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Abstract—Recent advances in laser scanning technology have made it possible to faithfully scan a real object with tiny geometric

details, such as pores and wrinkles. However, a faithful digital model should not only capture static details of the real counterpart but

also be able to reproduce the deformed versions of such details. In this paper, we develop a data-driven model that has two

components; the first accommodates smooth large-scale deformations and the second captures high-resolution details. Large-scale

deformations are based on a nonlinear mapping between sparse control points and bone transformations. A global mapping, however,

would fail to synthesize realistic geometries from sparse examples, for highly deformable models with a large range of motion. The key

is to train a collection of mappings defined over regions locally in both the geometry and the pose space. Deformable fine-scale details

are generated from a second nonlinear mapping between the control points and per-vertex displacements. We apply our modeling

scheme to scanned human hand models, scanned face models, face models reconstructed from multiview video sequences, and

manually constructed dinosaur models. Experiments show that our deformation models, learned from extremely sparse training data,

are effective and robust in synthesizing highly deformable models with rich fine features, for keyframe animation as well as

performance-driven animation. We also compare our results with those obtained by alternative techniques.

Index Terms—Detail-preserving deformation, controllable skinning, learning from sparse examples, CCA regression.

Ç

1 INTRODUCTION

TECHNOLOGY for laser range scanning has been significantly
improved over the last decade in terms of both precision

and speed. It has become possible to faithfully scan a real
object with tiny geometric details, such as pores and wrinkles.
However, many real objects including most natural organ-
isms deform. A faithful digital model should not only capture
static details of the real counterpart but also reproduce the
deformed versions of such details. Data-driven methods are
well suited for this purpose for two reasons. First, it would be
extremely expensive to physically simulate deformations of
such high-resolution details. Second, fine-scale deformations
of different objects follow different styles. A data-driven
method incorporates the unique characteristics of different
types of deformation.

There exist two major challenges in building high-
resolution data-driven deformation models. First, only a
limited amount of training data is typically available due to
the amount of time and effort required to scan high-
resolution details. Training data-driven models with sparse
examples can easily result in inaccurate models that produce
poor predictions. Second, from an animation perspective, we
would like to generate realistic deformations from a sparse
set of markers. This calls for a data-driven model that can
correlate low-dimensional control signals with high-dimen-
sional deformation details.

We propose a robust deformation framework, as shown
in Fig. 1, to tackle the above challenges. Our data-driven
model has two components; the first accommodates smooth
large-scale deformations and the second captures high-
resolution details. Large-scale deformations are based on
linear blend skinning (LBS) and nonlinear mappings
between sparse control points and bone transformations,
as shown in Fig. 1b. To alleviate poor fitting caused by
training with sparse nonlinear data, we train a collection of
local mappings defined over the manifold of seen example
poses. A pose in this paper refers to a specific shape of a
surface model or a specific configuration of its control
points. Each of the local mappings takes one of the training
poses as its reference pose, and its nearby poses as training
inputs. The deformation associated with a novel pose is
then predicted using a weighted mixture of local mappings
defined for the pose closest to the target pose. This training
process may, however, mistakenly learn false coupling
among distant control points from sparse training examples
even when constrained within local pose subspaces. We
address this problem by learning correlations only between
control points and deformation regions geometrically
located nearby.
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High-resolution deformable details are modeled in a
separate training pass as shown in Fig. 1c, which learns a
per-vertex nonlinear mapping between control points and
per-vertex displacements. Several choices exist in terms of
input signals for displacement modeling. We have con-
firmed that a direct mapping between the control points
and the displacements is more effective than a cascaded
mapping where large-scale deformation predictions are
used to drive the deformation of details. We prefer 1D
displacements along vertex normals to 3D displacement
vectors to increase the robustness to noise and reduce the
memory requirement.

Our deformation modeling scheme is first proposed in
[1]. However, only scanned human hand models are tested
there. In this paper, we further test the framework with
scanned face models, face models reconstructed from video,
and artificial data sets. To the best of our knowledge, few
previous works test on both human hands and human
faces. Human hands have large degrees of freedom (DoFs),
large ranges of motion, and highly deformable wrinkles.
Human faces pose a stringent requirement for the synthe-
sized results to be deemed realistic, because the human
perceptual system is extremely familiar and sensitive to
human facial expressions. Our framework is capable of
synthesizing high-quality mesh animations for both hands
and faces with rich and varying details, from sparse
training examples. The additional test with artificial data
illustrates how animators can use our framework to reduce
their workload in animating models with existing anima-
tion tools. They now only need to construct a small number
of key examples, and all other frames in an animation
sequence can be automatically generated by inferring both
the large-scale deformation and the small-scale details.

Our experiments use between 8 � 26 control points to
control hand, face, and full-body deformation and anima-
tion. If the model to be controlled has an inherent skeleton
structure, we can further reduce the number of control
points with the help of an Inverse Kinematics (IK) module.
Our choice of low-dimensional and easy-to-manipulate
control signals results in intuitive keyframe animation tools
readily adoptable into traditional animation pipelines, and
provides a promising way for performance-driven mesh
animation as well.

