
A Compact Random-Access Representation for Urban Modeling and Rendering

Zhengzheng Kuang Bin Chan Yizhou Yu Wenping Wang
The University of Hong Kong

Figure 1: Left: a city scene with 5,061 distinct buildings represented using our proposed Non-Uniform Textures (NUTs). The size of this
digital model is 42 MB, compressible to 10.6MB PNG files. This model is rendered at 49 fps @ 1280 × 720 on an NVidia GTX580 GPU.
An equivalent mesh-based model has 671 million triangles (37GB). Right: a much larger European-style city with 40,400 distinct buildings.
This model consists of NUTs (229MB) and a complementary mesh (300MB) for roof structures. The total PNG-compressed NUT file size is
60.5MB. It is rendered at 30 fps. An equivalent mesh model has 1.36 billion triangles, or 61GB.

Abstract

We propose a highly memory-efficient representation for modeling
and rendering urban buildings composed predominantly of rectan-
gular block structures, which can be used to completely or partially
represent most modern buildings. With the proposed representa-
tion, the data size required for modeling most buildings is more than
two orders of magnitude less than using the conventional mesh rep-
resentation. In addition, it substantially reduces the dependency on
conventional texture maps, which are not space-efficient for defin-
ing visual details of building facades. The proposed representation
can be stored and transmitted as images and can be rendered di-
rectly without any mesh reconstruction. A ray-casting based shader
has been developed to render buildings thus represented on the GPU
with a high frame rate to support interactive fly-by as well as street-
level walk-through. Comparisons with standard geometric repre-
sentations and recent urban modeling techniques indicate the pro-
posed representation performs well when viewed from a short and
long distance.

CR Categories: I.3.2 [Computer Graphics]: Graphics Systems—
Distributed/network graphics I.3.6 [Computer Graphics]: Method-
ology and Techniques—Graphics data structures and data types
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Raytracing;

Keywords: urban modeling, texture mapping, ray casting

Links: DL PDF

1 Introduction

Urban visualization is a challenging task because handling the large
number of buildings involved demands high storage capacity, trans-
mission speed and rendering performance. Although systems such
as Google Earth enable interactive browsing of urban environments,
the visual quality is limited by coarse 3D models and low-resolution
textures, making it inadequate for many applications that require
highly detailed models and high-resolution rendering.

While detailed building models are desired for an improved view-
ing experience, the required data size can be prohibitively large. For
instance, a detailed model of a multi-story building can easily con-
sume tens of megabytes of memory. Representing a moderate-sized
city model with thousands of such buildings would require tens or
even hundreds of gigabytes. The conventional mesh representation
is commonly used for 3D models because it can approximate arbi-
trary shapes and be rendered efficiently on the GPU. Nevertheless,
it incurs excessive memory consumption.

Urban buildings are often composed of rectangular elements, cor-
ners with a right angle, horizontal or vertical edges and faces as
well as chamfers and fillets. We wish to explore these characteris-
tics to develop an efficient representation to drastically reduce the
amount of data that needs to be stored, processed or transmitted for
large-scale urban visualization.

Many existing procedural urban modeling techniques assume re-
peated instances of the same set of building elements or facade tex-
tures across a city. Such an assumption is often invalid in reality.
In this paper we adopt a more realistic setting where there exist a
large number of distinct buildings in a city, a condition under which
many other methods would not perform well. We propose a new
building representation, called Non-Uniform Texture , or NUT for
short, that facilitates the individual representation of each building.
The NUT completely relies on an image-based format without in-
volving any mesh data structures. A building or a block of aligned
buildings can be represented as a NUT in a very compact manner.
The NUT can be directly transmitted to a client’s GPU to be ren-
dered efficiently without being converted to any other format first.
The memory footprint of a NUT is typically more than two orders
of magnitude smaller than that of its mesh counterpart. Our exper-

http://doi.acm.org/10.1145/2508363.2508424
http://portal.acm.org/ft_gateway.cfm?id=2508424&type=pdf


iments indicate that detailed city models can be quickly transmit-
ted over the Internet and rendered in high resolution at a real-time
frame rate for smooth navigation in a cluttered urban environment.
In addition, an existing mesh-based building model can be easily
converted to a NUT representation using a semi-automatic tool.

Major contributions of this paper are summarized as follows.

1. We propose a memory efficient building representation called
NUTs. It has powerful modeling capabilities and is suit-
able for both Manhattan-style buildings and European-style
houses. It is highly effective for viewing from a short and
long distance. NUTs are deliverable through a network as im-
ages. Therefore it is also compatible with the current web
infrastructure.

2. We develop an efficient method for rendering NUTs directly
on the GPU in a way compatible with the existing graphics
pipeline.

3. We develop a semi-automatic tool that enables the user to con-
vert a building in the mesh format to a NUT in a matter of
minutes.

The rest of the paper is structured as follows. Section 2 discusses
related work. Section 3 introduces the NUT structure. Section 4
extends NUT to a hierarchical structure for building representation.
Sections 5 and 6 presents a modeling tool and a scheme for ren-
dering NUTs on the GPU, respectively. Section 7 compares NUTs
with other existing techniques. Section 8 discusses conclusions and
future work.

2 Related Work

Urban visualization covers a few related research topics including
representation, city modeling, urban acquisition and rendering. Re-
lated work on these topics is summarized as follows.

Representations Image-based modeling (e.g. Chen [1995] and
Dykes [2000]) are the most explored representations before the
emergence of programmable hardware. Those methods suffer from
the problem that the viewpoint is seriously confined to small regions
from which the images are captured. In the GPU era, many hybrid
image-and-geometry based representations are proposed. There are
two branches of works. One focuses on enhancing traditional tex-
ture mapped building models by adding accurate geometric infor-
mation to the building models without using mesh data. These
methods can be used to render realistic buildings individually and
are suitable for close inspection. Ali et al. [2009] uses a displace-
ment map to add indentation to texture mapped facades. Haegler
et al. [2010] uses a grammar-based encoding of facades to signifi-
cantly reduce the data needed to represent similar facades with in-
dentations.

The other branch focuses on quick rendering of large-scale city-
wide models suitable for viewing from a distance. Andujar et
al. [2010] uses multi-level relief impostors to produce a hierarchical
representation of buildings suitable for virtual globe applications.
Cignoni et al. [2007] converts city models to compact image-based
representations for quick rendering of large-scale distant buildings.
These representations sacrifice accuracy for speed and therefore the
models they represent are not suitable for close viewing such as
street-level walk-through but are very efficient for high-level city
viewing.

City modeling Urban models are usually generated by procedu-
ral modeling or model acquisition. Shape-grammar-based build-
ing modeling, such as CityGML by Kolbe et al. [2005], CLOQ by
Döllner et al. [2005], and CGA Shape in [Müller et al. 2006; Müller

et al. 2006; Kelly and Wonka 2011], provides powerful tools to gen-
erate architectural models procedurally. Marvie et al. [2012] uses
the GPU to directly interpret shape grammars and avoids mesh gen-
eration on the CPU.

Urban acquisition Model acquisition is usually done by recon-
struction from images or laser scanner data. An automatic approach
is proposed in [Xiao et al. 2009] to generate 3D photo-realistic
models from images captured along the streets at the ground level.
It is discussed in [Shen et al. 2011; Xiao et al. 2008; Müller et al.
2007] how to extract and use building facades from images to re-
construct 3D building models. Nan et al. [2010] proposes a method
to interactively snap building blocks to point cloud data with simple
user manipulations. Another method is proposed in [Nebiker et al.
2010] that uses dense 3D point clouds, coupled with comprehensive
geometric, radiometric and semantic information, to reconstruct a
3D scene.

