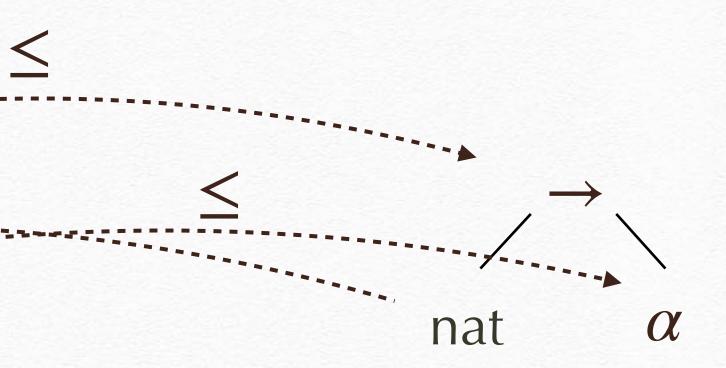
Two recursive types are subtype if and only if

for any positive integer n

Tree view — for iso-recursive subtyping

 $\mu\alpha$. T $\rightarrow \alpha$

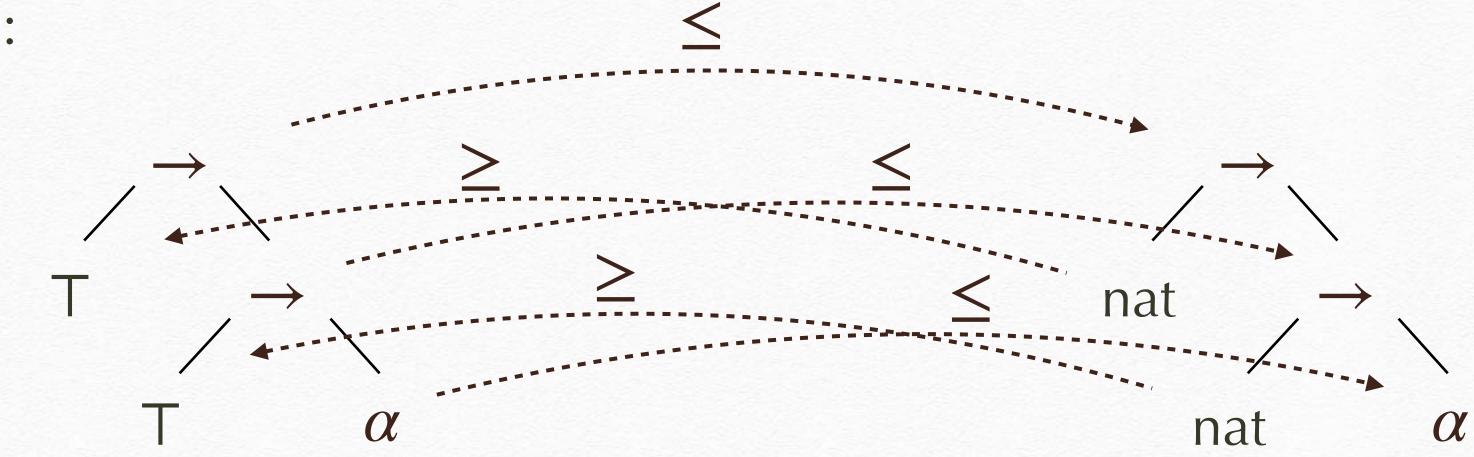
Rank 1:



