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AISTRACT 

\Vlrcn neural networks are used to solve a clustering prob- 
lci i i  , there is often no precise measure. Uut in  such fields 
as pattern recognition ,a clustering problem is often with 
an objective lunction. In this paper, MFT neural nets are 
taken to tackle such a problem. Even when tlic number 01 
rlustcrs is unknown, an unsupervised neural nctwork wi th 
gradient descent can evaluate it. The experimental results 
is sxisfactory. 

INTRODUCTION 

Clustering is an important problem i n  many fields, such as 
nstrophysics, image analysis, taxonomy, etc. Ilence, 
many techniques have been developed to tncklc this prob- 
lem. I n  recent years, techniques inspired by neurnl nct- 

have also been added to the r ~ ~ r t o r y ~ ' ~ ~ ~ ] ~ ' ] ~ ' ~ ~ " ~ .  
Kolioncn's ['IscIf-organizing maps have k e n  uscd l o  par- 
tition the  feature space into distinct regions. In  thc multi- 
Iiiyrrcd architecture['] the neural net can be Iriiincd to par- 
t i t ion the feature space by  repeated showings o l  a sniiiple 
h t : i  set  to the network. Clustering can also bc formulated 
nwrr prcciscly in  terms of the I lopf ic ld mcrlcl of neural 
I I C I S ~ ~ I [ , I .  

I n  this paper, we forintilate the clustering probleiii In  
terms of the mean field theory (MITT) neural nets['] and 
invrstigate its performance. A n  unsupervised neural net- 
work['] is also used to evaluate the number of clusters. 

51EI'IlODS A N D  EXPERIMENTAL RESULTS 

l%y clusrcring we  mean partitioning a set 01 N p7tterns into 
K I given or not given) clusters in  such a way that thaw in  
i i  givcn cluster are more similar to each otlicr than the 
rr\t. As is often done, whcn K is given, w e  let our critc- 
rion lo r  best solution of the problem bc the minimum 
-.qiinre-crror. That is representing the patterns by  d-di- 
iiicnsional vector (r, l i= 1 , ... ,NJ , the best solution is thc 

one minimizing A"= X(r,~pi-Rp)lwith respect to (R,lp 

= 1 . ... ,K}. IIere cluster p contains the sutnct of the vec- 

tors (r, 'p') and its centroid is given by R.= I: ri'*', where 

N, i s  the nunibcr of patterns in  the cliister. 

H 

1-1 

N, 

I -  I 

I t  can be easily shown that 
Theorem 1 Clustering problcni is indrpcndcnt 01 

rrnnslntional , scaling and rotational transforinntion. 

I, Clustering with Given K 
MFT networks are very suihble l o r  solving optimization 
problenis nnd the clustering problem with given K can be 
cnst i n  tcrms of an energy function of MFT networks. 
Thus, mcnn field nnncaling Gin bc used lo  obtain the opti- 
mal or a very good solution. Since one pattern can belong 
to only one cluster , multi-state neurons with K states are 
used In  our scheme. 

According 10 the abovc criterion, the cmt tcrni i n  the 
energy function can bc writtcn as 

N 

where R, = (ri - RPI1 and R, = X V,vr4. The constraint 

p i r t  of thc cncrg) function can be expressed as 
1 - 1  

This term turns out iiiiportiint lor  tlic nicnn field dynam- 
icc. 11: drivrs cvery ncuron to have only one component on 
(closc to I ) .  I n  tlic cnsc of iiiulti-state neuron, i t  can be 
shown that this tcrni is  rquivnient to 

Y 

2' V? ( 3 )  
i- I 

I t  is simplcr to Iiiiplcinent ( 3 1 by arinlog VISI .  The ener- 
gy lunction can thcn be written as 

M I T  cquiition can bc \vrittrn as 

I n  M R '  nrlworks, ( riindoiii ) scqucntial updating is pre- 
ferred. Ac the network cvloves, R.'s become gcnerally 
smallcr iind the cost tcrni bccoincs lcsc effective in  driving 
the nrtwurk toward g w l  solutions. So parameter A is ad- 
justed during thc cvoliition such that AR... = C N  (a con- 
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1 
\ t : i ~ i t ) ,  where R,", = Ei: Ri.. nccausc Ihc wciglits arc  

IIVI f ixed,  when T decreases to zero,  the newwork may 
nut converge to a good solution and  sometimes may oscil- 
I;1te. 