Rendering Urban models are mostly rendered using meshes.
Sometimes ray-casting, which is primarily used in volume render-
ing, is used for urban rendering, for example, Crassin et al. [2009]
and Zhou et al. [2008]. GPU-based ray casting has also been used
for rendering height fields [Mantler and Jeschke 2006; Dick et al.
2009]; for adding surface details [Jeschke et al. 2007]; and for ren-
dering urban models [Ali et al. 2009; Marvie et al. 2011; Cignoni
et al. 2007].

3 Hierarchical Grid-Based Modeling

We have the following observations of modern buildings. First, or-
thogonality is a commonly shared attribute. Second, there exist
many repetitions of the same elements. Such repetitions can be
grouped in a few different levels. For example, there are repetitive
windows in a floor and floor repetitions in a building. Third, ele-
ments are often aligned horizontally or vertically. Finally, when the
geometry is sufficiently detailed to represent every individual sur-
face of a building, the appearance details we find on the surfaces are
usually homogeneous, e.g. a marble pattern or latex paint. There-
fore, the required texture maps are often material-dependent instead
of being structure-dependent. This is important because material-
dependent textures are highly reusable in a city while structure-
dependent textures are not.

We propose a new modeling scheme for buildings. Our goal is to
drastically reduce the amount of data, including geometric data and
texture maps, necessary for representing a city accurately. First,
we locate the rectangular regions of a building and identify the sets
of parallel lines that align those rectangular regions. Then, in a
divide-and-conquer manner, we break down hierarchically the en-
tire volume into multiple blocks by fitting 3D grids of variable cell
sizes over the building. See Figure 2 for a 2D illustration of the
process. The grid boundaries are then aligned to match the surface
boundaries or material boundaries of the building. The process is
recursively repeated for all cells until each cell in the 3D grids is
either an empty cell or a non-empty cell with the same material
properties.

The adaptiveness of the grid cell boundaries and the hierarchical
structure dramatically reduce the dimensions of the 3D grids at each
level. All sub-grids are clipped by the parent cell when rendered
but there is no bound on the size of a sub-grid. In other words,
the parent cell is just a window to a possibly much larger sub-grid.
Such a design can increase the modeling efficiency of a grid as it
is possible to have many similar underlying components that share
common attributes (e.g. modeling several windows of similar di-
mensions together needs less data than modeling them individually
as some cell dimensions are shared). In order to support that kind
of component reuse, the position of a sub-grid can be translated



Figure 2: 2D illustration of hierarchical grid-based modeling

and rotated freely within its parent grid. Allowing size differences
between parent cells and sub-grids also enables easy repetition of
sub-structures, which is similar to texture wrapping when texture
coordinates are beyond the range of [0,1] (Figure 3).

Figure 3: (a) Object wrapping achieved by extending the size of
the parent cell. It is convenient for modeling repeated patterns. (b)
Arbitrary redirection, for reusing sub-blocks or parts of the sub-
blocks, allows an irregular arrangement of components by control-
ling the offset of each redirection. (c) Redirection at a higher level.

A 3D grid in essence represents a solid model of a building with-
out recording the vertex positions, normals or texture coordinates.
Although a NUT is based on an axis-aligned grid, by supporting ro-
tational redirection and quadric surface solids, its modeling capabil-
ity extends beyond box-looking Manhattan-world building models.
Figure 4 shows some structures that can be modeled and rendered
together with other parts represented as NUTs.

Figure 4: Building structures modeled entirely using NUTs. (a)
An imbrex roof model represented using 612 bytes. (b) A rotunda
model represented using 2.4KB. (c) A four-story staircase model
represented using 3.4KB with rotational redirection.

3.1 Non-Uniform Texture (NUT)

The proposed 3D grid described above consolidates to the design of
a new data structure called Non-Uniform Texture (NUT), encoded
in 2D images. Such 2D-image-encoded 3D data is similar to Geom-
etry Images by Gu et. al. [2002] however the main difference is that
NUT is used to encode internal solid information of axis-aligned
models instead of representing surface details of arbitrary models.
The data stored in NUT are coordinates, dimensions and material
properties organized in a special layout. Please refer to Figure 12b
for the appearance of a hierarchical NUT image. Hence, it is called

a texture only because 2D images are used as its representation, so
it should not be confused with conventional 2D or 3D texture maps.

The intuition behind the definition of the NUT is best explained
with the help of a 2D diagram. Consider a pattern shown in Fig-
ure 5 that we want to represent by an ordinary uniform texture (see
Figure 5b). Obviously, the image has to be of sufficiently high res-
olution (21 × 30 in this case) in order to make sure the boundary
lines of the shapes confirm with the columns and rows of the im-
ages. NUT, on the other hand, allows adaptive pixel sizes so that
the pixel boundaries can move freely to align with color bound-
aries, hence non-uniform. Therefore, the same pattern in Figure 5a
can be represented using much fewer pixels in NUT than in an or-
dinary texture, see Figure 5c. Note that the NUT is not intended
to represent general images but discrete axis-aligned color patterns
often appearing on architecture models.

Figure 5: (a) Original window structure. (b) A conventional texture
representing (a) using 21 × 30 pixels. (c) A NUT representing (a)
using 7×7 pixels. The NUT has 45 pixels of metadata. The data size
is reduced by 6.7 times. (d) The NUT in (c) is stored into uniform
pixel size.

3.2 Random Access and Metadata Array

Since GPU supports the lookup of ordinary textures only, a cus-
tomized lookup mechanism is needed to simulate NUT lookup.
Some extra data (metadata), one set for each dimension, besides
the color component, is needed for NUT lookup. A straightfor-
ward choice of the metadata would be a series of pixel widths and
heights for binary searches in the shader. However, that implies
multiple dependent GPU texture lookups, each taking hundreds of
clock cycles to complete. That would make NUT lookup signifi-
cantly slower than ordinary texture lookup. Therefore, a heuristic
approach is developed. The idea is to allow a small error in pixel
sizes such that exact pixel sizes is not needed. Instead, an array of
indices that guides the shader to pick the correct pixel is used. This
is similar to random access of run-length encoding [Crivat et al.
2011].

Let’s consider a single dimension for simplicity. For a NUT of W
pixels wide, as shown in Figure 6, a metadata texture of sizeW+w
by 1 pixels is needed, where w ≥ 0. The number w is chosen
such that each metadata pixel contains at most 1 NUT pixel bound-
ary when the metadata pixels and the NUT pixels are stretched to
the same width and aligned. In other words, each metadata pix-
els touches at most 2 NUT pixels. The value of w depends on the
distribution of the underlying pixels and there are some constraints
for the value of w and pixel sizes representable by NUT. Let XT ,
Xw and Xn be the total width of the pixels, the width of the widest
pixel and the width of the narrowest pixels, w could go from 0 up to
XT /Xn−W . Since the j numbers are stored in 8-bit color compo-
nents, Xw/Xn must be ≤ 255 and therefore XT ≤ 255XnW or
XT /Xn −W < 255W . Combining the equations together we get
the possible range of w goes from 0 to 254W . In practice, W + w
is limited to 256 for easier handling during compilation to images
so whenever the 256-pixel size constraint is violated, the modeling
tool will prompt the user to break a block into smaller ones. We
think it is not easy to reach the limit in practise as we have not



encountered such problem in any of our building models.