2 RELATED WORK

Data-driven mesh skinning. For real-time applications,
Linear Blend Skinning is widely used by artists because of
its simplicity and efficiency. However, the original LBS
suffers from “candy-wrapper” artifacts. Pose Space Defor-
mation (PSD) improves skinning quality by integrating LBS
and RBF-based interpolation [2]. More advanced example-
based techniques [3], [4], [5], [6] have been effectively
integrated with mesh deformation algorithms to further
improve the quality of skinning. EigenSkin models the
residual errors of LBS using principal component analysis
[7]. Kurihara and Miyata [8] use a per-vertex weighting
scheme for PSD to animate hand meshes from sparse
examples. DrivenShape [9] exploits known correspon-
dences between two sets of deformation examples. These
methods, however, do not support direct manipulations or
handle fine-scale features at the wrinkle level. Most of them
require dense example data as well.

Data-driven methods that support direct manipulation
with low-dimensional control signals [10], [11], [12] are the
closest in spirit to our own. Mesh-based Inverse Kinematics
(MESHIK) adopts a global weighting scheme where all
vertices from the same example mesh are given the same
weight [10], [11]. Such global scheme produces artifacts
when modeling from sparse examples, for both large-scale
and fine-scale deformations. In the absence of a skeleton,
Feng et al. [12] build a global data-driven mapping between
sparse control points and proxy bone transformations for
predicting novel surface deformations in real time. There
are two limitations with this method. First, prediction errors
may increase significantly when a novel control point
configuration deviates far away from the reference config-
uration. Second, given sparse training examples, false
dependencies between distant object parts may be mis-
takenly enforced by the global mapping. Our method
addresses these challenges by learning local deformation
models in both the geometry and the pose space. We
compare our results with respect to those obtained from
MESHIK and [12] in Section 8.

Lau et al. have pointed out as a future direction to learn
region-based models to allow fine-grained control over
local geometry and to improve the generalization ability of
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Fig. 1. Given sparse training examples (a), we train a collection of deformation models at two layers. Given a new configuration of the control points,
these models can generate smooth large-scale deformations (b) and high-resolution displacements (c), which are then combined to produce
deformed models with rich details (d).



their models [13]. More recently, Huang et al. [14] combine
high-resolution 3D face scans and high-speed motion
captured markers to produce high-fidelity 3D facial
performances in a blendshape interpolation framework.
They report that a region-based fine-scale mesh registration
process produces much better results than a global
registration approach. It is also reported in [15] that
region-based PCA models generalize better than its holistic
counterpart, and give the user intuitive localized control.

Detail modeling for mesh animation. Detail modeling
for mesh animation has been attracting more and more
research effort in recent years, mainly due to the advances
in acquisition techniques. Several multiscale deformation
schemes have been proposed for face modeling [16], [17],
[18], and they all represent large-scale deformations with
thin shell models. Fine-scale geometric details such as
wrinkles are modeled using 2D splines [16], pose-space
interpolations [17], or polynomial displacement maps [18].
We target highly deformable models with larger ranges of
motion and deformation, such as human hands, for which
techniques developed for 2.5D surfaces such as faces cannot
be applied directly. Furthermore, these methods require
dense markers and training data for motion tracking and
deformation modeling, while our method only needs a
sparse set of control points and a sparse set of training
examples. More recently, body parts or full-body geome-
tries can be reconstructed from single-view or multiple-
view dense video sequences [19], [20], [21], [22]. The
reconstructed geometries usually lack fine details, and do
not generalize beyond seen examples. Another line of
research, such as [23], simulates the motion and deforma-
tion of muscles and tendons for human hands. It is not clear
how to extend this physics and biomechanics-based
approach to incorporate wrinkle-level details.

Data acquisition. Generally speaking, acquiring high-
resolution 3D models with fine features is difficult, expen-
sive, and time consuming. Structured light and photometric
stereo are commonly used to capture 3D geometries,
especially for facial expressions. The quality of the models
depends on the equipment and reconstruction algorithms
used. A template-based method is employed in [24] to
produce point correspondences across an entire video
sequence without using any markers, while [18] uses 178
markers for registration. Golovinskiy et al. capture static
faces with a commercial face-scanning system to model
aging effects [25]. Deformations, large or small, are not

considered there. Park and Hodgins use a commercial
motion capture system and 350 markers to capture med-
ium-scale muscle deformations for full-body motions [26],
but fine-scale skin movements are hard to capture using
motion capture systems alone.

We use a high-precision commercial 3D scanner to
capture hand models. We would like to emphasize that our
deformation technique is independent of the underlying
geometry acquisition method, and can animate models
obtained by various means. For example, one set of the face
models we use is reconstructed from multiview video
sequences [24]; the dinosaur models we test are manually
constructed by an artist.

3 OVERVIEW

Our system consists of an offline training stage, and an
online synthesis stage, as shown in Fig. 2. The training
examples, Pi, are high-resolution meshes with rich details.
We will describe several methods for obtaining such
examples in Section 4. These examples Pi are first registered
with respect to each other, in terms of both large-scale and
fine-scale features. This model registration process will be
described in Section 5. We denote the output of model
registration as ePi, which are a collection of low-resolution
smooth meshes of the same topology. The deformation
learning process consists of two layers: bone-based trans-
formation modeling for large-scale deformations, and
displacement modeling for fine-scale details. The low-
resolution meshes ePi are used to train the large-scale
deformation models. To train the fine-scale detail models,
we extract the differences between Pi and ePi as displacement
maps hi, which capture high-frequency deformation details.

