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ABSTRACT

When neural networks are used to solve a clustering prob-
lem, there is often no precise measure. But in such ficlds
as pattern recognition,a clustering problem is often with
an objective function. In this paper, MFT ncural nets are
taken to tackle such a problem. Even when the number of
clusters is unknown, an unsupervised neural network with
gradient descent can evaluate it. The experimental results
is satisfactory.

INTRODUCTION

Clustering is an important problem in many fields, such as
astrophysics, image analysis, taxonomy, ectc. Hence,
many techniques have been developed to tackle this prob-
lem. 1In recent years, techniques inspired by neural net-
works have also been added to the repertory!I(2S)8(4],
Kohonen's [¥)self-organizing maps have been used to par-
tition the feature space into distinct regions. In the multi-
layered architecture(®) the neural net can be trained to par-
tition the feature space by repeated showings of a sample
data set to the network. Clustering can also be formulated
moare precisely in terms of the llopficld model of neural
nets(102),

In this paper, we formulate the clustering problem in
terms of the mean field theory (MFT) ncural nets{!) and
investigate its performance. An unsupervised ncural net-
work(*) is also used to evaluate the number of clusters.

METHODS AND EXPERIMENTAL RESULTS

By clustering we mean partitioning a set of N patterns into

K (given or not given) clusters in such a way that those in

a given cluster are more similar to cach other than the

rest. As is often done, when K is given, we let our crite-

rion for best solution of the problem be the minimum

squarc-crror. That is representing the patterns by d-di-

mensional vector {r]i=1,--+,N}, the best solution is the
N

one minimizing X? == T (r,” —R,)? with respect to {R, |p
=1 N

=1.-,K}. Here cluster p contains the subsct of the vec-

N

tors {r,'»} and its centroid is given by R,= ¥ r;'™, where
=1

N, is the number of patterns in the cluster.

It can be easily shown-that

Theorem 1 Clustering problem is independent of
translational, scaling and rotational trans{ormation.

1. Clustering with Given K
MFT networks are very suitable [or solving optimization
problems and the clustering problem with given K can be
cast in terms of an energy function of MFT nectworks.
Thus, mean field annecaling can be used to obtain the opti-
mal or a very good solution. Since one pattern can belong
to only one cluster, multi-stale neurons with K states are
used in our scheme.

According to the above criterion, the cost term in the
energy function can be written as

K N
L ERY ¢

pmlim1

N
where R, = (ri = R,)? and R,= £ V,r,. The constraint
=1

part of the energy function can be expressed as
¥
LI S L (2)

This term turns out important for the mean field dynam-
ics. It drives every neuron to have only one component on
(close to 1), In the case of multi-state neuron, it can be
shown that this term is equivalent to

v 3

i=1

It is simpler to implement ¢(3) by analog VLSI. The ener-
gy function can then be written as

X N N
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MFET equation can be wrilten as

U,
Vi PUs) where PRqU) = <o (5)
ele
9 1 Vi
U, = . T - (AR;.*B)—,IT (6)

In MFT nctworks, (random) sequential updating is pre-
ferred. As the network cevioves, Ru's become gencrally
smaller and the cost term becomes less effective in driving
the network toward good solutions. So parameter A is ad-
justed during the evolution such that AR.,,=CN (a con-
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stant), where R,z = —KI_N: Ri,. Because the weights are
1.

not fixed, when T decreases to zero, the newwork may
not converge to a good solution and sometimes may oseil-
late.

Let MV, = mazVy,, p satisfy V., = M,
’
MD: = min (MV; — V) and 5 = (jllill), > 0}.

e )

Theorem 2 At a fixed T, if the paramcters can be

adjusted, during the evolution, to satisfy the following
conditions where b is a constant greater that one, the
above MFT network converges to a stable solution.