Figure 6: Heuristic NUT lookup in a NUT 5 pixels wide (i.e. W =
5 and w = 4 in this case).

Each pixel of the metadata array stores four components: index i,
fraction f , and two j numbers. Here i is the index of the left-most
NUT pixel that each metadata pixel touches, and f is an integer-
coded fraction used for metadata pixels that intersect more than 1
NUT pixels. It represents the approximate position of the NUT
pixel boundary in the metadata pixel. When the GPU receives the
texture coordinate, it looks up the metadata uniformly and uses the
index i to find the NUT coordinate directly if f = 1, otherwise the
fractional position of the texture coordinate in the metadata pixel is
compared with f to decided if NUT pixel i or i + 1 is to be used.
The numbers j← and j→ represent the number of metadata pixels
to skip to reach the ones that touch the adjacent pixel boundaries
for both directions. The nearest pixel boundary can therefore be
reached with just 1 extra texture lookup of the metadata texture
following the hint of the j numbers. Note that the j numbers are not
used in random access but it is useful in ray casting where adjacent
pixel boundaries search is needed.

The error E caused by heuristic lookup depends on the size of the
NUT in world coordinate and how the f component is coded. Nor-
mally, an 8-bit integer is used and in that case E ≤ D

512(W+w)
,

where D is the world-space size of the NUT’s width. E is usually
small enough to avoid any perceivable problem in a city modeling
setting.

With such a metadata design, only 1 extra lookup of the metadata is
required for each dimension besides the lookup of the color value.
Table 1 shows the relative speed comparison between ordinary tex-
ture lookup, NUT lookup based on binary search and NUT lookup
based on heuristics. There is on average a 30% slow down for NUT
heuristics lookup when compared with ordinary texture lookup.

Texture dimensions
Texture Lookup 4× 4 8× 8 16× 16 32× 32
GPU Native 19.61 19.55 19.54 19.59
NUT Binary Search 19.52 8.99 3.32 1.21
NUT Heuristic 13.91 13.89 13.96 13.98

Table 1: Comparison between native ordinary texture lookup, NUT
lookup using binary search and NUT lookup using heuristics with
different texture sizes. All frame rates are measured by issuing 1
billion texture lookups / frame, on a Nvidia GTX480. Typically,
NUT dimension of 8-16 is used when modeling building elements.

4 Hierarchical NUT for Building Modeling

When extending NUT to a hierarchical structure, each redirection
has a rotation and a 3D offset that controls the positioning of the
sub-block. NUT hierarchy is designed to be a directed acyclic graph
to allow flexible reuse of building components. All NUTs in a hier-
archy are eventually compiled into a 2D 32-bit RGBA Hierarchical

NUT Image (HNI), see Figure 12. The upper left 2562 pixels square
is defined as the metadata region where small entities such as NUT
headers and metadata arrays are stored so that items located in the
metadata region can be addressed by 8-bit integer coordinates for
compactness. Multiple buildings can be encoded in a single HNI to
share common sub-blocks. Besides the Metadata Arrays described
in the previous section, each NUT contains two other components:
the NUT Header and the Data Component. Each HNI also contains
a Material Array and a Texture Information Array.

4.1 The NUT Header

Figure 7: The NUT header. Gray color represents unused space.
The first 12 pixels are mandatory while the redirection info., 3
pixels each, is optional. S(s±x, s±y, s±z) are the visual sum-
mary which summarizes the color of each side of the block by a
single color. They are used for level-of-detail rendering of the
buildings. N(nx, ny, nz) are the NUT size in number of pixels.
H(hx, hy, hz) are the size of the metadata array of the 3 dimen-
sions. D(dx, dy, dz) are the physical dimension of the NUT in cm.
Hc(hcx(u, v), hcy(u, v), hcz(u, v)) are the coordinates of the 3
metadata array. C(cu, cv) are the coordinates of the corners of the
data component of the NUT. O(ox, oy, oz) are the offset distance
of each redirection. P (pu, pv) are the coordinate of the header of
the redirected NUT. R(rx, ry) are the rotational angles about the
x, y axes in a redirection. t stores the flags that control the tiling
behavior of the NUT.

The NUT header stores vital information such as NUT size and
redirection information. Figure 7 shows the byte arrangement and
the size of each element. Each redirection requires a copy of the
three elements O, P and R.

4.2 Data Component

The data component is used to describe the shape, material and
texture mapping of each NUT cell. Each cell can take the form of a
wedge, a pyramid or a quadric surfaces or their inverses like those
in Figure 8. There are altogether 69 types of shapes to choose from
so that chamfers, fillets, rods and dome structures can be modeled
directly by NUT without resorting to mesh surfaces.

Figure 8: Each NUT cell can have geometry from these 5 groups.
Different solids within each group differ only in their orientation
within the bounding cube. Inverse solids, i.e. those with the shape
subtracted from a full cube, are also included in these groups.

Each cell can also have its own material property and texture map-
ping. Since many material properties and textures are shared among
the cells and different NUTs in the hierarchy, the material Array
and the texture Information Array, both defined as horizontal rows
of pixels, are used for references. Figure 9 shows the pixel format
of the data component, material array and texture information array.



Figure 9: (a) Format of data component pixel, for each cell. (b)
Material Array. (c) Texture Information Array. (d) Texture Table in
GPU’s constant buffer. (e) Global texture atlas. Mc(mcx,mcy)
are the texture coordinates of the material pixel. tidx is the index
of the texture mapping info. in the texture information array. g is
the geometric descriptor that indicates if the cell is an empty cell,
redirection cell or a solid cell. M(mr,mg,mb) is the diffuse color
of the material. mo is the opacity and mref is the reflectance.
To(tox, toy, toz) is the 3D texture offset and tID is the index of the
texture image. The index is used to fetch data from the texture table
in the GPU’s constant memory to obtain the location of the mapped
texture in the global texture atlas.

In our design, when g equals to 1, it is used as a redirection cell,
where the R and G component of the data component pixel is in-
terpreted as the coordinate of the redirection info. block. Figure 10
shows how redirection is done. Each NUT cell requires one pixel in
the data component. The 3D data component is eventually flatten
to 2D by tiling the z dimension along the x dimension, for compi-
lation into the final 2D HNI described in section 4.4.

Figure 10: Redirection is represented by setting the alpha value to
1, in which case the red and green components of the pixel are taken
as the coordinates of the redirection info. block, which contains the
offset of the redirected block and the coordinates of the redirected
block’s NUT header.

4.3 Texture Mapping

Ordinary textures are used to enhance the realism of single color
materials. NUT provides limited support of ordinary texture map-
ping. In our modeling scheme, textures in NUT are used for two
primary purposes: as decals or as material textures. In order to min-
imize the data needed to support texture mapping, we have made
two assumptions, based on the two purposes. First, since each NUT
cell should have already been divided sufficiently to represent a re-
gion of a single material, the texture of all faces of the cell should
be the same. Therefore, we limit each NUT cell to have only one
texture, which is mapped onto all faces of the cell to reduce the
complexity of the NUT data structure. Second, material textures
such as wood or granite patterns do not appear to be natural when
resized. Decals that represent signs or complex patterns usually do
not have a smaller or bigger counterpart. Therefore, all texture im-
ages used in a NUT are associated with a fixed physical dimension

and a default orientation so that they cannot be resized or rotated.
By doing so, we can avoid storing texture coordinates explicitly for
the corners of each texture mapped cell. Instead, a single 3D offset
suffices for fixing the texture coordinates for any point on the solid
surface via simple transforms.