Both deformation layers learn regression models with the
same set of control knobs, i.e., the control points c. A global
regression models correlations between the full control point
vector c and transformations dj of bone bj from all example
poses, and generates a single prediction model djðcÞ for each
bone. In contrast, we train a collection of models dijðcjÞ, where
i ¼ 1; . . . ;#poses; j ¼ 1; . . . ;#bones. These models are local
in both the geometry space and the pose space. The learning
methods will be given in Section 6.1, together with necessary
implementation details. Building local deformation models
in both the geometry space and the pose space effectively
eliminates false coupling of independent object parts and
severe model mismatches for nonlinear sparse training data.
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Fig. 2. The training phase and the runtime phase of our deformation framework. Pi: high-resolution training examples; ePi: low-resolution registered
meshes; hi: displacement maps; c: control points; dijðcjÞ: bone-based large-scale deformation models; hðcÞ: vertex-level models for fine details.



Displacement maps hi are modeled in another pass of
regression as hðcÞ. We will detail this process in Section 6.2.
This pass of vertex-level displacement regression is to
model the myriad of variations of fine details, such as
wrinkles and palm lines, which are beyond the modeling
capability of bone-based linear blend skinning.

At runtime, new control point configurations drive the
learned models dijðcjÞ and hðcÞ to produce new poses with
plausible large-scale deformations as well as realistic fine
features. Section 7 describes the necessary formulas for
deformation synthesis.

4 TRAINING DATA ACQUISITION

We use five sets of training data to demonstrate the
capability of our deformation algorithm: scanned hand
models, scanned face models, reconstructed face models
from multiview videos, and artist-designed dinosaur
models. Fig. 3 shows our models at their reference pose.
The control points, represented by the green dots, are
defined on the low-resolution reference pose. The same set
of control points are used to learn and drive both large-scale
deformations and high-resolution displacements.

Capturing hand models with fine wrinkles is difficult due
to severe self-occlusions between fingers and the need of
accurate registration for data captured from a not-entirely-
static hand. We thus use the traditional art of body casting.
Negative silicone rubber molds were first created from
various hand poses. Then, plaster models were casted from
the silicone molds. These models contain fine surface details
such as finger prints. We then used a Konica-Minolta Range
7 laser scanner to scan the plaster hand models. The scanner
can scan one region of a 3D object in about 2 seconds with
high accuracy (�40 �m). The scanning software then
processes and merges the point clouds and generates surface
models. Despite the claimed high precision of our scanner,
the finest details such as finger prints were lost in the
scanned models, most likely due to noise introduced by our
handheld scanning process. Luckily, there were still enough
interesting details present in our final scans. These scans are
at extremely high resolution of around 900K vertices.
Experimentally, we found that downsampling these meshes
to about 200K vertices [27] did not lead to any visually

noticeable difference from the original scans. So, we simply
used the 200K meshes as our training examples Pi.

We captured two hands from two male subjects, both
graduate students in their twenties. The upper row of Fig. 3
shows the hand models at their reference pose. Hereafter,
we denote the left hand of the first subject as hand-I, and the
right hand of the second subject as hand-II. For each hand,
14 highly detailed mesh models were prepared as training
data for deformation learning. We manually specified fewer
than 20 mesh vertices as control points as shown in Fig. 3.
There are two sets of control points defined for each hand:
one set all on the palm, and the other set all on the back. Our
deformation synthesis system works equally well with both
sets of control points. The existence of two sets was
basically the result of moving markers from the palm side
to the back of the hand to drive our deformation system
with motion captured control points. Finger movements
caused severe self-occlusion in motion capturing the
markers on the palm side.

We use face models from two subjects to test our
framework. The first set of face examples, called face-I
models hereafter, were generously shared with us by the
authors of [14]. This data set is called sequence Matt in [14]
and used as their teaser example. It contains 21 high-
resolution face scans of about 70K vertices, and 40 seconds
of motion captured facial expressions. The high-resolution
face scans contain enough wrinkles and details for us to test
our layered deformation modeling. The motion capture
sequence contains 111 marker trajectories, from which we
manually selected 26 markers as control points as shown in
Fig. 3.

The second set of face examples, called face-II models
hereafter, were shared with us by the authors of [24]. Their
capture system employs synchronized video cameras and
structured light projectors to record videos of a moving face
from multiple viewpoints. A spacetime stereo technique
first derives high-quality depth maps from the structured
light video sequences. A surface fitting and tracking
procedure then combines the depth maps with optical flow
to create face models with vertex correspondence. Thus,
model registration is not needed for this set of face models.
We manually selected six extreme expressions from the
original reconstructed sequence as the training examples.
Eight vertices around the head and the mouth regions of the
neutral face were manually specified as the control points,
as shown in Fig. 3. These reconstructed faces from video are
about 24K in resolution, however, and do not contain fine-
scale details such as wrinkles. Thus, we only use this data
set to validate the large-scale deformation modeling
component of our framework.