B = maz{maz[ (AR, MV, — Ryl%)
i€s

Ay
4+ T —"':.”‘)/(Mr; -] (n
)
and
v,
ARG MV, — RYV.) + T ln '—’f:—— < 0.
Ll
for i & s, ¢ F p. (€:3]

Its proof is unimportant and is left out in this paper
The above theorem only ensures convergence. It does
nut ensure goodness of the final solution. So it has little
practical value. In order to obtain a good solution, we
adopt another MFT network as a preprocessor. This pre-
pocessor is similar to optimal graph partition nctwork. All
pattern vectors can be considered as vertices in a graph.
Between ecach pair of vertices rj and r;, there is an edge
with weight (r; —rj)?. Our objective is to partition the
vertices into several subsets vs,(1=1, -+, K} and mini-
X
mize the value of F= £ £ (ri—r)%. The cnergy func-
v 1.1 1€ VS,
tion can be written as

E =

[

N N N
L LTy ¥, — 5 L ¥ 9
-l jei i

where Ty = (rj—r;)’. MFT cquations can be expressed as

V, = Fy(U) (1]

Uy =— % % = — [T, — D)V, F aD
whére =1 when i=j
=0 otherwise.

We can sce that

Theorem 3 To the above two objective functions X?and
F. if the sct of patterns are equally partitioned in both op-
timal solutions, X?and F are cquivalent.

In the preprocessor, all weights are fixed. 1t can be
casily driven to get a good solution. At high tempera-
tures, the updating follows cquation (10) and (11) and
the paticrns are coarsely partitioned, whlle at low temper-
atures, the updating is switched to foliow ecquation (5)
and (6) and the partition is refined. This mechanism can
cffectively prevent the network from oscillation and get
the optimal or at lcast a very good solution at last.

Except the parameters CN, B, C and D, there are
several others; the dimensfonality d of the palterns, the
initial temperature Tg, the final temperature T, the num-

ber of updating epochs AT and the switching time ST. In
experiments, we find the coefficient B plays a significant
role. 1f all other parameters arc fixed, there exists an in-
terval [Bo,B,] for B. When B<(B,, the network tends to
oscillate. When B>>D,, the network always get stuek in
local minima. Furthermore, there exists B* € [Bo.B.]
which can drive the network to get the optimal solution
and X2Zcan be considered as a monotonous function of B in
[Bs,B°] and [B*,B,]. According to this fact, we can
dertermine the parameters CN, C, D, d, Te, T\, AT,
ST, B and B, in advance and the interval [ B,,B,] is dis-
cretized to points be, byt ,ba. When input patterns and
the number of clusters are given, we make a binary
scarch for the optimal discrete value b*. The network
runs at most three times in cach step of the search. Once
b* is found, the optimal or a very good solution is found
at the same time. This procedure is called parametric opti-
mization.

In the same cxperiment which was done in [1], we
have determined the following values for the parameters,
CN=1800, C=30,D=190,B,=300,B,=2100, To=
50, AT=150, ST=125. In all cases, our method needs at
most 15 runs of the network and each run needs only 50
epochs. The total time required on sparc station 1 was 135
sceonds. While the method introduced in [1] nceds an
average of 4263 iterations, the total time required on
MPP array machinc was 163 seconds. The corresponding
CPU time on a VAX 8800 was 25066s. llcre, we should
note that sparc station | is a general-purpose computet and
MPP is a parallel processor. So our method is very effi-
cient. The method in [ 1] wishes to meet with an opportu-
nity to get a good solution. So it is based on many trials
and no one knows when the opportunity occurs. Because
the values of all parameters are fixed during the whole
process, il js probable that a good solution will never be
obtained with improper parametric values. Iowever, our
parametric optimizing procedure makes a more deliberate
scarch. Furthermore, MFT networks can also be imple-
mented easity by VISI.

The following tables show the values of b° and X7 at
different noisc levels in the experiments when the final so-
lutions arc found.

