Medical Image Analysis

Medical Image Computing


Act Like a Radiologist: Towards Reliable Multi-view Correspondence Reasoning for Mammogram Mass Detection

Yuhang Liu#, Fandong Zhang#, Chaoqi Chen, Siwen Wang, Yizhou Wang, and Yizhou Yu
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), to appear

Mammogram mass detection is crucial for diagnosing and preventing the breast cancers in clinical practice. The complementary effect of multi-view mammogram images provides valuable information about the breast anatomical prior structure and is of great significance in digital mammography interpretation. However, unlike radiologists who can utilize the natural reasoning ability to identify masses based on multiple mammographic views, how to endow the existing object detection models with the capability of multi-view reasoning is vital for decision-making in clinical diagnosis but remains the boundary to explore. In this paper, we propose an Anatomy-aware Graph convolutional Network (AGN), which is tailored for mammogram mass detection and endows existing detection methods with multi-view reasoning ability. The proposed AGN consists of three steps. Firstly, we introduce a Bipartite Graph convolutional Network (BGN) to model the intrinsic geometric and semantic relations of ipsilateral views. Secondly, considering that the visual asymmetry of bilateral views is widely adopted in clinical practice to assist the diagnosis of breast lesions, we propose an Inception Graph convolutional Network (IGN) to model the structural similarities of bilateral views. Finally, based on the constructed graphs, the multi-view information is propagated through nodes methodically, which equips the features learned from the examined view with multi-view reasoning ability. Experiments on two standard benchmarks reveal that AGN significantly exceeds the state-of-the-art performance. Visualization results show that AGN provides interpretable visual cues for clinical diagnosis.



Preservational Learning Improves Self-supervised Medical Image Models by Reconstructing Diverse Contexts

Hong-Yu Zhou, Chixiang Lu, Sibei Yang, Xiaoguang Han, and Yizhou Yu
IEEE International Conference on Computer Vision (ICCV), 2021

Codes are available at https://github.com/Luchixiang/PCRL.

Preserving maximal information is one of principles of designing self-supervised learning methodologies. To reach this goal, contrastive learning adopts an implicit way which is contrasting image pairs. However, we believe it is not fully optimal to simply use the contrastive estimation for preservation. Moreover, it is necessary and complemental to introduce an explicit solution to preserve more information. From this perspective, we introduce Preservational Learning to reconstruct diverse image contexts in order to preserve more information in learned representations. Together with the contrastive loss, we present Preservational Contrastive Representation Learning (PCRL) for learning self-supervised medical representations. PCRL provides very competitive results under the pretraining-finetuning protocol, outperforming both self-supervised and supervised counterparts in 5 classification/segmentation tasks substantially.


SSMD: Semi-Supervised Medical Image Detection with Adaptive Consistency and Heterogeneous Perturbation

H-Y Zhou, C Wang, H Li, G Wang, S Zhang, W Li, and Y Yu
Medical Image Analysis (MIA), Vol 72, Article 102117, 2021

Semi-supervised classification and segmentation methods have been widely investigated in medical image analysis. Both approaches can improve the performance of fully-supervised methods with additional unlabeled data. However, as a fundamental task, semi-supervised object detection has not gained enough attention in the field of medical image analysis. In this paper, we propose a novel Semi-Supervised Medical image Detector (SSMD). The motivation behind SSMD is to provide free yet effective supervision for unlabeled data, by regularizing the predictions at each position to be consistent. To achieve the above idea, we develop a novel adaptive consistency cost function to regularize different components in the predictions. Moreover, we introduce heterogeneous perturbation strategies that work in both feature space and image space, so that the proposed detector is promising to produce powerful image representations and robust predictions. Extensive experimental results show that the proposed SSMD achieves the state-of-the-art performance at a wide range of settings. We also demonstrate the strength of each proposed module with comprehensive ablation studies.



M3Net: A Multi-Scale Multi-View Framework for Multi-Phase Pancreas Segmentation Based on Cross-Phase Non-Local Attention

T Qu, X Wang, C Fang, L Mao, J Li, P Li, J Qu, X Li, H Xue, Y Yu, and Z Jin
Medical Image Analysis (MIA), Vol 75, Article 102232, 2022

The complementation of arterial and venous phases visual information of CTs can help better distinguish the pancreas from its surrounding structures. However, the exploration of cross-phase contextual information is still under research in computer-aided pancreas segmentation. This paper presents MNet, a framework that integrates multi-scale multi-view information for multi-phase pancreas segmentation. The core of M3Net is built upon a dual-path network in which individual branches are set up for two phases. Cross-phase interactive connections bridging the two branches are introduced to interleave and integrate dual-phase complementary visual information. Besides, we further devise two types of non-local attention modules to enhance the high-level feature representation across phases. First, we design a location attention module to generate cross-phase reliable feature correlations to suppress the misalignment regions. Second, the depth-wise attention module is used to capture the channel dependencies and then strengthen feature representations. The experiment data consists of 224 internal CTs (106 normal and 118 abnormal) with 1 mm slice thickness, and 66 external CTs (29 normal and 37 abnormal) with 5 mm slice thickness. We achieve new state-of-the-art performance with average DSC of 91.19% on internal data, and promising result with average DSC of 86.34% on external data.