Methods for mapping texture images onto the faces of different
solid geometry groups are defined differently. The general rule
treats texture maps as tilable stickers on a solid surface. Specifi-
cally, for all non-horizontal faces, when they are being looked at,
the right direction is always taken as the positive horizontal direc-
tion and the up direction is the positive vertical direction. For flat
surfaces facing up and down, the mapping direction is chosen de-
pending on the z direction. For non-horizontal flat faces, both the
horizontal and vertical texture coordinates are mapped linearly. For
vertically aligned cylinders and spheres, the horizontal texture co-
ordinate is cylindrically mapped starting from the most clockwise
corner, which is set as the origin, and increases in the counter-
clockwise direction (Figure 11). For horizontal cylinders, texture
coordinates in both directions are also mapped linearly. Such a
definition can ensure seamless texture mapping over the surface of
chamfers, fillets and round corners when all associated cells are set
to the same texture offset. For both quadric cases, the vertical di-
rection is also mapped linearly.

Figure 11: (a) A texture map is associated with physical di-
mensions and its coordinates are defined in the following ranges:
x ∈ [0, w] and y ∈ [0, h]. (b) 2D texture coordinates (in red) are
computed from the surface coordinates and the 3D texture offset.
Different faces use different coordinate components from the offset.
The purple arrow indicates textures are wrapped counterclockwise
around the box. The blue lines indicate texture borders and show
how it is tiled. (c) Quadric surfaces are cylindrically mapped. The
texture coordinates are computed from all three coordinate compo-
nents of the offset.

During rendering, the texture images themselves are stored in a
global atlas. The positions and dimensions of the texture images
in the global atlas are stored in a fixed buffer on the GPU.

4.4 HNI Compilation

During compilation, all NUT headers, metadata arrays, data com-
ponents, the material array and the texture information array in the
entire hierarchy are passed through a bin packing solver. The bin
packing algorithm we use is based on the MaxRects method with
the best area fit heuristic described in [Jylänki 2010]. In order to
find the best image dimension as well as tile pattern, the width
of the HNI is iterated from the maximum NUT data component
width, i.e. max(nx1nz1 , nx2nz2 , ..., nxMnzM ), where M is the
total number of NUTs in the hierarchy, up to 256. The chosen HNI
is the one with the least waste percentage, which depends heav-
ily on the data component size variations and the number of NUTs.
When the number of NUTs in an HNI is large, the waste percentage
is typically below 2%.

For a typical residential building with detailed structure of every



Figure 12: (a) A building made up of 40 NUTs. An equivalent
mesh has 70K triangles. (b) is the compiled HNI file of (a). With
101×26 pixels, it uses 10.3KB, reduced to 3.1KB when compressed
as a PNG file. The alpha channel of the image is stripped for print-
ing. The dark brownish region is the data component while the re-
maining region contains all other arrays. For this model the waste
percentage happens to be 0%.

windows on every floor, the generated uncompressed HNI is usually
less than 40KB. That means for modern GPUs, it can store tens of
thousands of buildings in core, which is enough to cover most cities
in the world. HNI image is also highly compressible. Saving as
PNG has a typical 4:1 compression ratio. That means each building
can be saved in less than 10KB.

5 Modeling Tool

A NUT can be either generated manually or converted from mesh
models. We have created a custom tool with building modeling and
city layout capabilities. The time needed to model a building using
this tool ranges from minutes to several hours, depending on the
building complexity, which is comparable to a mesh-based model-
ing system.

There is much literature, e.g. [Shen et al. 2011], on the extrac-
tion of symmetry from point cloud data of buildings. But we are
not aware of any work that supports automatic hierarchical extrac-
tion that balances the element size and the number of levels, which
is vital for effective NUT representation. Instead, we developed a
semi-automatic mesh converter similar to that in [Musialski et al.
2012]. Unlike their method, we use a bottom-up approach instead
of a top-down approach to allow building elements to span across
high-level boundaries. Our method involves three main steps, solid
conversion, block extraction and simplification.

Solid conversion Given a closed surface mesh of a building (as-
suming most of its faces are already axis-aligned for convenience),
the x, y and z coordinates of the intersections of all axis-aligned
planes are recorded. These coordinates are grouped into clusters
Xi, Yj and Zk where i = 1...nx, j = 1...ny and k = 1...nz are
the indices of clusters in each dimension. The weighted averages,
xi, yj and zk, of the clusters are computed to represent the clusters
where mesh face areas are used as weights. Then the bounding box
of the mesh is partitioned according to xi, yj and zk to form a 3D
non-uniform grid. All mesh faces contributing toXi, Yj and Zk are
associated with the faces of the corresponding cells. Each cell’s oc-
cupancy is obtained by tracing rays from one end to the other along
one of the dimensions and counting the number (even or odd) of in-
tersections with mesh faces. The result is a solid representation G0

of the original mesh. All non-axis-aligned mesh faces are collected
and saved as a complementary mesh.

Block extraction User interaction is required to select a rectan-
gular 3D region S0 of cells that represents a basic building block,
such as windows or balconies, in G0. Similar structures in the
building can be identified automatically. The number of cells along
each dimension of the block, wp, wq and wr where p = 1...mx,

q = 1...my and r = 1...mz in S, and the occupancies within the
block, Op,q,r , are used to test against the entire grid. The test com-
pares the width pattern in each dimension of the block against cell
width sequences starting at all positions in that dimension. The pro-
cess is somewhat like string search except that a cell ci with width
wi can be matched to multiple successive cells from cj to cj+n

with widths wj to wj+n if wi is within (
∑n

k=0 wj+k) ± ε, where
ε is a predefined tolerance value. A block match is reported only
if the cell width patterns of the selected block in three dimensions
all match the cell width patterns of another block and their corre-
sponding cell occupancies are all identical.

Simplification Once all blocks S0 of the same type S0 have been
identified, all cells in S0 are labeled with a unique identifier that
represents S0. Those original cell boundaries xi, yj and zk used for
splitting the cells in S0 (i.e. those not used as solid/space bound-
aries in any other cells) are removed and relevant cells are merged
to produce a simplified building model G1 which contains a redi-
rection pointer to the basic building block S0. This forms the basis
of the hierarchical NUT. If the blocks in S0 are found to be aligned
and touching each other, the user has the option to merge the re-
peated blocks together to form a larger block before cell boundary
removal and cell merging. Simplification prevents previously ex-
tracted blocks from being extracted again and hence prevents re-
dundant representation of the same elements.

Block extraction and simplification are repeated until no more sim-
ilar elements can be extracted. In each iteration, a new building
block Si is discovered and a new simplified grid Gi+1 is produced.
After n iterations, the solid models Gn, S0, S1...Sn−1 are con-
verted to n + 1 NUT blocks. Redirections are added according to
the unique identifiers recorded in each cell. See Figure 13 for an
example.