Table 1 Values of b° at Different Noise Levels
no1sd

. g 0% | 10% 25% 50% |75%
2 900 1000 1000 1900 | 2000
3 500 700 900 1800 | 1900
4 400 600 700 1700 1800
5 300 100 600 1600 1700
6 300 100 GO0 1500 1600
7 300 400 600 1400 | 1400
8 300 400 600 1300 1390

2. Clustering with Unknown K

If the number of clusters K is not given in advance, we
wishes to evaluate it with an unsupervised network. Nei-
ther Knonen's map nor competilive lcarning can take on
this task. Here, we use a network introduced in [3]
where it is used for dimensionality reduction. Consider a
ncuron with input vector x = (x;, -, Xq )., synaptic
weight vector m(my. - mgs), both in RY, and acitvily ¢
=x+m,. let &, =E[(x + m)?]. The loss function can
be expressed as
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Table 2 Values of X? of Final Solutions

noisd
raid 0% 10% 25% 50% 5%
K

2 0. 04333 | 0.05547 | 0.06649 | 0.08698 | 0.09476
3 0.01274 | 0.01767 | 0.02735 | 0.03178 | 0.03636
4 0.00614 | 0.01023 | 0. 01456 0.01767 | 0.02062
H 0.00218 | 0.00474 | 0.01024 0. 01081 0.01419
1] 0.00169 | 0. 00388 | 0. 00607 0.00852 | 0. 00303
7 0.00140 | 0. 00262 | 0.00410 | 0.00540 | 0.00643
8 0.00112 | 0.00218 | 0.00300 | 0.00413 | 0. 00500

L.(x) =——l§—[(x m) — 8. (x +m)?]  (12)
The risk (expected value of the loss) is given by
R =— 2 (E[(x * m)*] — &) a3

Since the risk is continuously diffcrentiable, its minimiza-
tion can be achicved via a gradient descent method with
respect to m, namely

m(L 4 1) = m{) — 2 Rayi=1,:+,d (14)
am, .

In terms of theorem 1, we translate the input pat-
terns to satisfy E(x « my) = 0 where mq is the initial
weight vector. Thus the distribution will not be concen-
trated at only one side of 8,. L.(x) has a local maximum

at x » m=—§—6.,. and a local minimum at x » m=0. It s

monotonously decreasing in [%—&. y +o00). If the patterns

make up several clusters, it is of little probabliity that x «
2
3
learning finishes. This unsupervised necuron can find the
gaps between clusters. So it can be used for evaluation of
K. Asin [3], we can usc a nonlinear ncuron instead of
the above lincar one in order to address the oversensilivity
to outliers.

The following is the algerithm CUK for clustering
with unknown K.

w falls in the vicinity of 8, when the unsupervised

A. Determine an interval [ug,u, ], where u, € [0.%(\.3.

u, € [%&,,6,..]. Determine threshold t (¢220) and the

minimum number of patterns MP in a cluster. Define L=
U —up, mx=max{x «+ m) and mn=min(x » m);
B.Set so= {r,}i=1,-+,N} and push s, into stack ST,
C.Sete=0,
D. While ST not empty do
begin
pop a set s from ST,
if |s,|>==MP then

begin
adjust m by the unsupervised lcarning tule in
(14);
set sm=={x|uo{x * mKuy,xE 5}y
ch= sul;
Ve=1U,}
vi==u,+L;
et, =0,

while vo<Imx do

begin
s,= {x | vesix » m=v, , xE s}y
if s, |>ct; then cty=[s,|;

ve=vet+L/2;
vi=v,+L/2;
end
vo=us—L,
Vy=Ugt
cto=0;
while vi>mn do
begin

5= {x|veCx « MLy, xE s}y
if |si|>>cto then cto=Is/];

ve=vo—L/2;
vi=v,—L/2;
end
clp—Cly cty—cly
if >t and >t then
Js,j * L Js] L
begin

s, is partitioned into subscts s, and sz,

where ;= {x|[xEs5,,x * mg%&m),s,=

Sy 8y g
s, and s, are pushed into ST
end
else c—c+1
end
end
E.for K=2c to 2 step — 1 do
begin
run the previous MFT network
if the solution partition the set of patterns in-
to K clusters and there is a gap between ecach pair
of clusters, then break
end

In experiments, we generate clusters with within-
cluster Gaussian distributions and run this algorithm 50
times. The percentage of correct evaluation and good clus-
tering is over 80%.

CONCLUSIONS

In this paper, MFT necural nctworks and unsupervised
networks are incorporated to solve the clustering problem.
This method s prontising. In onc of the adopted MFT net-
works, the weights are changing with time. Although the
experimental results are good, there is few theoretical re-
sults nbout convergence of this kind of networks. This
topic needs further investigation.
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