1x1 h4v, 5 llfflrv;,, p ,  SrllhYfg h f l ' , ,  , 
hll) ,  = w i n  (bfV, - V.,) nnd .F = { j l h l i ~ ,  > 0).  

, l . t # I  

Theorem 2 At  a fixed T ,  i f  the paramctcrs Gin be 
iid~usted, during the evolution, to satisfy the following 
conditions where b is a constant grmtcr  thnt one ,  thc 
n&ve M I T  network converges to a stable solution. 

K 
2 
3 

(7) 
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;I1111 

1 

5 

G 

fm i B s, II # pa. (8 )  

ILS proof is unimportant and is left out in this pnpcr 
The  above theorem only ensures convergence. I t  does 

i w t  ensure goodness of the final solution. So i l  h n s  little 
pr;icticnl value. In order to obtain a good solution, we 
adopt another M I T  network as a preprocessor. This  prc- 
pocessor is similar to optimal graph partition network. All 
prittcrn vectors can bc considered as vertices i n  a graph. 
I k iwecn  each pair of  vertices ri and rl,  there is nn MJge 
\ \ i t l i  weight ( r ,  - rj)'. Our objective is to partilion the 
vcrtices into severnl subsets vs,( 1 = 1 , ... , K ) arid mini- 

i i i izc the  valuc of P= Z Z (ri-r,)'. The energy func- 

tinn can bc written a s  

K 

1 - 1  i.j€vs, 

C "  1 I) N 

2,-, j - 1  2 i - J  
E = - Z  L : T , , V , . V , - -  ZL'i (9) 
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300 ,100 GOO 1500 1600 

\ \ h i r e  hi= 1 
-0 

\\'r can see that 

M I T  cqunlions can bc cxprrssed as 

v, = F x ( C / ; )  (IO) 

, T 
= - CL:(CT,,  - m,,)v,J -L ( 1  I )  

when i = j  
otherwise. 

Thcorcni 3 To the above two obpctivc funclion\ X'and 
F.  i f  the se1 of patterns a re  equally partitioned in both o p  
1inia1 solutions, X' and  F a rc  equivalent. 

In the preprocessor, all weighls arc  fixed. 11 can be 
rwily driven to get a good soluLion. At high tcmpcra- 
tures. the updating follows equation (IO) and ( I I ) and 
the pnttcrns a re  coarsely partitioned, while at low tcmpcr- 
atiirrs. the updating is switchcd to follow cquation (5) 
:irid ( 6  > and  the partition is refined. This  mechanism can 
cffcctivcly prevent the network from oscillation and gel 
tlir opliirial or at least a very good solution at  last. 

Except Ihe parameters C N ,  U .  C and  D .  thcre are  
swera l  others, the dimensionality d of  the pallcrns, the 
initial temperature TO, the final Iemperaturc T I ,  thc num- 

