
Revisiting Iso-Recursive
Subtyping

Yaoda Zhou, Jinxu Zhao and Bruno C. d. S. Oliveira

In OOPSLA’20, TOPLAS’22
For SPLASH’22 Covid Time Papers

The University of Hong Kong

Recursive types

Recursive types are used to represent recursive
data structures like sequences or trees.

Binary tree with integer leaves:

Lists of integers:

μα . τ

Tree Int + (Tree x Tree)≜

List Unit + (Int x List)≜

2

What is the relation between the type and its one-
step unfolding ?

μα . τ
[α ↦ μα . τ] τ

μα . τ [α ↦ μα . τ] τ≜

equi-recursive:

iso-recursive:

μα . τ [α ↦ μα . τ] τ

unfold [μα . τ] : μα . τ → [α ↦ μα . τ] τ

fold [μα . τ] : [α ↦ μα . τ] τ → μα . τ

3

Most mainstream languages employ iso-recursive setting

data List = Nil | Cons Int List

map :: (Int -> Int) -> List -> List
map f Nil = Nil
map f (Cons x xs) = Cons (f x) (map f xs)

class Shape {
 int area() {...}
 boolean compareArea(Shape s) {
 return s.area() == area();
 }
 Shape clone() {return new Shape();}
}

Fold:

Unfold:

Use of one of the constructors

Pattern matching for list

Class definition

Method invoking

4

A natural question: can we define subtyping
relations between recursive types?

5

The Amber rules

First (briefly) mentioned in “Amber” in 1985 by Luca Cardelli

The most famous comprehensive study of recursive subtyping

“Subtyping recursive types”, in TOPLAS 1993, by Roberto
M. Amadio and Luca Cardelli

using an equi-recursive treatment of recursive types in
-calculus

λ

6

Tree view
μα . ⊤ → α μα . nat → α

→

→

→

→

⊤

⊤

⊤

→

→

→

→

nat

nat

nat

≤

≥

≥

≥

≤

≤

≤

⋮ ⋮

μα . nat → (μα . nat → α)

Unrolling to the limit, then subtying for the whole tree
7

Equi-recursive Amber rules

τ ≜ σ
Γ ⊢ τ ≤ σ

Amber-refl
Γ ⊢ τ ≤ ϕ Γ ⊢ ϕ ≤ σ

Γ ⊢ τ ≤ σ
Amber-trans

α ≤ β ∈ Γ
Γ ⊢ α ≤ β

Amber-assump
Γ, α ≤ β ⊢ τ ≤ σ

Γ ⊢ μα . τ ≤ μβ . σ
Amber-rec

E.g.

μα . nat → α ≜ μα . nat → nat → α
μα . nat → α ≜ μα . nat → (μα . nat → α)

8

Iso-recursive Amber rules

τ = σ
Γ ⊢ τ ≤ σ

Amber-refl Γ ⊢ τ ≤ ϕ Γ ⊢ ϕ ≤ σ
Γ ⊢ τ ≤ σ

Amber-trans

α ≤ β ∈ Γ
Γ ⊢ α ≤ β

Amber-assump
Γ, α ≤ β ⊢ τ ≤ σ

Γ ⊢ μα . τ ≤ μβ . σ
Amber-rec

9

Drawback of Iso-recursive Amber rules

Iso-recursive Amber rules are simple, fast, easy to implement, but:

Reflexivity cannot be eliminated.

Finding an algorithmic formulation: transitivity elimination is non-trivial.

Proofs of transitivity and other lemmas are hard.

Non-modularity of the proofs.

α ≤ β ⊢ β ≤ α(fail!) …
⊢ μα . α → ⊤ ≤ μβ . β → ⊤

10

Iso-recursive subtyping should

Fact 1: Any type should be a subtype of itself

Fact 2: Positive subtyping should be accepted

μα . α → α ≤ μα . α → α

μα . α → nat ≤ μα . α → nat

μα . nat → α ≤ μα . nat → α

μα . ⊤ → α ≤ μα . nat → α

11

Iso-recursive subtyping should

Fact 3: Many forms of negative subtyping should be rejected

Unfolding lemma:

 If then

μα . α → nat ≰ μα . α → ⊤

μα . σ ≤ μα . τ [α ↦ μα . σ] σ ≤ [α ↦ μα . τ] τ

12

Novel specification

We propose a new formal specification for iso-recursive
subtyping, called finite unfolding rule:

Γ, α ⊢ [α ↦ τ]n τ ≤ [α ↦ σ]n σ ∀n = 1,2,⋯, ∞
Γ ⊢ μα . τ ≤ μα . σ

S-rec

[α ↦ τ]n τ ≜ [α ↦ τ][α ↦ τ]⋯[α ↦ τ]

n−1

τwhere

13

Finite unfolding

Two recursive types are subtype if and only if

all their 𝑛-times finite unfoldings are subtypes

for any positive integer 𝑛

14

Tree view — for iso-recursive subtyping
μα . ⊤ → α μα . nat → α

→

α⊤

→

αnat

≤

≥ ≤

Rank 1:

15

μα . ⊤ → α μα . nat → α

→

→

α

⊤

⊤

→

→

α

nat

nat

≤

≥

≥

≤

≤

Rank 2:

Tree view — for iso-recursive subtyping

16

μα . ⊤ → α μα . nat → α

→

→

→

α

⊤

⊤

⊤

→

→

→

α

nat

nat

nat

≤

≥

≥

≥

≤

≤

≤

Rank 3:

Tree view — for iso-recursive subtyping

17

μα . ⊤ → α μα . nat → α

→

→

→

→

⊤

⊤

⊤

→

→

→

→

nat

nat

nat

≤

≥

≥

≥

≤

≤

≤

⋮ ⋮

Rank n:

Tree view — for iso-recursive subtyping

18

In a tree view

Equi-recursive:

Iso-recursive:

Unrolling to the limit, then subtying for all rank-n subtrees

Unrolling to the limit, then subtying for the whole tree

19

Tree model — comparison
μα . ⊤ → α μα . nat → α

→

→

→

→

⊤

⊤

⊤

→

→

→

→

nat

nat

nat

≤

≥

≥

≥

≤

≤

≤

⋮ ⋮

μα . nat → (μα . nat → α)

20

Advantages of new specification

Reflexivity is derivable.

Transitivity (and other lemmas) is easy to prove.

Enable modular proofs.

Are applicable to non-antisymmetric subtyping relations.

21

Algorithmic Iso-Recursive Subtyping

Our new specification is not algorithmic, because it
need to test infinite subtyping

Checking rank-n (n > 2) subtrees repeats checking
rank-1 and rank-2 subtrees

Double unfolding:
Γ, α ⊢ τ ≤ σ Γ, α ⊢ [α ↦ τ] τ ≤ [α ↦ σ] σ

Γ ⊢ μα . τ ≤ μα . σ
S-double

22

Nominal unfolding

We use an extra label to help compare corresponding subtree

We call it nominal unfolding:

The nominal unfolding is proven to have same expressiveness as double unfolding
in a simple setting (like Simply Typed Lambda Calculus).

The in the labels is fresh and is different from as the recursive variableα α

Γ, α ⊢ [α ↦ τα] τ ≤ [α ↦ σα] σ
Γ ⊢ μα . τ ≤ μα . σ

S-nominal

23

Weakly Positive Subtyping
We prove that our new specification has same expressiveness as iso-
recursive Amber rules

Directly equivalence proof is difficult

The key idea in this relation is to have a special rule for recursive types:

 means exists in positive(m is +) or negative(m is -) position in
the weakly positive subtyping.
α ∈m τ ≤ σ α

Γ, α ⊢ τ ≤+ σ α ∈+ τ ≤ σ
Γ ⊢ μα . τ ≤+ μα . σ

24

Weakly Positive Restriction

: we never find a contravariant subderivation
for recursive types except for:

Equal types, i.e. two recursive types are equal.

E.g.

The recursive type variable is a subtype of the top.

E.g.

α ∈+ τ ≤ σ α ≤ α

μα . α → nat ≤ μα . α → nat

μα . ⊤ → nat ≤ μα . α → nat

25

Equivalence of all formulations

Finite Unfolding
(The New Specification) Double Unfolding

Nominal Unfolding

Weakly Positive SubtypingAmber Rules

26

Follow-up work

With intersection types:

A Calculus with Recursive Types, Record Concatenation
and Subtyping (Zhou et al. 2022, APLAS 2022)

With bounded quantification:

Recursive Subtyping for All (Zhou et al. 2023, POPL
2023)

27

Thanks for listening!

