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Abstract

Implicit functions have a wide range of applications in entertain-
ment, engineering and medical imaging. A standard two-phase im-
plicit function only represents the interior and exterior of a single
object. To facilitate solid modeling of heterogeneous objects with
multiple internal regions, object-space multiphase implicit func-
tions are much desired. Multiphase implicit functions have much
potential in modeling natural organisms, heterogeneous mechani-
cal parts and anatomical atlases. In this paper, we introduce a novel
class of object-space multiphase implicit functions that are capa-
ble of accurately and compactly representing objects with multiple
internal regions. Our proposed multiphase implicit functions facili-
tate true object-space geometric modeling of heterogeneous objects
with non-manifold features. We present multiple methods to cre-
ate object-space multiphase implicit functions from existing data,
including meshes and segmented medical images. Our algorithms
are inspired by machine learning algorithms for training multicat-
egory max-margin classifiers. Comparisons demonstrate that our
method achieves an error rate one order of magnitude smaller than
alternative techniques.
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1 Introduction

Implicit functions have been frequently used for solid modeling.
In addition, they have a wide range of other applications in enter-
tainment, engineering and medical imaging. A standard two-phase
implicit function only returns a signed scalar number, which clas-
sifies points into two regions representing the interior and exterior
of a single object. To facilitate solid modeling of heterogeneous
objects with multiple internal regions, object-space multiphase im-
plicit functions are much desired.

Nevertheless, developing a true multiphase implicit representation
imposes many challenges. First, a multiphase implicit function
should be able to perform multiway region membership tests. Tra-
ditional two-phase implicits use a sign to indicate two-way region
membership. How can we generalize this two-way test to a mul-
tiway test? Second, an object with multiple internal regions gives
rise to singularities (non-manifold features), where three or more
regions are simultaneously adjacent. How can a multiphase implicit
function accurately and compactly represent these non-manifold
features as well as their incident surfaces? Third, many operations,
such as blending and deformation, not only need the region mem-
bership of a point, but also require some estimation of distance be-
tween the point and the implicit surface. How can we enable such
distance estimation in a multiphase implicit function?

(a)

(b) (c)

Figure 1: Two examples of object-space multiphase implicit func-
tions. (a) A MIF for a segmented fruit fly brain (original data cour-
tesy of Howard Hughes Medical Institute), (b)-(c) two views of a
MIF converted from multiple manifold meshes, including the NEP-
TUNE (provided courtesy of INRIA by AIM@SHAPE-VISIONAIR
Shape Repository) and cells from the Weaire-Phelan structure.

Albeit being challenging to develop, a multiphase implicit repre-
sentation opens the door to many practical applications (Fig. 2).
Many natural organisms and materials, such as the human body,
fruits, and rocks, have complex volumetric compartments and struc-
tures. A multiphase implicit representation offers a systematic way
to model the internal geometry of such natural objects and materi-
als. Another usage is modeling heterogeneous solids made of dif-
ferent constituent materials, such as different types of metal. Such
heterogeneous solids are ubiquitous, including all sorts of mechan-
ical parts and man-made machinery. In biomedical research and
education, an anatomical atlas typically consists of multiple spatial
regions, where annotations and other region-specific attributes are
recorded. Modeling an atlas with a multiphase implicit offers mul-
tiple advantages, including faster region queries and better support
for topological variations.

In this paper, we introduce a novel class of object-space multi-
phase implicit functions that are capable of accurately and com-
pactly representing objects with multiple internal regions. Our pro-
posed multiphase implicit functions facilitate true object-space ge-
ometric modeling of heterogeneous objects with non-manifold fea-
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Figure 2: Examples of heterogeneous volumes with complex struc-
tures. From left to right: human head, tomato, combustion chamber
engine, which is made of different constituent materials.

tures. Since there exist multiple scalar components in a vector-
valued multiphase implicit function, a multiway region member-
ship test can be conducted through comparisons among the scalar
components. Every pair of adjacent regions are separated by a sur-
face blended from multiple polynomial pieces. Each polynomial
piece corresponds to a hyperplane in a higher-dimensional space.
To facilitate distance computation, we further make our multiphase
implicit function represent a signed distance to the bounding hyper-
planes of a region.

We present multiple methods to create object-space multiphase im-
plicit functions from existing data. In the first method, we rely
on an efficient linear programming formulation to compute a mul-
tiphase implicit function from labeled data, such as a segmented
medical image. Our formulation is inspired by machine learning
algorithms for training multicategory support vector machines. In
the second method, we develop algorithms for creating multiphase
implicit functions from existing manifold or non-manifold meshes.