The dinosaur models were constructed by an artist in
two steps. First, the artist created a smooth dinosaur mesh
of about 34K vertices, and then deformed it into 12 different
poses. Next, these meshes were subdivided to about 136K
vertices, and sculpted with geometric details. The model
registration step was not needed for this data set either. The
original 13 low-resolution meshes serve as ePi, and the
subdivided high resolution ones with details are used as Pi.
We manually specified 24 vertices from smooth regions of
the reference mesh as control points, as shown in Fig. 3.
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Fig. 3. Our testing models and their control points. From top to bottom
and left to right: Hand-I front and back; Hand-II front and back; Face-I;
Face-II; Dinosaur.



5 MODEL REGISTRATION AND DETAIL EXTRACTION

Training models that are independently scanned initially
reside in different coordinate systems. We therefore rotate
and translate the training examples Pi; i ¼ 0:::n� 1 into the
coordinate frame of a chosen reference mesh P0. More
specifically, we interactively identified a small number of
corresponding points between each training mesh and P0 to
resolve the rigid transformations between them, so that the
differences among the rigidly transformed meshes are the
deformations we wish to model.

We further employ deformation transfer [28] to build
per-vertex correspondences among the training models.
Note that deformation transfer enforces a smoothness
constraint on nearby vertices, and is thus not suitable for
meshes with high-frequency details. Therefore, we apply
mesh retiling and Laplacian smoothing techniques [27] to
obtain a collection of smooth meshes, Pi, at a lower
resolution. The smooth reference model P0 is then deformed
toward each training model Pi, and we denote the
deformed reference models as ePi. ePi will be used to model
large-scale deformations, each of which possesses the shape
of Pi, but the topology of P0. A homogeneous mesh
topology also facilitates fine-scale feature extraction for
detail modeling.

To extract the differences between the original high-
resolution meshes Pi and their smoothed low-resolution
version ePi, we subdivide ePi to retrieve the resolution of the
original mesh Pi. At each vertex of the subdivided ePi, a per-
vertex displacement with respect to Pi is calculated along
the vertex normals. We denote these displacement maps as
hi, which will be used to train deformation models for fine
surface features.

6 DEFORMATION MODELING

The modeling component of our deformation framework
consists of two layers: large-scale bone-based deforma-
tion modeling, and fine-scale vertex-based displacement
modeling.

6.1 Large-Scale Deformation Modeling

Large-scale low-frequency deformations are usually gener-
ated from bone and muscle motions. We therefore follow
the conventional bone-based linear blend skinning to
generate large-scale deformation. From the registered input
models ePi, we obtain transformations of all the individual
triangles. We then cluster triangles of similar rigid
transformations to form abstract bones [12], [29], as shown
in Fig. 4a. Note that the abstract bones do not conform to the
biological bones anatomically. For instance, more than a
thousand bones were generated for the hand models. Each
bone acts as an abstract representation for rigid transforma-
tions, and its influence weights for a vertex are obtained by
minimizing the total fitting error of vertex positions using
all the examples. The large number of abstract bones is to
guarantee the accuracy of the large-scale deformation
models. Because they are automatically generated, no extra
work is required from the user.

Denote the fitted influence bone set for vertex v as BðvÞ,
and its skinning weight from bone bj in BðvÞ as wj. The

skinned vertex position v is computed using a weighted
average of rigid transformations from its influence bones

v ¼
X
j2BðvÞ

wjTjv
r; ð1Þ

where Tj is the transformation matrix of bone bj, and vr

represents the vertex position in the reference pose.
The task of the large-scale deformation modeling is to

learn models of the form TjðcÞ to predict bone transforma-
tions from control points c. We choose to use a quaternion
representation for bone rotations dj only, and solve for bone
translations using a Poisson solver. Predicted bone rotations
and solved bone translations together can then be converted
to Tj appropriately for skinning.

As mentioned in Sections 1 and 3, learning large-scale
deformation models globally from nonlinear sparse training
data suffers from false correlation and poor fitting. Fig. 6a
previews some artifacts resulted from such poor global
models. In the pursuit of a robust system for deformation
modeling and synthesis, we found that local learning in
both the geometry space and the pose space is crucial.

6.1.1 Local Regression in the Geometry Space

The degrees of freedom of human hands are extremely
large. There are at least 21 DoFs associated with the skeletal
structure of a hand, five for the thumb and four for each of
the fingers. There are correlations between nearby struc-
tures, but faraway bones such as the thumb and the pinky
can move relatively independently. When the training data
are extremely sparse, basic correlation analysis may,
however, enforce unnecessary constraints on the movement
of a bone with respect to that of a distant control point, and
result in severe model mismatches. We therefore only train
prediction models for bone rotations from spatially close
control points, to decouple the accidental correlations
between distant bones and control points seen from a few
examples. To locate the local control points for a particular
bone bj, the center location of all the vertices controlled by
this bone is calculated, and its nearest vertex on the mesh is
denoted as vj. The kc nearest control points to vj, measured
by the geodesic distance, are collected as the influence
control point set cj for bj. Instead of learning deformation
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Fig. 4. Color-coded abstract bones (a) and regions sharing the same set
of local control points (b).



models from the full control point vector c, we now use cj
to learn a geometrically local deformation model of the form
djðcjÞ. We set kc ¼ 7 in all our experiments. Fig. 4b
visualizes the bones sharing a same set of influence control
points in the same color. These maps conform well with
anatomical regions such as fingers.