Tree view — for iso-recursive subtyping

 $\mu\alpha$. T $\rightarrow \alpha$

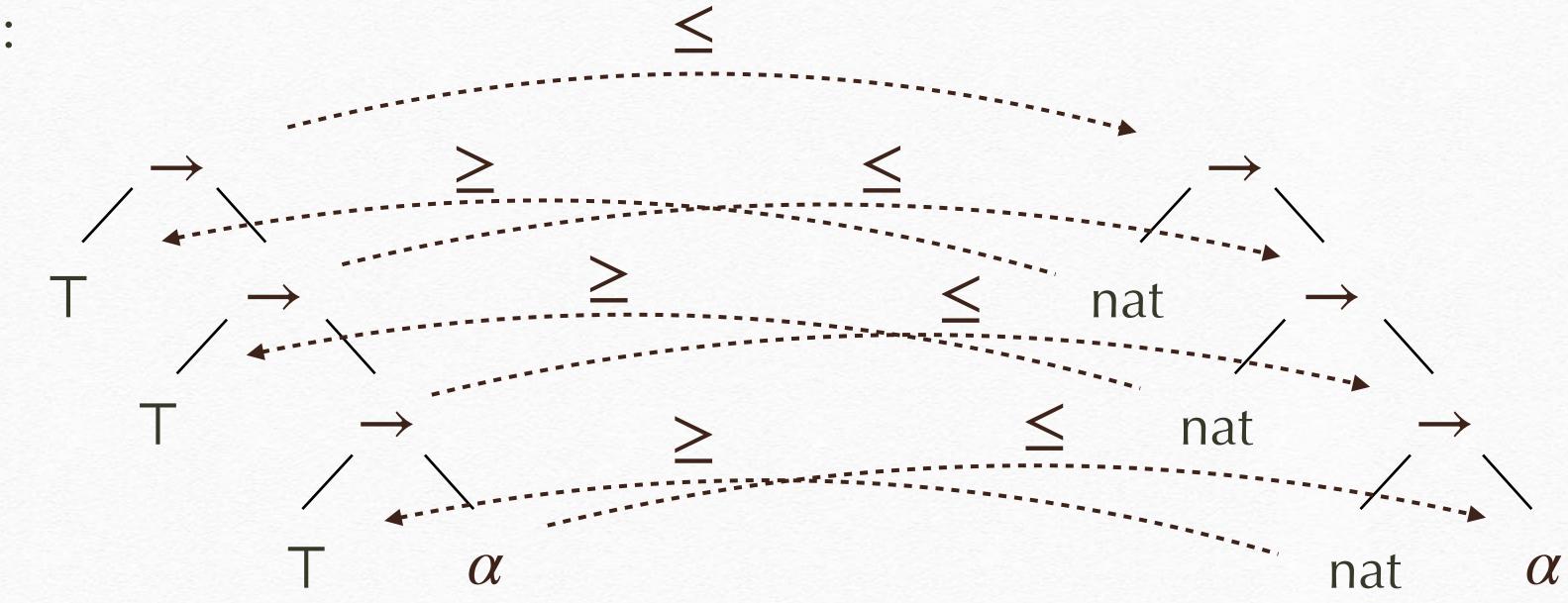
Rank 2:



Tree view — for iso-recursive subtyping

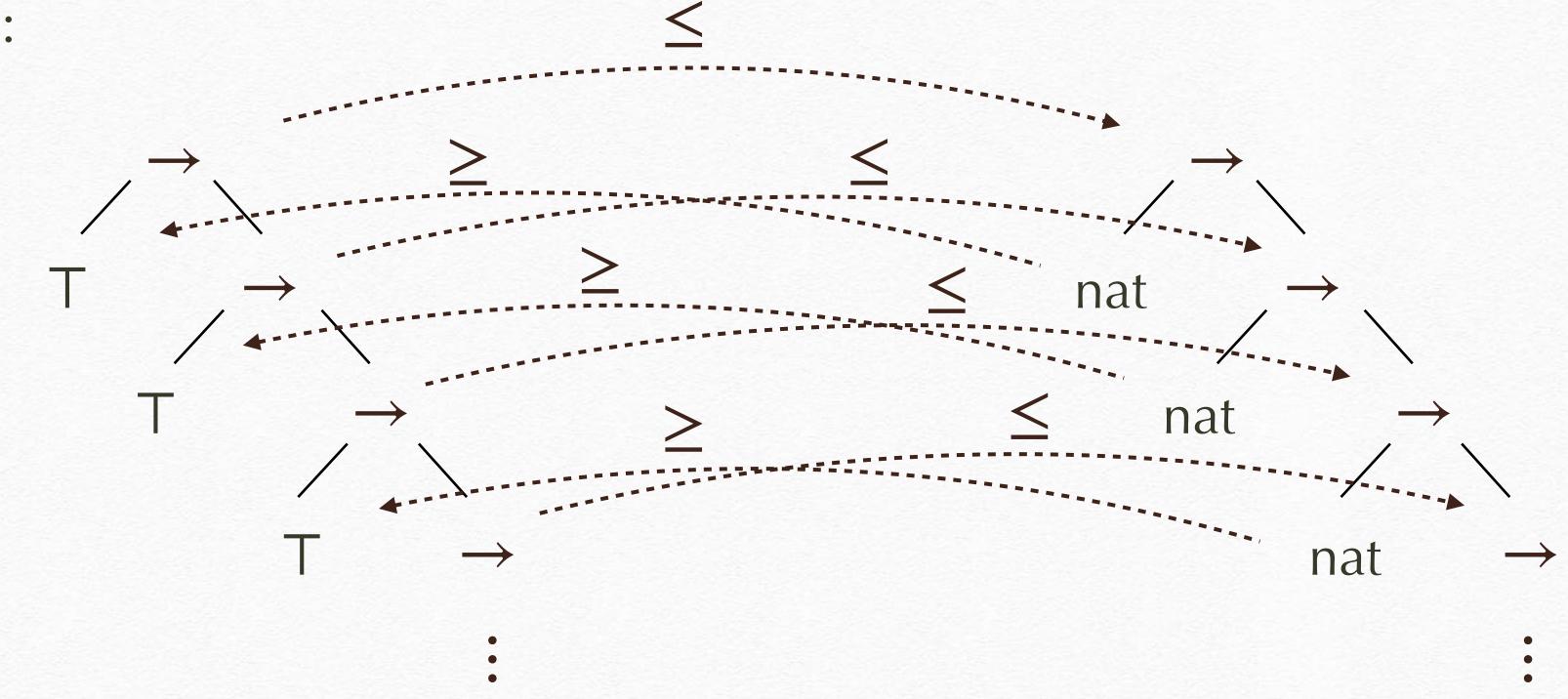
 $\mu\alpha$. T $\rightarrow \alpha$

Rank 3:



 $\mu\alpha$. T $\rightarrow \alpha$

Rank n:



Tree view — for iso-recursive subtyping

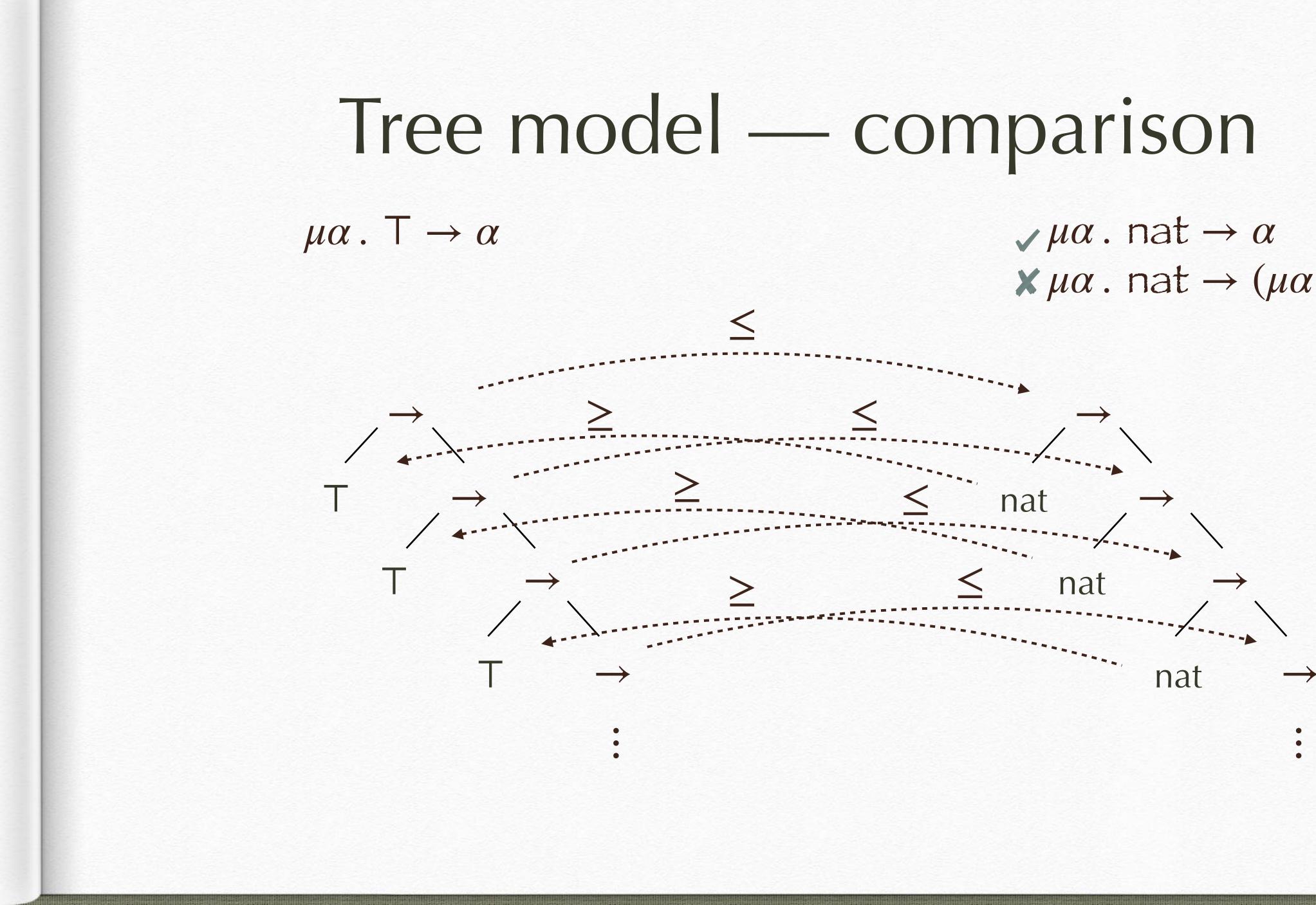
Equi-recursive:

Unrolling to the limit, then subtying for the whole tree

Iso-recursive:

In a tree view

Unrolling to the limit, then subtying for <u>all rank-n subtrees</u>



 $\times \mu \alpha$. nat $\rightarrow (\mu \alpha . \text{ nat} \rightarrow \alpha)$

Advantages of new specification

Reflexivity is derivable.

Transitivity (and other lemmas) is easy to prove.

Enable modular proofs.

Are applicable to non-antisymmetric subtyping relations.

Algorithmic Iso-Recursive Subtyping

 Our new specification is not algorithmic, because it need to test infinite subtyping

rank-1 and rank-2 subtrees

Double unfolding: $\Gamma \vdash \mu \alpha . \tau \leq \mu \alpha . \sigma$

Checking rank-n (n > 2) subtrees repeats checking

 $\Gamma, \alpha \vdash \tau \leq \sigma \quad \Gamma, \alpha \vdash [\alpha \mapsto \tau] \ \tau \leq [\alpha \mapsto \sigma] \ \sigma_{\text{S-double}}$

Nominal unfolding

* We use an extra label to help compare corresponding subtree

We call it nominal unfolding:

$$\frac{\Gamma, \alpha \vdash [\alpha \mapsto \tau^{\alpha}] \tau \leq [\alpha \mapsto \sigma^{\alpha}] \sigma}{\Gamma \vdash \mu \alpha . \tau \leq \mu \alpha . \sigma} S\text{-nominal}$$

The nominal unfolding is proven to have same expressiveness as double unfolding in a simple setting (like Simply Typed Lambda Calculus).

* The α in the labels is fresh and is different from α as the recursive variable

recursive Amber rules

Directly equivalence proof is difficult

* $\alpha \in_m \tau \leq \sigma$ means α exists in positive(m is +) or negative(m is -) position in the weakly positive subtyping.