A Structure-Aware Relation Network for Thoracic Diseases Detection and Segmentation

Jie Lian, Jingyu Liu, Shu Zhang, Kai Gao, Xiaoqing Liu, Dingwen Zhang, and Yizhou Yu
IEEE Transactions on Medical Imaging (TMI), Vol 40, No 8, 2021

Instance level detection and segmentation of thoracic diseases or abnormalities are crucial for automatic diagnosis in chest X-ray images. Leveraging on constant structure and disease relations extracted from domain knowledge, we propose a structure-aware relation network (SAR-Net extending Mask R-CNN. The SAR-Net consists of three relation modules: 1. the anatomical structure relation module encoding spatial relations between diseases and anatomical parts. 2. the contextual relation module aggregating clues based on query-key pair of disease RoI and lung fields. 3. the disease relation module propagating co-occurrence and causal relations into disease proposals. Towards making a practical system, we also provide ChestX-Det, a chest X-Ray dataset with instance-level annotations (boxes and masks). ChestX-Det is a subset of the public dataset NIH ChestX-ray14. It contains ~3500 images of 13 common disease categories labeled by three board-certified radiologists. We evaluate our SAR-Net on it and another dataset DR-Private. Experimental results show that it can enhance the strong baseline of Mask R-CNN with significant improvements.



Contralaterally Enhanced Networks for Thoracic Disease Detection

Gangming Zhao#, Chaowei Fang#, Guanbin Li, Licheng Jiao, and Yizhou Yu
IEEE Transactions on Medical Imaging (TMI), Vol 40, No 9, 2021

Identifying and locating diseases in chest X-rays are very challenging, due to the low visual contrast between normal and abnormal regions, and distortions caused by other overlapping tissues. An interesting phenomenon is that there exist many similar structures in the left and right parts of the chest, such as ribs, lung fields and bronchial tubes. This kind of similarities can be used to identify diseases in chest X-rays, according to the experience of broad-certificated radiologists. Aimed at improving the performance of existing detection methods, we propose a deep end-to-end module to exploit the contralateral context information for enhancing feature representations of disease proposals. First of all, under the guidance of the spine line, the spatial transformer network is employed to extract local contralateral patches, which can provide valuable context information for disease proposals. Then, we build up a specific module, based on both additive and subtractive operations, to fuse the features of the disease proposal and the contralateral patch. Our method can be integrated into both fully and weakly supervised disease detection frameworks. It achieves 33.17 AP50 on a carefully annotated chest X-ray dataset which contains 31,000 images. Experiments on the NIH chest X-ray dataset indicate that our method achieves state-of-the-art performance in weakly-supervised disease localization.



Bilateral Asymmetry Guided Counterfactual Generating Network for Mammogram Classification

Chu-ran Wang, Jing Li, Fandong Zhang, Xinwei Sun, Hao Dong, Yizhou Yu, and Yizhou Wang
IEEE Transactions on Image Processing (TIP), Vol 30, 2021

Mammogram benign or malignant classification with only image-level labels is challenging due to the absence of lesion annotations. Motivated by the symmetric prior that the lesions on one side of breasts rarely appear in the corresponding areas on the other side, given a diseased image, we can explore a counterfactual problem that how would the features have behaved if there were no lesions in the image, so as to identify the lesion areas. We derive a new theoretical result for counterfactual generation based on the symmetric prior. By building a causal model that entails such a prior for bilateral images, we obtain two optimization goals for counterfactual generation, which can be accomplished via our newly proposed counterfactual generative network. Our proposed model is mainly composed of Generative Adversarial Network and a prediction feedback mechanism. They are optimized jointly and prompt each other. Specifically, the former can further improve the classification performance by generating counterfactual features to calculate lesion areas. On the other hand, the latter helps counterfactual generation by the supervision of classification loss. The utility of our method and the effectiveness of each module in our model can be verified by state-of-the-art performance on INBreast and an in-house dataset and ablation studies.



Multicenter cohort study demonstrates more consolidation in upper lungs on initial CT increases the risk of adverse clinical outcome in COVID-19 patients

Q Yu#, Y Wang#, S Huang, S Liu, Z Zhou, S Zhang, Z Zhao, Y Yu, Y Yang, and S Ju
Theranostics, Vol 10, No 12, 2020

Chest computed tomography (CT) has been used for the coronavirus disease 2019 (COVID-19) monitoring. However, the imaging risk factors for poor clinical outcomes remain unclear. In this study, we aimed to assess the imaging characteristics and risk factors associated with adverse composite endpoints in patients with COVID-19 pneumonia. This retrospective cohort study enrolled patients with laboratory-confirmed COVID-19 from 24 designated hospitals in Jiangsu province, China, between 10 January and 18 February 2020. Clinical and initial CT findings at admission were extracted from medical records. Patients aged < 18 years or without available clinical or CT records were excluded. The composite endpoints were admission to ICU, acute respiratory failure occurrence, or shock during hospitalization. The volume, density, and location of lesions, including ground-glass opacity (GGO) and consolidation, were quantitatively analyzed in each patient. Multivariable logistic regression models were used to identify the risk factors among age and CT parameters associated with the composite endpoints. Conclusion: There was an association of older age and larger consolidation in upper lungs on admission with higher odds of poor outcomes in patients with COVID-19.