6.1.2 Local Regression in the Pose Space

The range of motion of human hands, the most dexterous
part of the human body, is large and highly nonlinear. Yet,
we only have 14 training examples in total. These examples
appear extremely distant with respect to each other inside
the huge configuration and deformation space of human
hands. A global fit using all the sparse examples as so far
described results in models with poor prediction results.
Inspired by the success of local model learning and
manifold learning methods, such as k-nearest neighbors
(kNN), locally weighted regression (LWR) [30], and
dimensionality reduction techniques where local proximi-
ties are preserved rather than global proximities [31], we
advocate building local regression models for each pose
from their neighboring poses.

The assumption is that the natural deformation poses we
model reside on a low-dimensional nonlinear manifold
embedded in the original high-dimensional configuration
space. It is from this manifold that our sparse input
examples are sampled, and it is within this manifold that
we would like our synthesized new poses to reside. We
propose to use a regression method Canonical Correlation
Analysis (CCA) locally. The local CCA regression relates to
the global CCA regression in a way similar to how local
linear regressions relate to conventional linear regressions,
where local fitting of data points in the vicinity of the input
query can greatly improve the prediction accuracy [30].

To build local prediction models in the pose space, we
first construct a weighted graph based on the local similarity

[32]. For a particular bone bj, each example pose is
connected with its kp nearest neighbors (kp ¼ 7 in all our
experiments), measured by the euclidean distance of their
influence control point vectors. Each edge is weighted by a
heat kernel

w
�
cij; c

l
j

�
¼ e�jcij�cljj

2=2�2

; ð2Þ

where cij represents the control point vector for bone bj in
example pose ePi. Fig. 5 shows such a graph for the bones in
the pinky region. To train the local model at pose ePi for
bone bj, we compute the relative rotation dij of this bone
between ePi and each of its neighboring pose in the
similarity graph. dij and cj are then used to train a
deformation predictor dijðcjÞ. These models, though unable
to predict deformations for poses far away from ePi, are
much more accurate locally than a global predictor. Again,
eager readers can preview a comparison between global
models and local models in Fig. 6.

6.1.3 Implementation Details

We perform linear CCA regressions to learn dijðcjÞ, and use
the kernel trick to establish nonlinear dependencies between
input variables, similar to [12]. That is, dijðcjÞ ¼Mi

jð�ðcjÞÞ,
where Mi

j is a linear operator composed of several linear
mappings, and �ðcjÞ is the kernelized vector of the input cj.
We use Gaussian kernels for all our experiments.

Because of the extremely low number of training
examples in our case, we only train bone rotation pre-
dictors, in the format of quaternions rather than 8D dual-
quaternions [33], to reduce overfitting. Bone translations are
solved afterwards by the Poisson translation solver [12],
which minimizes a weighted sum of the edge prediction
differences Ee and the control point positional errors Ec of
the form (

P
Ee þ �

P
Ec). � is a weighting factor to control

how exactly the surface should follow the control points.
We use different weighting schemes for keyframe anima-
tion and performance-driven animation, which will be
further explained in the results section. The Poisson
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Fig. 5. The similarity graph for the pinky region (a). Distant example
poses in (b) are not used in training the local deformation models dijðcjÞ
for bone bj near pose ePi.

Fig. 6. Large-scale deformations generated from (a) globally trained
models as in [12]; (b) locally trained models in the geometry space;
(c) locally trained models in the pose space; (d) locally trained models in
both spaces.



minimization equates to a linear least-squares problem
whose solution can be written as t ¼ Pf , where t is the
vector of bone translations, P is a precomputed pseudoin-
verse matrix, and f contains both the predicted bone
rotations d and the control point positions c. From t and
d, we can then easily compute the bone transformation
matrices T. We refer the interested readers to [12] for the
remaining details.

6.2 Fine-Scale Displacement Modeling

What we have done in the previous section is essentially
linear blend skinning, even though the bone transformations
are predicted from control point configurations that are local
in both the geometry and the pose space. It is well known
that linear blend skinning is ineffective in modeling high-
frequency deformation details. Using more abstract bones
would improve the data fitting quality to some extent, but
will eventually run into the problem of overfitting.

Therefore, we train another layer of CCA-based regres-
sion models to account for the differences between Pi andePi. We use the high-resolution displacement maps hi and
their corresponding control points to train a displacement
prediction model hðcÞ for every vertex. We have also tried
to use the predicted bone transformations T instead of the
original control points c as input for the regression process.
Our experiments show an inferior synthesis quality using
such a cascaded scheme, as indicated by Fig. 7c, because the
bone prediction errors are transferred to and amplified by
the displacement predictor, leading to noticeable visual
artifacts. Both Figs. 7b and 7c show results after the Poisson
reconstruction.

We use 1D displacements along vertex normals rather
than 3D displacement vectors for detail modeling. Because
the number of our model parameters relates to the product of
the input and output dimensionality, learning regression
models from sparse examples that predict 3D displacement
vectors suffers from overfitting. Predicting a scalar value per
vertex alleviates this problem, and is also more robust with
respect to inaccuracies and noise in vertex correspondences
and displacement maps. In addition, storage requirement is
greatly reduced because one displacement predictor is
trained for every vertex of the high-resolution model.