ber of updating epochs A T  and the switching time ST. In 
cxpcrimenls, we find the cocfficient n plays a significanl 
role. I f  nli other parameters are  f ixed,  there exists a n  in- 
terval [ I J , , l % , ]  for  U. When I3<n0, the network tends to 
oscillate. When  n > n , ,  thc network always gel sIuck in 
local minima. Furthermore,  there exists 11' E [Bo,l31] 
which cnn drive the nelw'ork to gel the optimal solution 
and X ' a n  bc considered as a monotonous function of B i n  
[llo,13.] and  [ l1 .  , I s , ] .  According lo this f ac t ,  we can 
dcrterniinc the pnrainctcrs C N ,  C ,  D, d ,  To, T I ,  AT,  
ST, ll0 and 13, in advance and  the interval [no,U,] is dis- 
cretized to points bo. b l  , ... ,bn.  Whcn input patterns and 
the number of  clusters arc  given.  we make a binary 
scarch for  the optimal discrelc value b ' .  The  network 
runs a t  most three times in each step of the search. Once 
b '  is f o u n d ,  t l ic optimnl or a very good solution is found 
at  the s inic  lime. This proccdurc is called parametric opli- 
niimtion. 

In the simc cxpcrinicnt which was done i n  [ I ] ,  we 
hnvc determined thc following vnlues for thc parameters: 
CN = 1800. C 3 0 ,  D = 90,llo= 3 0 0 ,  [ I , =  21 00,  To= 
50, hT='JO. ST=25. I n a l l c n s c s , o u r  me thodneedsa t  
mosl 15 runs of tlic network and  each run needs only 50 
epochs. The t ~ t ~ l  time required on sparc station 1 was 135 
sceonds. \Vhiic the method introduced in [ 1 ] needs a n  
average of ,4263 Iterations. the total time required on 
M P P  array machine was 163 seconds. The  corresponding 
CPU time on a VAX 8800 was 25066s. I lere ,  we should 
note thnt spnrc station i is a gencral-purpow computer and 
M P P  is a pnralicl processor. So our  method is very effi- 
cicnt. The method in [ I ]  w i s h u  lo meet with an opportu- 
nity to get a g q l  solution. So il is based on many trials 
and no one k n o w  whrn (he opportunity occurs. Decause 
the valucs o f  all pnrameters arc  fixed during the whole 
process. i t  is probible that a good sohition will never be 
obtnincd with inipropcr p;irninctric values. llowcver , our 
parnmclric optimizing procrdure makes a more deliberate 
wnrcli. Furthermore,  M F T  networks can also be imple- 
nicnlcd enrily by VISI .  

The following mblcs show tl ic vaiucs of b '  and A" at 
differenl noiw levels in thc cxpcrimenr5 whcn the final so- 
lutions are  foiind. 

Table I Valurs of b' 111 Different Noisc I.cvcis 

1 I 
7 1 300 1 ,400 I G O O  1 I400 I 1.100 

8 I 300 I ,400 I 600 I 1300 I 1300 

2. Clustering with Unkno\r-n K 
I f  Ihc nuriilrr of clusters K is no1 givcn i n  advance,  wc 
wishes lo cvaliiale i t  with a n  unsupcrviscd network. Nei- 
ther Knonen's map nor compclilivc learning can lake on 
this task. Hcrc.  w c  usc a nclwork introduced i n  [3 ]  
where it  is uwd for  dirncnsionalily reduction. Consider a 
neuron with input vcctor x = ( x ,  , ... , x, 1 ,  synaptic 
weigh1 vcctor 111 ( in l  , ... , ind ) . both in Ra , and  acitvity c 

Tl ic  loss function can 
be expressed ns 
- - x  * m . .  Ict b = E [ ( x  * ml ' ] .  
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MILI 
mi 0% 10% 25% 50% 

K 
75% 

2 
3 
4 

5 

L,(x) =- "[(x * nr)' - g ( x  * 111)2] ( 1 2 )  3 

The risk (cxpectcd value of the loss) is given by 

R. =- u(E[ (x  m)'] - k)  ( 1 3 )  

Since the risk is continuously diffcrcntiablc, its minimiza- 
tion cm be achieved via a gradicnt dcsccnt mc tha l  with 
respect to m , namely 