This mesh-to-NUT conversion process usually takes just a few min-
utes to complete. The converter has a certain degree of built-in tol-
erance and works well with reasonably clean mesh models. How-
ever, building models with large holes or many redundant surfaces
could negatively affect the result of this solid conversion step. In
that case, manual cleanup of the model before conversion is re-
quired (refer to the accompanying video for a demonstration of
NUT generation and mesh-to-NUT conversion). Note that the solid
conversion step described above is a memory-intensive task be-
cause it needs to construct the 3D solid in full details before sim-
plification. In practice, a building is seldom processed as a whole.
Instead the facades are first processed individually and assembled
together later as NUTs to reduce memory consumption. Note that
the mesh-to-NUT converter does not support rotated sub-blocks.

Figure 13: Sample input and output of the semi-automatic mesh-to-
NUT converter. The roof and side balconies are incompatible with
NUT and are retained as a complementary mesh to the NUT. There
is a 98.2% reduction in data size when NUT is used to represent
this model.

6 Rendering

NUT models can be efficiently rendered without mesh reconstruc-
tion. A NUT hierarchy can be seen as an adaptive spatial subdivi-



sion structure with well defined spatial compartments. Therefore it
would be efficient to directly perform ray casting on the hierarchy
on the GPU without any additional acceleration data structure.

Similar to other GPU ray casting algorithms, HNI ray casting also
runs in a pixel shader. The front face of the bounding box is culled
as in [Dick et al. 2009] to make sure the contents inside are visible
even when the viewpoint is outside the bounding box. Our ray cast-
ing algorithm, Algorithm 1, loops over two main steps, NUT traver-
sal and redirection landing. Each step has different NUT lookup
patterns.

Algorithm 1: HNI Ray Casting Pixel Shader
Input: BackFacePosition
Output: PixelColor

RayPosition = FindFrontFacePosition(BackFacePosition);
RedirectionLanding(RootNUT);
PixelColor = NUTColorLookup(RayPosition);
while IterationCount < MAX and HasNotHitSurface() do

AdvanceRay(RayPosition);
if RayPosition hits RedirectionCell then

if ProjectedSize(HitCell) < THRESHOLD then
PixelColor = VisualSummary(RedirectedNUT);
continue;

else
RayPosition=RedirectionLanding(RedirectedNUT);

end
end
else if RayPosition hits EmptyCell or TransparentCell then

if RayPosition leaves ParentCell then
RayPosition = ReturnToNUT(ParentNUT);

else
RayPosition = NUTTraversal();

end
if RayPosition leaves GlobalBoundingBox then

clip;
end

end
else

PixelColor=NUTColorLookup(RayPosition);
end

end
return PixelColor

NUT traversal refers to the iterations that extend a ray forward
within the same NUT. The shader always keeps track of the last in-
tersections between the ray and three cell boundary planes perpen-
dicular to the coordinate axes. In general, each forward propulsion
moves the tip of the ray to the next cell boundary plane perpendicu-
lar to one of the three coordinate axes. That means, only one of the
recorded ray-plane intersections has to be updated, i.e. one next cell
boundary query, in each traversal iteration to ascertain the boundary
plane where the ray enters the next cell. As shown in Figure 14a,
given the precomputed j numbers in the metadata array, each next
cell boundary query only performs two native texture lookups of
the metadata array, same cost as a random NUT access. Therefore,
NUT traversal is very efficient.

Redirection landing is the process that guides the tip of the ray in
one NUT to land in a redirected NUT. It involves three steps. First,
the redirection information (3 pixels) must be fetched from the end
of the header of the current higher-level NUT. This is followed by a
ray transformation based on the rotation and offset associated with
the redirection. Second, the basic information stored in pixel num-
ber 6 to 11 of the header of the lower-level NUT must be retrieved.
Finally, since the boundary of the lower-level NUT does not nec-
essarily align with the higher-level NUT, the x, y and z indices
and the size of the cell where the ray lands in the lower-level NUT
must be established. That involves three random NUT lookups and
three cell boundary position queries, as shown in Figure 14b. These
three steps together make redirection landing a resource-demanding
task. When moving down the hierarchy, a stack-like mechanism

Figure 14: (a) Same-level NUT traversal. When the ray touches a
horizontal cell boundary at the red dot, the height of the next cell
is found by looking up the metadata y array. The j numbers tell
which metadata pixel contains the next boundary position. The dif-
ference between the next boundary and the current one is the cell
height. The blue cells are transparent cells that do not stop the ray
but only affect the output color. All hashed cells represent empty
cells. (b) Redirection landing. After vital information of the lower-
level NUT is loaded, the cell in yellow will be found by heuristic
lookup followed by retrieving the cell boundary planes for subse-
quent traversal.

is maintained to temporarily store the cell boundary information
for detecting if a ray has exited the parent cells and to reduce the
number of lookups when returning to the upper level. The number
of maximum iterations needed depends on the complexity of the
building model. Normally a detailed building model would not re-
quire more than 10 iterations as most NUTs have small dimensions.
However, self-repeating (i.e. object wrapping) often requires much
more iterations. Experiments indicate that usually 20-50 iterations
are sufficient most of the time.

Note that rendering NUT models that contain many quadric surface
cells could be considerably slower than pure rectangular structures.
The degree of slowdown depends on many factors. To have a better
understanding, we have performed experiments and found that for
typical structures where quadric surface cells cover less than 10% of
the total projected screen area, the degree of slowdown in rendering
is also less than 10%.

6.1 Implementation

The HNI shader is built using DirectX 11 HLSL with Shader Model
5.0. Due to the unique nature of NUT, only nearest- pixel texture
sampling is needed. Any higher-order filtering is irrelevant because
sharp color changes between adjacent pixels are necessary when we
represent features such as wall boundaries, material boundaries and
sharp edges. In fact, texture filtering is not applied at all for HNI
lookup since, otherwise, the shader could slow down by a factor
of 10. In practice, all HNIs and texture atlases are tiled into one or
more 4096×4096 atlas images to avoid frequent texture switching.

Ray casting runs entirely on the GPU. The CPU performs front-to-
back sorting on the bounding boxes every few seconds so that early
depth culling can be used to prevent unnecessary computation on
invisible objects behind the front rows of buildings. Level-of-detail
simplification (using visual summaries, see Figure 7 and Algorithm
1) is used in the ray caster to achieve faster rendering and less alias-
ing on distant buildings.

NUT-oriented ray casting can seamlessly mix with ordinary mesh
rendering because when a ray hits a solid, the depth value is cal-
culated in the same way an ordinary triangle is rendered. The Eu-



ropean city in Figure 1 is such an example. Therefore, NUT-based
modeling can be integrated with most existing modeling techniques
to produce realistic and memory-efficient urban models.

6.2 Examples

Figure 15 shows renderings of a modern city model (details can be
found in the next section). All the building elements are represented
geometrically, and every window of every building is represented
individually. The NUT representation is also efficient in modeling
interior structures. Figure 16a shows the interior of a multi-level
car park with clearly visible pillars. Figure 16b shows the interior
of a house modeled using NUT. Figure 17 shows screen shots of the
European city. Refer to the accompanying video for further details
of these building models and a fly-by of the cities.

Figure 15: (a) Model of a 53-story apartment building with NUT
resolution 233× 19, 17.3KB. (b) Closeup view of the windows of a
detailed model with NUT resolution 229× 12, 10.7KB. (b) Distant
view of a district.