When learning per-vertex displacement prediction mod-
els, we simply run CCA-based regression using all the
control points and training poses. The resulting prediction
models are capable of producing satisfactory visual results
without incorrect interferences between distant regions. This
demonstrates that in the context of learning high-frequency
displacement models, CCA can recognize and extract correct
correlations and dependencies from the sparse training data
without the assistance of any scheme that confines the model
learning to local regions in the geometry space.

7 DEFORMATION SYNTHESIS

At runtime, the control points can either be manipulated by
a user or driven by motion captured markers, and a new
deformed model can be synthesized as follows: given a new
control point vector c, for each bone bj, we select its
precomputed influence control points cj and look for its kp
nearest neighbors among all the example poses. The chosen
poses each have a deformation model trained locally for
bone bj that can independently predict a bone rotation
dljðcjÞ; l ¼ 1; . . . ; kp. The final bone rotation is computed as a
weighted average of the individual predictions

djðcjÞ ¼
Xkp
l¼1

w
�
cj; c

l
j

�
dljðcjÞ

,Xkp
l¼1

w
�
cj; c

l
j

�
: ð3Þ

The weights wðcj; cljÞ are calculated by the same heat kernel
as in (2). Note that bone rotations predicted by a local
model dlj are defined with respect to the specific example
pose ePl. It is necessary to first transform them to the
reference pose fP0 before blending them. For the sake of
notation simplicity, we omit the coordinate transformation
here and directly write dljðcjÞ in the above formula. Now,
from the predicted composite bone rotations, bone transla-
tions tjðcjÞ can be computed via the Poisson solver as
described in Section 6.1.3. Bone transformations TjðcjÞ are
then computed from djðcjÞ and tjðcjÞ. Finally, a vertex
position is calculated according to (1).

The resulting mesh above is a low-resolution smooth
mesh predicted from ePi and thus only reproduces large-
scale deformations. To add details, we first subdivide the
low-resolution mesh in the same way as in the subdivision
procedure for detail extraction, and we also recompute the
normal nðvÞ for each vertex v. Then, we use the trained
displacement model hðcÞ to generate a high-resolution
displacement map that can be added to the subdivided
mesh along nðvÞ. To put it into one single mathematical
form, a vertex position v in a synthesized model with details
can be estimated as follows:

vðcÞ ¼
X
j2BðvÞ

wjTjðcjÞvr þ hðcÞnðvÞ; ð4Þ

where BðvÞ stands for the influence bone set for vertex v.

8 EXPERIMENTAL RESULTS

We have implemented our deformation system in C++ on a
2:83 GHz Intel Quad core machine with 8 GB of RAM. The
deformation results shown in the paper and the accom-
panying video, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TVCG.2012.88, are rendered by an OpenGL
renderer with Phong shading.

Performance. Table 1 lists the performance statistics for
each testing data set. For the hand models, we also tested
two sets of control point configurations, one on the palm
side, and another on the back side of the hands. The timing
of each stage of the deformation system is given. The model
registration and training steps are done offline, but still
within a reasonable time frame of tens of minutes.
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Fig. 7. Different strategies to model details. (a) The predicted smooth
base mesh. (b) The base mesh plus details trained from control points.
(c) The base mesh plus details trained from predicted bone transforma-
tions. Note the artifacts caused by error propagation.



Currently, the large-scale deformation synthesis is inter-
active, and the detail synthesis is several-fold slower.

Validation and comparison. Fig. 8 compares a mesh
with details predicted from our pose-driven displacement
models to another mesh with a static displacement map
extracted from the rest pose. The same bone transformation
models are used for generating the deformed base mesh.
This comparison shows that a displacement map extracted
from one pose cannot reproduce the deformed mesh details
in other poses. It also demonstrates that our displacement
predictor captures well the variation of geometric details
from the input examples.

Fig. 6 demonstrates the effectiveness of our local
modeling method as compared to the global regression
approach of [12]. Fig. 6a exhibits large distortions, while
locally learned models in both the geometry space and the
pose space effectively eliminate such artifacts as shown in
Fig. 6d. We also compared against learning local models in
either the geometry or the pose space alone. Figs. 6b and 6c
show that local models in just one of the spaces are helpful
in reducing the prediction errors, yet neither alone can
completely eliminate all deformation artifacts.

Fig. 9 compares our results with those of MESHIK [10]
using the same control point input. Our results in Fig. 9a
predict natural novel poses with clean fine-scale details,
while the overall pose and details synthesized by MESHIK
contain visible artifacts. The closeup in Fig. 9b further shows
that details from multiple training poses incorrectly mix
together, giving rise to unnecessarily cluttered wrinkles.

We also performed leave-one-out cross validations for
each example pose of each model, and report the average

RMS errors in Table 2. The largest dimension of the
bounding box of each model is scaled to unit length. In
Fig. 10, we show visual comparison of two cross valida-
tions using the hand-I model. Our method not only
generates consistently lower prediction errors than the
method of [12], but also produces significantly better
visual results, in terms of both the large-scale deformations
and the fine-scale details. However, note that some of the
veins appear smoother in the bottom of Fig. 10c. Our
deformation framework is fundamentally data-driven, and
cannot synthesize features not present in the remaining
training examples.