3 

a 
III,(L + I )  = I I I , ( ~ )  - - R. , i  = I , . . . , d  ( 1 4 )  

all, 

I n  terms of theorem I ,  wc translatc the input pat- 
terns to satisfy E ( x  * mo) = 0 where mo is ~c initial 
\\eight vcctor. Thus  the distribution will not be concen- 
trared at only one side of g. L ( x )  has  a locsl maximum 

nt x m = -Q and a local minimum a t  x * m = 0. 11 Is 

monotonously dccrcasing in [-L, 4-00). I f  thc patterns 

innkc up  several cluslcrs, it is of little probabllity thal x 
2 

I V  falls in the vicinity of --4. when the unsupcrviscd 
3 

lcnrning finishes. This  unsupcrviscd neuron can find the 
gaps bctwccn clusters. So it  can be used for  evaluation of 
K .  A S  in [3], we can usc a nonlinear neuron lnslcad of 
the above linear onc in order to a d d r e n  the oversensilivily 
to outliers. 

Thc following is the algorithm CUK for clustering 
with unknown K. 
A .  Dctcrniinc a n  interval [u . .u , ] ,whcre iioE CO,-Q]. 

11, E [LfL,g]. Dcterniinc thrcshold t ((20) and the 

minimum number of patterns M P  in a cluster. Define L =  
U - U O ,  m x = m a x ( x  * m) and  m n = m i n ( x  * m ) l  
II . S e t s o = ( r l ~ i = I , . . . , N )  and  p u s h ~ ~ i n t o s u l c k  STI 
r ' . S e r c = O ,  
D. While ST not empty do 

2 
3 

2 
3 

2 
3 

3 

bcgin 
pop a set q f rom STI 
if 1 %  I>MP thcn 
begin 

adjust m by  the unsupcrvised learning rule in 
( 1 4 ) i  

sct L= ( x  l u o d x  - m<u,, x Es) I 
ct1= Ibl I 

vI=uI  + L l  
ct ,=oi 

vo=u1 I 

I 

0.04333 0.05547 0.06649 0.08698 0. 09476 

0.01274 0.01767 0.02715 0.03178 0.03636 
0.00614 0.01023 0.01456 0.01167 0.02062 

0.0021s 0.00474 o.01024 O . O I O R I  0 .01419  

while v,<mx do 
begin 

s , = { x l v o < x  n r < v l , x E s , ) i  
i f  Is, 1 >ctz thcn c t l=  Is, I I 
v ,=v,+L/2 1 
V I  = v I + 1./2 1 

end 
vo= 110- L 1 

v , = u 0 1  
cro=O& 
while v,>mn do 
bcgin 

s , = ( x l v o d x  * n i < v , , x E s ) i  
i f  Is,I>cto thcn cto= Is11 i 
vo= vo- L/2 I 
VI =v,-I1,/2r 

cnd 

6 
7 

II 

begin 
s1 is partitioned into subsets S I  and  S Z ,  

whcrc s l = { x l x E s , , x  * m<-%) , s ,=  

S. -- E, 1 

2 
3 

s, and sI arc  piishcd into STI 
end 
clrc c.-c+l 

end 
cnd 

begin 
E. for K = 2c to 2 step - 1 do 

run the previous M I T  network 1 

i f  the solution partition the set of patterns in- 
IO K clusters and thcrc is a gap between cach pair 
of cliirlcrs, then break 1 

end 
I n  cxpcrimcriU, w c  generate clusters with within- 

cluster Gaussian distributions and  riin this algorithm 50 
timcs. The pcrccntagc of corrccl evaluation and good clus- 
tering is over 8 0 ° 4 .  

CONCLUSIONS 

In this papcr. M I T  neural nclworks and  unsupervised 
networks arc  incorporated Io solve the clustcring problem. 
This mcthod is promising. In onc of rhc adopted MFT nct- 
works. the weights a rc  changing srith tinic. Although the 
ewpcrinicnuil results arc  good, there is f cw theoretical re- 
sulk ribout corivcrgcncc of this kind of networks. This  
topic nerds further investigation. 
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