Figure 16: (a) Car park model, same model as in Figure 15b. (b)
Exterior and interior of a house represented in a single NUT image
with resolution 214× 25, 20.9KB.

7 Comparisons

In this section we compare our NUT representation with a few other
methods. We use two large-scale city models in our comparisons.
The first one is a city with 5,061 high-rise buildings, most of which
are over 20 stories, constructed entirely using NUTs. The second
one is a European-style city with 40,400 4-6 story buildings. It was
modeled using both NUTs and meshes (for parts incompatible with
NUT, such as roofs). In fact simple angled roofs can be embedded
directly into the NUT structure and it is far more efficient that way
but we chose to model them using meshes to demonstrate the inter-
operability between NUTs and meshes. Although the same build-
ings are placed repeatedly in the cities, every building instance is
treated as a distinct building with data duplicated to simulate a gen-
uinely large-scale city model. Refer to Table 2 for the data size of

Figure 17: (a) Distant view of the European city model. (b)
Closeup view of (a). Note the details, such as the interior of the
buildings, are modeled using NUT with the data size less than
10KB. The roofs are mesh models. (c) A highly detailed European-
style house modeled entirely using NUT (including the roof and the
curved surfaces) and some material textures. This model uses all
features offered by NUT including object tiling, redirection, object
rotation, quadric surface cells and texture mapping. The NUT reso-
lution is 211×13, and the size of the model is 10.7KB. (d) A hybrid
NUT/Mesh church model in the scene. (e) Detailed building models
with shops and cafes. All objects in this figure are represented using
NUTs. (f) A hospital modeled using NUT with rotational redirec-
tion.

the two city models. Unless otherwise stated, all experiments were
conducted on an NVidia GTX580 with 2GB video memory and the
screen resolution is 1280 × 720. The maximum number of itera-
tions in the pixel shader was set to 50 by default. The average frame
rates of the modern city and the European city are 49 fps and 30 fps,
respectively.

7.1 Comparisons with Standard Representations

We first compare the proposed technique with ordinary mesh-based
models as well as object instancing. Both space efficiency and ren-
dering efficiency are compared for the three methods. In the ex-
periments, city models with different numbers of distinct buildings
were built using NUT. Each model was then converted to a mesh
model and simplified by removing all redundant vertices and trian-
gles. For the model based on instancing, all identical floors at the
middle of the building were replaced by floor instances so that the
amount of mesh data has been substantially reduced. We instanti-
ated the model at the floor level because a finer level of instantiation
would give rise to better compression ratios on models based on in-
stancing or NUT. For the purpose of comparison, instantiation at
the floor level is already sufficient.



Cities Bldgs. NUT/Mesh Size PNG ETC / Size
Modern 5,061 42M / - 10.6M 671 Mil. / 37G
European 40,400 229M / 300M 60.5M 1.36 Bil. / 61G

Table 2: Cities built using NUTs. PNG denotes the size of PNG-
compressed NUT images. ETC means equivalent triangle count,
which refers to the total number of triangles in an equivalent mesh
model.

The models were then rendered using a set of viewpoints. Table 3
and Table 4 summarize the results.

No. of Bldgs. 225 900 2116 8464
Method VM TC VM TC VM TC VM TC
NUT 2.3 - 9 - 21 - 85 -
Instancing 27.9 1.5M 111 5.3M 262 12M 1048 50M
Ordinary 148 7.8M 593 28M 1394 65M 5579 261M

Table 3: Memory consumption comparisons between three model-
ing methods. VM represents the amount of video memory required
for the model, and its unit is megabyte. TC represents the triangle
count of the model.

No. of Bldgs. 225 900 2116 8464
NUT 61.2 54.2 51.6 34
Instancing 71.9 15.9 6.8 -
Ordinary 114.0 34.4 - -

Table 4: Frame rate comparisons among the three modeling meth-
ods. When the model grows too large, the meshes are not able to fit
into the GPU memory. So the frame rates are unknown for some of
the above tests.

It can be seen from Table 3 that the NUT-based model is an order
of magnitude more space-efficient than instancing and dozens of
times more efficient than using mesh. Note that the testing models
used for comparisons are only fairly complex to allow several hun-
dreds of their mesh-based variations to fit into the video memory;
otherwise it would be difficult to compare the methods. The degree
of saving in the size of memory footprint increases as the model
complexity grows. For example, the space saving factors for the
models shown in the accompanying video are typically in the range
of 300-400.

Table 4 shows that the ordinary mesh representation is extremely
fast when the data size is not overly large. Instancing is much
slower because it requires extra vertex transforms. When thousands
of mesh-based buildings are inside the viewport, most of the render-
ing time is spent on vertex shaders and the extra vertex transforms
become an important negative factor. Due to its complexity, the
NUT representation is the slowest among the three under low data
load. Nevertheless, the frame rates on both mesh-based models are
inversely proportional to the mesh size while the frame rates on
NUT stays relatively constant as the city size grows. This is mostly
due to the fact that ray casting is an image-space operation indepen-
dent of the actual triangle count. Although ray-casting itself is slow,
with the help of front-to-back sorting and early depth culling, the
total number of times ray-surface intersections are computed does
not deviate much from the number of screen pixels. Therefore it is
advantageous when rendering extremely large environments.

The proposed representation has also been compared with kd-trees
for better understanding of the performance of ray-casting on NUT
models. Since our models are complicated, the kd-tree represen-
tation of a building has at least tens of megabytes and it would be
difficult to compare rendering performance at the scale of a city.

Instead we chose to use two buildings from our modern city scene
in our comparisons. Kd-tree based ray-casting was implemented
using CUDA and was run on the same GPU. Table 5 shows that ray
casting the NUT hierarchy is around 30% to 100% more efficient
than the kd-tree equivalent mainly due to the fact that a spatial par-
tition in a kd-tree affects the current subspace only while a partition
in NUT affects all cells in the same level. Therefore there are a lot
more splits and levels in the kd-tree than in the NUT hierarchy.

Model kd-tree size / fps NUT dimension / size / fps
Tower (Fig. 15a) 122.7M / 89 233× 19 / 17.3K / 122
Gray (Fig. 15b) 36.7M / 87 229× 12 / 10.7K / 161

Table 5: Comparisons between NUT ray casting and kd-tree ac-
celerated ray casting. The frame rates are recorded with a closeup
view of the buildings which fully cover the screen.

7.2 Comparisons with Grammar-Based Facade Mod-
els

To demonstrate the modeling efficiency of our representation, it has
been compared with [Haegler et al. 2010] (GBEF), a very compact
representation specifically for modeling indentations over building
facades, which can be rendered efficiently on GPUs. While NUT
can be used for modeling far more general 3D structures than fa-
cade indentations, for the sake of comparison, a few simple facade
models similar to M1, M2 and M8 in their paper were created using
NUT (Figure 18). Since there is no information about the exact ge-
ometry of the three facades [Haegler et al. 2010], we modeled them
with two different indentations.

Figure 18: Facade models used for comparisons.