Keyframe animation. We developed a Graphical User
Interface (GUI) for editing the position of control points. To
provide fast visual feedback, we only compute and render the
bone-based large-scale deformations during interactive edit-
ing. Once the user is satisfied with the large-scale deforma-
tions, displacement predictions are added to refine the
results. Figs. 13a and 13c show some representative frames
of keyframe animation sequences of Hand-I and Hand-II,
respectively. Despite the sparse examples used in the training
phase, our deformation models produce smooth large-scale
deformations of the whole hand as well as plausible
deformations of detailed wrinkles for various gestures.

For the dinosaur model, the artist generated a motion
sequence from the 13 low-resolution reference meshes using
Maya skeletal animation. We then extracted the trajectories
of control points and fed them into our system to generate
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TABLE 1
Performance Statistics

“#Cpt”: number of control points; “#Bone”: number of abstract bones;
“DT”: time spent on deformation transfer; “Training”: training time for the
bone deformation models and the displacement models, respectively;
“Synthesis”: synthesis time for bone transformations and vertex
displacements. Hand-�-K: deformation modeling with the palm-side
control points for keyframe animation; Hand-�-M: deformation modeling
with the back-side motion captured markers for performance-driven
animation.

Fig. 8. Deformation results with a static displacement map (a) and our
pose-dependent displacements (b).

Fig. 9. Comparison with MESHIK. (a) Results from our method.
(b) Results from MESHIK under the same control point configuration.
The blue boxes point out one area that is problematic for MESHIK to
synthesize correct large-scale deformations. The bottom row shows the
closeup views of the area enclosed by the red boxes in the upper row.
MESHIK produces false wrinkles in this case.

TABLE 2
Comparison of Cross Validations between Our Method and [12]

The RMS errors are the averaged results of the leave-one-out validation
for each example pose. “#VertLow”: vertex number of the low-resolution
meshes ePi;“#VertHigh”: vertex number of the high-resolution meshes Pi.



animated dinosaurs with deformation details, of which

some representative frames are shown in Fig. 14e. Note that

geometric details designed by the artist on the 13 example

meshes have been well learned and then synthesized for

new poses of the animation sequence. The hand-animated

low-resolution mesh sequence without details is only used

to extract control point trajectories, and is not used in the

synthesis of Figs. 14d or 14e.
Performance-driven animation. We also tested our

system with motion capture data. We placed 18 motion

capture markers on the back side of the hands, of which 15

were used to train deformation models. The remaining three

markers plus one of the 15 markers used for deformation

training were used for control point alignment. The 3D

marker positions were then captured at 120 Hz using a

Vicon optical motion capture system, and then down-

sampled to 30 Hz to drive our deformation models. Some

selected frames are shown in Figs. 13b and 13d, although the

results are best seen in the accompanying video, available
online. Our framework essentially provides a performance-
driven animation system that can produce high-quality
mesh animations with fine-scale details, using just a handful
of captured marker trajectories. We showed our results to
two artists, and some of their comments include: “The
dynamic wrinkles look very realistic and consistent. Such
quality is very hard to achieve manually”; “It would take us
days to make one of such animation sequences using
currently available commercial software packages.”

For the face-I model, we used a subset of 26 markers
among the full set of 111 markers available from the Matt
face motion capture sequence as the control points, and fed
their trajectories into our system to synthesize the mesh
deformation sequence, of which some representative frames
are shown in Fig. 14b. The synthesized quality is compar-
able to that of [14], but we use fewer markers, which can
greatly reduce the workload in deformation editing and
motion capture. For illustrating the effect of our two-layer
deformation models, we also show the results of large-scale
deformation synthesis without details in Fig. 14a.

For the face-II model, we extracted eight control point
trajectories from the original face mesh sequence recon-
structed from multiview videos, and fed them into our
system as virtual markers to regenerate the deformation
sequence, of which some representative frames are shown
in Fig. 14c. Note that geometric details were not present in
the original examples, so we only ran the large-scale
deformation modeling and synthesis component of our
framework for this experiment. The control point trajec-
tories were extracted from the original full sequence but we
did not use any mesh other than the six chosen examples,
although we have access to the full mesh sequence. The
sequence shown in Fig. 14c and the accompanying video,
available online, is resynthesized from our framework.

There is one key difference in working with motion
captured marker trajectories instead of manually edited
control point positions. In an interactive editing setup, users
generally want the pose to exactly follow their control
points, and would otherwise feel frustrated. Yet, the motion
captured marker positions, if taken literally, can produce
large deformation artifacts, such as shown in Fig. 11a. There
are many error sources degrading animations driven by
captured markers. First, we cannot guarantee that the
markers on the live hand and the control points on the hand
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Fig. 10. Two leave-one-out cross validations with (a) the method of [12]
and (c) our method. The ground truth models, i.e., the models removed
from the training examples, are shown in column (b).

Fig. 11. Comparison of different weighting scheme for the control point
constraint in the Poisson solver for noisy control points: (a) � ¼ 3:0,
(b) � ¼ 0:3.