Weakly Positive Subtyping

- * We prove that our new specification has same expressiveness as iso-
- The key idea in this relation is to have a special rule for recursive types:
 - $\Gamma, \alpha \vdash \tau \leq_+ \sigma \quad \alpha \in_+ \tau \leq \sigma$
 - $\Gamma \vdash \mu \alpha . \tau \leq_{+} \mu \alpha . \sigma$

Weakly Positive Restriction

for recursive types except for:

Equal types, i.e. two recursive types are equal.

* E.g. $\mu\alpha$. $\alpha \rightarrow$ nat \leq

* E.g. $\mu\alpha$. T \rightarrow nat

- * $\alpha \in_+ \tau \leq \sigma$: we never find a contravariant subderivation $\alpha \leq \alpha$

$$\leq \mu \alpha . \alpha \rightarrow \text{nat}$$

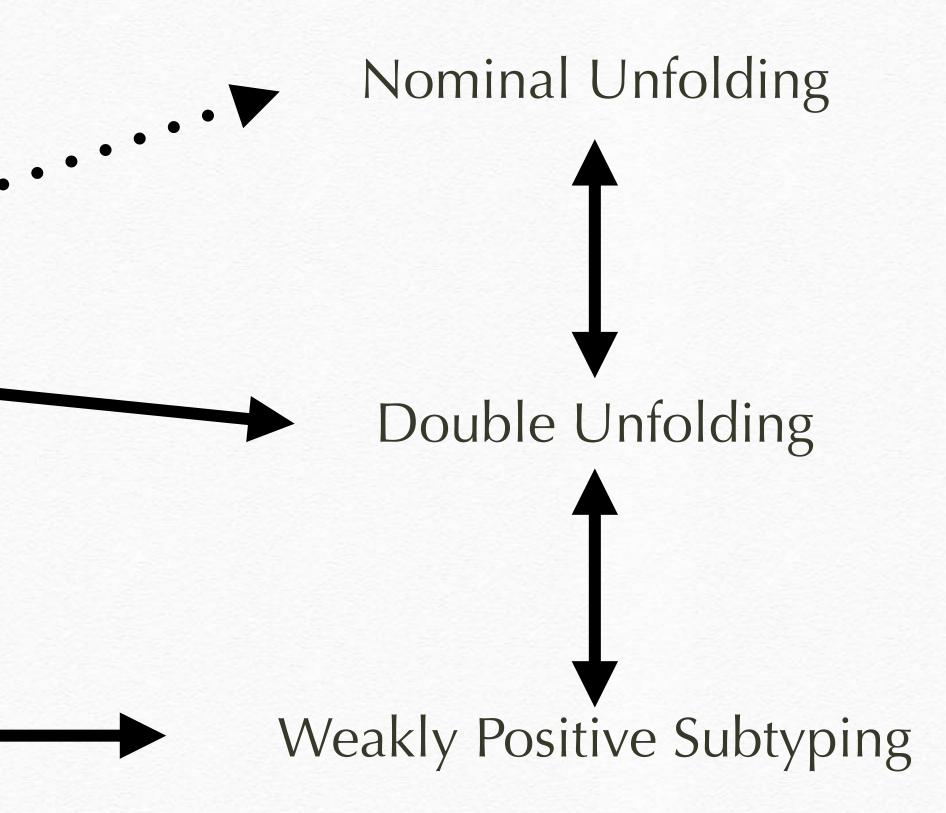
The recursive type variable is a subtype of the top.

$$\leq \mu \alpha \cdot \alpha \rightarrow \text{nat}$$

Equivalence of all formulations

Finite Unfolding (The New Specification)

Amber Rules



Follow-up work

With intersection types:

A Calculus with Recursive Types, Record Concatenation and Subtyping (Zhou et al. 2022, APLAS 2022)

With bounded quantification:

Recursive Subtyping for All (Zhou et al. 2023, POPL 2023)

Thanks for listening!