There are two alternatives for the construction of the NUT. The first
one adopts a texture atlas as what GBEF does and creates simple
NUT hierarchies to position the textures. With this configuration,
each NUT only requires one level of redirection. The second al-
ternative exploits the color embedding ability of NUT to eliminate
the use of a texture atlas at the cost of slightly more complicated
NUT hierarchies. In this case, M2 needs one more level of redi-
rection. Table 6 shows a comparison of model size between GBEF
and NUT. Note that the size of the texture atlas must be added to
the values in the GBEF and NUT (opt.1) columns in the table. For
facades like M1, M2 and M8, each patch in the texture atlas should
have at least 32 × 32 pixels, which already cost 3KB. A few such
texture patches make the size of the atlas much larger than the ge-
ometric data itself. The effective size per facade really depends on
the degree of reuse of the texture patches. If the city was procedu-
rally generated and the same component was used repeatedly, the
size would be small. On the other hand, if every building in the city
was different as in an accurate recreation of an existing city where
most buildings are rather unique, the effective size of a facade could
be a lot larger than the geometric data alone. NUT-based modeling,
using the second alternative, has its advantages under such condi-
tions because it eliminates the need of structure-dependent texture
maps and only relies on truly reusable material texture maps.

In terms of rendering efficiency, we found that direct compari-



Facade GBEF * NUT (opt. 1) * NUT (opt. 2)
M1 0.7K 18× 3 / 0.21K 30× 8 / 0.94K
M2 1.4K 46× 3 / 0.54K 49× 8 / 1.53K
M8 1.0K 33× 6 / 0.77K 74× 8 / 2.31K

Table 6: Size comparisons between NUT and GBEF. Bounding
box and triangle data have been omitted because NUT uses only
7 floating point numbers (offset, size and angle of rotation) to de-
fine a bounding box and the geometry of the bounding box is shared
among all NUTs. * Texture atlas size is not included.

son with GBEF is hard because our renderer does not run on the
hardware they used for testing and we do not have access to their
datasets. Nonetheless, we have included our testing results in Table
7 for reference. We have created a simplified version of our Euro-
pean city, which is of similar scale as the Munich model in [Hae-
gler et al. 2010]. In our model, NUT-based facades (opt. 2) similar
to M1, M2 and M8 are embedded in the front and back sides of
the buildings. There are a total of 40,400 buildings and therefore
80,800 facades in the scene. Note that the mixture of buildings and
the complexity of individual buildings in our model could be quite
different from the dataset in [Haegler et al. 2010]. Since the facade
models thus created are much simpler than the other NUT models
used in other scenes, the maximum number of ray-casting iterations
is set to 7.

Again, we stress that our NUT representation is capable of model-
ing general building structures and elements while GBEF was de-
signed for modeling facades only.

Methods M1 Large city size and frame time
GBEF* 2-5ms Partial Munich, 10 - 18ms
NUT 0.2-3.8ms† European city, 40K buildings, 5 - 6.7ms ‡

Table 7: Rendering speed comparisons between GBEF and NUT.
All experiments were tested at the resolution of 1024×768. * Num-
bers from their paper (using an Nvidia Quadro4800). The viewing
path and the percentage of screen coverage are unknown. † The
M1 NUT model is rendered in 3.8ms at 100% screen coverage and
1.1ms at 25% screen coverage. ‡ Frame rate with 70% screen cov-
erage. The European city NUT model uses 120MB. NUT rendering
was tested on an NVidia GTX680.

7.3 Comparisons under Distant Viewing Conditions

NUT relies on its hierarchical structure for controlling the balance
of performance and quality. For buildings with small projected
screen areas, it is not necessary to descend to the deepest level of
the NUT hierarchy but return the Visual Summary S stored in NUTs
at higher levels. The shader can determine at run time whether it
should return early according to an estimated projected area of a
redirection cell. Our representation is compared against [Cignoni
et al. 2007], which was designed for distant city viewing, to an-
alyze the rendering performance on large-scale city models when
they are viewed from a distance.

We implemented their algorithm and converted our modern city
model to a BlockMap representation [Cignoni et al. 2007]. Their al-
gorithm can use a wide range of map size to produce different visual
effects. We set the size of a BlockMap to 64:256 such that the total
size of all BlockMaps for the city is comparable to the size of the
NUT model. BlockMaps were designed to represent buildings with
a projected height on the screen equal to a few pixels only. At that
resolution, it is hard to compare the visual quality. Therefore, we
compare the visual quality of the entire scene using the BlockMap

algorithm and our NUT-oriented ray-caster but using low quality
settings which render the buildings from a distance between 1km
and 5km. Figure 19 shows a visual comparison between these two
methods. It can be seen from the figure that although BlockMap can
capture building height changes rather accurately, the 64-pixel ver-
tical resolution makes it hard to capture vertical color changes over
high-rise buildings. In contrast, the NUT model shows the win-
dows clearly even when limited to only two levels of redirection. It
can be seen from Table 8 that the NUT model also outperforms the
BlockMap model in both data size and rendering speed. In addition,
since BlockMap was designed for handling distant viewing condi-
tions only, it needs to be used with another urban model to visualize
a whole city and that often results in a visible seam between these
two types of models. In contrast, the NUT representation caters for
viewing from both short and long distances, and supports a gradual
transition between coarse and detailed models.

Figure 19: Visual quality comparisons between BlockMap and
low-resolution NUTs at the same viewpoint. Top row: BlockMaps
with size 64:256. Middle row: NUT models limited to 2 levels of
redirection. Bottom row: The original model. Images in the right
column are zoom-in views of those in the left column.

Methods Data size Average fps
BlockMap 72M 75
NUT 42M 156 / 85 †

Table 8: Comparisons on data size and rendering speed between
BlockMap and NUT using the modern city model. The BlockMap
city model consist of 1024 64:256 maps. The frame rates were
recorded for views with around 80% screen coverage. † NUT ren-
derings with a maximum of 1 and 2 levels of redirection, respec-
tively.

7.4 Limitations

Designed to reduce the overall data size for modeling large-scale ur-
ban scenes, NUT has its limitations in representing certain classes
of structures. Most obviously, NUT’s axis-aligned and regular na-
ture has limited its application to irregular architectural structures
such as the Sydney Opera House, Melbourne’s Federation Square
or London’s the Gherkin. NUT is not very efficient in representing
certain kinds of common regular structures found in cities either.
For example, supporting structures such as trusses or braced frames
can only be modeled using complicated rotational redirections. Ad-
ditionally, honeycomb structures, sky domes and anticlastic tensile
structures often found in contemporary buildings are also difficult
to model using NUTs. In all such cases, meshes would be a more
effective representation over NUTs.



8 Conclusions and Further Work

We have presented a highly-efficient modeling and rendering
method for large-scale urban scenes. This method divides a 3D vol-
umetric space using a non-uniform grid which can be nested within
each other to represent detailed structures in the interior and exterior
of a building. It offers strong modeling capabilities while much less
memory is required than the conventional mesh-based representa-
tion. Therefore it enables the transmission of large and detailed city
models over the Internet for interactive visualization. Experimen-
tal results show that our method is suitable for the visualization of
extremely large city models with tens of thousands of buildings.

The proposed method is particularly suitable for Building Infor-
mation Modeling (BIM) for two reasons. First, its small memory
footprint lends itself to modeling shareable buildings over the web
for improving collaboration and enhancing productivity. Second,
its inherent spatial subdivision makes a building’s structural data
measurable and searchable.

At present, rendering the NUT structure relies on computationally
intensive ray casting. Although interactive frame rates have been
achieved on modern GPUs, ray casting leaves little room for the
GPU to perform other tasks. Therefore, it is desirable to develop a
geometric shader on the GPU to perform on-the-fly NUT-to-mesh
conversion.