Fig. 12. The manually extracted skeleton on the reference pose of the
hand-I model. End-effectors and internal joints are represented by
spheres and boxes, respectively. For deformation control, only the end-
effectors are exposed as control points.



mesh are located at exactly the same spots. Second, the

markers should be aligned with the reference model to

eliminate rigid transformations between them. Currently,

we use four markers placed at the back of the hand to

estimate these transformations, but anatomically the back of

the hand consists of many small bones and is not literally a

rigid body. Third, there are noise and even missing markers

caused by occlusions in the captured data. Lastly, to make

our performance-driven animation system practical, we

cannot assume that we can always motion capture the same

hand from which we scanned and learned our deformation

models. Indeed, both our human hand models were unable

to participate in our motion capture sessions, and we had to

capture the marker motions from a third subject to drive the
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Fig. 13. Results of keyframe animation (a) and performance-driven animation (b) for the hand-I model; keyframe animation (c) and performance-
driven animation (d) for the hand-II model; and end-effector-driven deformation (e) of the hand-I model.



virtual hand-I and hand-II models. Due to all the error

factors above, for performance-driven animation we use a

lower weight for the control point positional constraint term

in the Poisson translation solver. Fig. 11 illustrates this effect.
End-effector-driven animation. Keyframe editing or

motion capturing 15 � 20 control points may still be

overwhelming for novice users. We can further bring down

the required number of control points by utilizing Inverse

Kinematics for models that have a clear skeletal structure.

We first manually label a set of points on the surface of the

reference mesh to define a skeleton, as shown in Fig. 12.

Note that two joints colocate at the root position, to allow

the base of the thumb and the palm to move independently.

If only one joint is used, the base of the thumb and the palm

HUANG ET AL.: DETAIL-PRESERVING CONTROLLABLE DEFORMATION FROM SPARSE EXAMPLES 1225

Fig. 14. Results of performance-driven animation for the face-I model with only large-scale deformations (a) and with details (b); performance-driven
animation for the face-II model (c); and keyframe animation for the dinosaur model with only large-scale deformations (d) and with details (e).



will be treated as a single rigid body by the IK solver, which
reduces the range of motion of the thumb. The six green
spheres at the finger tips and the center of the palm are the
control points exposed to the user. The 14 green boxes
roughly corresponding to joint locations for each finger are
control points hidden from the user. At runtime, users only
need to edit or capture the six end-effector points. We then
use a numerical IK method called Damped Least Squares
[34] to compute the positions of the other 14 internal control
points. Then, the 20 control points together will drive the
deformation models prelearned from all the control points
and the example meshes.

Note that our manually extracted skeleton does not
necessarily align with the anatomical skeleton of human
hands. In addition, we use only ball-and-socket 3DoF joints
to model the finger joints in our IK solver. Despite these
approximations and simplifications, the results generated
are comparable to those synthesized with a full set of
explicitly specified control points, as shown in Fig. 13e for
the hand-I model. Building regression models directly from
an anatomically correct skeleton and the example meshes
remains a future work, but should be straightforward.

9 CONCLUSIONS AND DISCUSSION

Generating user-controllable mesh animation with rich
details from sparse examples is a challenging open
problem. Our main contribution is a robust framework that
can produce fine-scale details as well as large-scale
deformations by learning from extremely sparse training
data. CCA-based regressions are used to model deforma-
tions of both layers, which not only makes the framework
simple and clean, but also allows end-users to directly
manipulate control points for interactive mesh animation.
We demonstrate the effectiveness and robustness of our
method using both scanned and manually constructed
example models, with either hand-edited or motion-
captured control point trajectories.

Our method by far outperforms some of the global
methods we have tested. Local fitting in both the geometry
space and the pose space is the key to our success, which
constrains models within the manifold of natural poses and
effectively decouples independent object parts. Note, how-
ever, when there are more example poses available, a global
method can usually generate better results than what is
shown in Fig. 6a. For example, Feng et al. [12] report that
using 80 example poses, a pair of pants, which can be thought
as two fingers, can be animated with acceptable quality.

The input training examples should be carefully designed
to span the configuration space as much as possible, and
extrapolation should generally be avoided, similar to all
data-driven methods. In extreme cases where the user insists
on dragging a control point outside of the spanned subspace,
such as to make a closed fist which our current hand
acquisition method cannot cast, the synthesized deformation
will stop following the control points, unless we make the
control point error term in Section 6.1.3 a hard constraint.

There are several limitations of the proposed method
that deserve future investigation. First, we need to
manually specify feature correspondences to initialize the
deformation transfer algorithm for model registration. To

ensure good registration for both large-scale and fine-scale
features, we used 120 feature correspondences for the hand
models. We have experimented with adapting an image-
space optical flow algorithm to 3D surfaces to register
example models automatically. Our initial results indicate
that registering features for highly deformable models with
rich details is a challenging problem. On a side note, 178
feature points are used for face registration in [18]. The
registration method of [21] requires dense scans and would
fail for cases where only sparse scans are available.

Our method is general in the sense that it does not
require rigged example meshes. This enables direct utiliza-
tion of scanned data. However, to better integrate with
traditional skeletal animation tools and utilize legacy
animations, it would be useful to drive deformable models
using anatomically based bone transformations for models
that have inherent skeleton structures such as hands. Our
end-effector-driven animation illustrates the feasibility of
skeleton-driven deformation to a certain extent.

Another topic for future research concerns dynamic
deformations. In this paper, we primarily focus on pose-
driven static deformations, which means there is a unique
deformation associated with each pose. It would be
interesting to investigate mechanisms to carry over defor-

mation dynamics from previous instants of time.
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