We have successfully applied our algorithms and created multi-
phase implicit functions from multiple data sources, including arti-
ficial data, images and meshes representing biomedical contents as
well as meshes representing heterogeneous mechanical parts. Com-
parisons demonstrate that our method achieves an error rate one
order of magnitude smaller than alternative techniques.

2 Related Work

An implicit function F can be defined in various forms. It can
have a closed analytical form. For example, the zero isosurface of
F (x, y, z) = x2 + y2 + z2− 1 defines a unit sphere. Note that it is
hard for a single analytical function to describe sharp features, such
as corners and creases. The second choice is a regular discrete grid,
and an interpolation scheme, such as trilinear and tricubic, is needed
to evaluate the function value at an arbitrary point. The Marching
Cubes algorithm [Lorensen and Cline 1987] can be used to extract
the zero isosurface as a triangle mesh. A powerful approach de-
fines F through the blending of a set of basic implicit shapes [Blinn
1982; Wyvill et al. 1986], called blobs or meta balls. To increase
the complexity of implicit models, Ricci [1973] organizes multi-
ple implicit surfaces into a CSG tree to construct complex solid
geometries from simpler primitives. Wyvill et al. [1999] proposes
blob trees that further incorporate blending and warping operations.
To perform collision resolution, Gascuel [1993] introduced an ef-
fective method for modeling multiple contacting implicit surfaces.
This method ensures there is no interpenetration between any pair
of contacting surfaces. However, it does not allow multiple contact
points, which give rise to non-manifold features that can be repre-
sented by our method in this paper.

An implicit function can also be defined through data-driven meth-
ods. One option is for F to interpolate a set of irregularly dis-
tributed points. There could be more point samples at regions with

fine details. Frequently used interpolation schemes include vari-
ous forms of basis functions [Carr et al. 2001; Turk and O’Brien
2002], such as thin-plate splines and Gaussian radial basis functions
(RBFs). Alternatively, F can be defined in a piecewise manner us-
ing an adaptive space subdivision scheme. For example, if an octree
is adopted to partition the space into a set of nodes, a simple closed-
form implicit function, such as a second-order polynomial, can be
used to describe the local shape of the surface confined within every
octree node [Frisken et al. 2000; Ohtake et al. 2003]. Since the local
shapes are defined independently, a blending scheme is also needed
to produce a final smooth implicit surface across different nodes.
All the aforementioned methods are designed for representing ob-
jects with a single interior whose boundary forms a manifold. They
are unable to represent volume objects with internal non-manifold
features.

Support vector machines (SVMs) have previously been applied
to implicit surface modeling and deformation field representation
[Schölkopf et al. 2005; Steinke et al. 2005]. However, these meth-
ods use global kernel SVMs while our method in this paper relies
on adaptive space subdivision and locally linear/polynomial SVMs
that are fast to train. More importantly, these methods use two-class
SVMs for modeling traditional two-phase implicit surfaces while
our method is inspired by multicategory SVMs and models the ge-
ometry of heterogeneous volumes with non-manifold features.

In the context of multiphase level set methods [Zhao et al. 1996;
Losasso et al. 2006], researchers have been using vector-valued
implicit functions to define multiphase level set functions. These
vector-valued implicit functions are not defined for the purpose of
geometric modeling, but for simulations solved by a multiphase
level set method. Therefore, they are all defined on a regular dis-
crete grid used by the multiphase level set method. Non-manifold
implicit surfaces in [Yamazaki et al. 2002] and the multi-material
volumes in [Feng et al. 2010] are also defined similarly. The most
significant difference between our multiphase implicit function and
these vector-valued implicit functions is that our multiphase im-
plicit function has a compact piecewise polynomial form and is de-
fined using an adaptively subdivided octree. Therefore, our multi-
phase implicit function is more suitable for object-space resolution-
independent geometric modeling. Note that the method in [Zhang
et al. 2010] can be used for extracting tetrahedral and hexahedral
meshes from a composite domain made up of multiple materials.

Volume fraction data [Takayama et al. 2010; Anderson et al. 2010]
is another representation of multi-material objects. It stores vol-
ume fractions of different materials in a grid of cells. However,
the boundary of each material cannot be uniquely inferred from
the given volume fractions. Thus, it cannot directly support re-
gion membership tests. In contrast, our MIF clearly defines region
boundaries and can efficiently support region queries.

3 Multiphase Implicit Functions

Multiphase implicit functions, MIF for short, is a type of vector-
valued implicit functions for describing a partition of the 3D space
into nonoverlapping regions so that the region membership of any
point can be conveniently obtained. A MIF has multiple scalar
components, the number of which is the same as the number of re-
gions. Each scalar component is a continuous function of 3D coor-
dinates. The scalar components in a MIF are not mutually indepen-
dent. Within every region, the scalar component corresponding to
that region takes the largest values among all components [Stalling
et al. 1998; Feng et al. 2010].