Similar to other GPU ray casting algorithms, HNI ray casting does
not benefit from the GPU’s own anti-aliasing capability because it
is designed for meshes only. At present, our ray-casting results are
passed through a post-rendering image-based anti-aliasing shader
FXAA [Lottes 2009] (Figure 15) before being displayed on the
screen. An adaptive ray caster for NUTs that directly supports an-
tialiasing would be very useful.

Our semi-automatic mesh-to-NUT converter presently only works
for mesh models. However, building the mesh model itself is a
labor intensive task and most existing buildings do not have their
mesh models already built. Therefore, it will be our future research
to develop a method that constructs NUTs directly from photos or
laser scans in a way similar to the techniques in [Xiao et al. 2008],
[Lin et al. 2011] and [Nan et al. 2010].

Acknowledgements

We would like to thank Li Cao for making building models in our
sample cases. We would like to thank Yufei Li for helpful dis-
cussions. This research is supported by the State Key Program of
NSFC Project (60933008).

References
ALI, S., YE, J., RAZDAN, A., AND WONKA, P. 2009. Compressed facade dis-

placement maps. In IEEE Transaction on Visualization and Computer Graphics,
262–273.

ANDUJAR, C., BRUNET, P., CHICA, A., AND NAVAZO, I. 2010. Visualization of
large-scale urban models through multi-level relief impostors. Comput. Graph.
Forum, 2456–2468.

CHEN, S. E. 1995. Quicktime vr: an image-based approach to virtual environment
navigation. In Proceedings of the 22nd annual conference on Computer graphics
and interactive techniques, ACM, New York, NY, USA, SIGGRAPH ’95, 29–38.

CIGNONI, P., DI BENEDETTO, M., GANOVELLI, F., GOBBETTI, E., MARTON, F.,
AND SCOPIGNO, R. 2007. Ray-casted blockmaps for large urban models visual-
ization. computer graphics forum. 405413.

CRASSIN, C., NEYRET, F., LEFEBVRE, S., AND EISEMANN, E. 2009. Gigavoxels:
ray-guided streaming for efficient and detailed voxel rendering. In Proceedings of
the 2009 symposium on Interactive 3D graphics and games, ACM, New York, NY,
USA, I3D ’09, 15–22.

CRIVAT, B., PETCULESCU, C., AND NETZ, A. 2011. Random access in run-length
encoded structures. US Patent, US 7952499 (May).

DICK, C., KRÜGER, J., AND WESTERMANN, R. 2009. GPU Ray-Casting for Scal-
able Terrain Rendering. In Proceedings of Eurographics 2009.

DÖLLNER, J., AND BUCHHOLZ, H. 2005. Continuous level-of-detail modeling of
buildings in 3d city models. In Proceedings of the 13th annual ACM international
workshop on Geographic information systems, ACM, New York, NY, USA, GIS
’05, 173–181.

DYKES, J. 2000. An approach to virtual environments for visualization using linked
geo-referenced panoramic imagery. Computers, Environment and Urban Systems
24, 2, 127 – 152.

GU, X., GORTLER, S. J., AND HOPPE, H. 2002. Geometry images. ACM Trans.
Graph. 21, 3 (July), 355–361.

HAEGLER, S., WONKA, P., ARISONA, S. M., GOOL, L. V., AND MÜLLER, P.
2010. Grammar-based encoding of facades. In Proceedings of the 21st Eurograph-
ics conference on Rendering, Eurographics Association, Aire-la-Ville, Switzerland,
Switzerland, EGSR’10, 1479–1487.

JESCHKE, S., MANTLER, S., AND WIMMER, M. 2007. Interactive smooth and
curved shell mapping. In Proceedings of the 18th Eurographics conference on Ren-
dering Techniques, Eurographics Association, Aire-la-Ville, Switzerland, Switzer-
land, EGSR’07, 351–360.

JYLÄNKI, J. 2010. A thousand ways to pack the bin - a practical
approach to two-dimensional rectangle bin packing. Online resource at
http://clb.demon.fi/files/RectangleBinPack.pdf .

KELLY, T., AND WONKA, P. 2011. Interactive architectural modeling with procedural
extrusions. ACM Trans. Graph. 30, 2 (Apr.), 14:1–14:15.

KOLBE, T. H., GRGER, G., AND PLMER, L. 2005. CityGMLInteroperable access to
3D city models. No. March. Springer, 2123.

LIN, J., COHEN-OR, D., ZHANG, H., LIANG, C., SHARF, A., DEUSSEN, O., AND

CHEN, B. 2011. Structure-preserving retargeting of irregular 3d architecture. ACM
Trans. Graph. 30, 6 (Dec.), 183:1–183:10.

LOTTES, T., 2009. FXAA. White paper, Nvidia, Febuary.

MANTLER, S., AND JESCHKE, S. 2006. Interactive landscape visualization using
gpu ray casting. In Proceedings of the 4th international conference on Computer
graphics and interactive techniques in Australasia and Southeast Asia, ACM, New
York, NY, USA, GRAPHITE ’06, 117–126.

MARVIE, J.-E., GAUTRON, P., HIRTZLIN, P., AND SOURIMANT, G. 2011. Render-
time procedural per-pixel geometry generation. In Graphics Interface’11, 167–174.

MARVIE, J., BURON, C., GAUTRON, P., HIRTZLIN, P., AND SOURIMANT, G. 2012.
Gpu shape grammars.

MÜLLER, P., WONKA, P., HAEGLER, S., ULMER, A., AND VAN GOOL, L. 2006.
Procedural modeling of buildings. ACM Trans. Graph. 25, 3 (July), 614–623.

MÜLLER, P., ZENG, G., WONKA, P., AND VAN GOOL, L. 2007. Image-based
procedural modeling of facades. ACM Trans. Graph. 26, 3 (July).

MUSIALSKI, P., WIMMER, M., AND WONKA, P. 2012. Interactive coherence-based
façade modeling. Computer Graphics Forum (Proceedings of EUROGRAPHICS
2012) 31, 2 (May), 661–670.

NAN, L., SHARF, A., ZHANG, H., COHEN-OR, D., AND CHEN, B. 2010. Smart-
boxes for interactive urban reconstruction. ACM Trans. Graph. 29 (July), 93:1–
93:10.

NEBIKER, S., BLEISCH, S., AND CHRISTEN, M. 2010. Rich point clouds in virtual
globes - a new paradigm in city modeling? Computers, Environment and Urban
Systems, 508–517.

SHEN, C.-H., HUANG, S.-S., FU, H., AND HU, S.-M. 2011. Adaptive partitioning
of urban facades. ACM Trans. Graph. 30, 6 (Dec.), 184:1–184:10.

XIAO, J., FANG, T., TAN, P., ZHAO, P., OFEK, E., AND QUAN, L. 2008. Image-
based facade modeling. ACM Trans. Graph. 27, 5 (Dec.), 161:1–161:10.

XIAO, J., FANG, T., ZHAO, P., LHUILLIER, M., AND QUAN, L. 2009. Image-based
street-side city modeling. ACM Trans. Graph. 28, 5 (Dec.), 114:1–114:12.

ZHOU, K., REN, Z., LIN, S., BAO, H., GUO, B., AND SHUM, H.-Y. 2008. Real-
time smoke rendering using compensated ray marching. ACM Trans. Graph. 27, 3
(Aug.), 36:1–36:12.