Let (Ω1,Ω2, . . . ,Ωm) be a decomposition of R3 such that
∪mi=1Ωi = R3 and Vol(Ωi∩Ωj) = 0, i 6= j, which means any two
regions do not overlap except at their shared boundary, which has
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zero volume. Let F(x) = [F1(x)F2(x) . . . Fm(x)]T , x ∈ R3, be
a vector-valued continuous function defined on R3 . F is a MIF if
the following conditions hold: i) Fk(x) = maxi Fi(x) iff x ∈ Ωk;
ii) if x belongs to the interior of Ωk, there does not exist l(6= k)
such that Fl(x) = Fk(x). The second condition emphasizes that
the scalar components must have a unique maximum at the inte-
rior of a region. Figure 3 visualizes a multiphase implicit function
defined for four regions. Note that the coupling among scalar com-
ponents give rise to high-quality consistent region boundaries.

Figure 3: Two views of a multiphase implicit function for four re-
gions. Note that region boundaries are cleanly defined without any
penetrations and gaps.

We can further verify the following facts. Along a boundary surface
shared by two adjacent regions, the two scalar components corre-
sponding to these two regions take equal values that are strictly
larger than the rest of the components. Likewise, along a curve
or point shared by three or more simultaneously adjacent regions,
the scalar components corresponding to these adjacent regions take
equal values that are strictly larger than the rest of the components.

3.1 Polynomial Multiphase Implicits from Labeled Data

Suppose a set of labeled data points are available for a decompo-
sition of the 3D space into multiple regions. Each data point is
associated with 3D coordinates and a label indicating its region
membership. In this section, we focus on computing an analytical
MIF from such labeled data points, and adopt multivariate polyno-
mials as the class of analytical implicit functions. Advantages of
such implicit functions include compactness and resolution inde-
pendence. Examples of labeled data include segmented and labeled
3D biomedical images as well as labeled sample points around a
closed non-manifold mesh, whose compartments define multiple
regions.

Note that for a two-phase implicit function, the sign of the func-
tion is more important than the magnitude of the function value
when we determine whether a point belongs to the interior of an
object. Likewise, for a MIF, the relative magnitude of its scalar
components is more important than their standalone values. This
argument essentially means that the region label associated with a
data point is more important than any prescribed function values at
that point. Thus our goal should be seeking an implicit function that
maximizes the accuracy of predicted region labels rather than one
that minimizes an implicit surface fitting error. This goal is actually
the same as classifier training in machine learning. More interest-
ingly, support vector machines (SVMs) [Vapnik 1998] are a type
of classifiers that use an implicit function in a multiple dimensional
space to predict the class label of any testing data point. Inspired by
multicategory support vector machines [Bredensteiner and Bennett
1999; Oladunni and Singhal 2009], we formulate the optimization
of a MIF according to the training of a multicategory SVM where

region labels in our problem are treated as class labels used by the
SVM.

Let {(xi, li)}ni=1 be a set of labeled training data, where xi ∈ R3

denotes the 3D position of a data point and li denotes its associ-
ated region label. Note that 1 ≤ li ≤ m, where m is the num-
ber of regions. In the optimal MIF we seek, we first consider the
case where each scalar component is a linear function. That is,
Fj(x) = wT

j x + bj , j = 1, ...,m. Since region boundaries have
zero volume, without loss of generality, we assume all training data
points fall inside the regions, not on their boundaries. Thus, the
definition of a MIF imposes the following inequality constraints,

(wli −wj)
Txi + (bli − bj) > 0 (1)
i = 1, . . . , n, j = 1, . . . ,m, j 6= li

Note that if we assume the training data points are linearly separa-
ble, there must exist two parallel planes between every pair of re-
gions such that there are no points from these regions between the
two planes (Figure 4(a)). The existence of such parallel planes fur-
ther indicates that there exists a positive lower bound γ so that the
left hand side of the inequalities in (1) are all greater than or equal
to γ. By scaling wj’s and bj’s by 1/γ, and reusing the same no-
tations for such scaled coefficients, the following constraints must
hold

(wli −wj)
Txi + (bli − bj) ≥ 1 (2)
i = 1, . . . , n, j = 1, . . . ,m, j 6= li

where the margin (distance) between the pair of parallel planes for
regions Ωk and Ωj becomes 2/(‖wk −wj‖). However, noisy po-
sitions in the training data can give rise to violations of linear sep-
arability (Figure 4(b)). To improve resilience in the presence of
outliers, slack variables are often introduced and the constraints in
(2) become

(wli −wj)
Txi + (bli − bj) ≥ 1− ξij ,

ξij ≥ 0, (3)
i = 1, . . . , n j = 1, . . . ,m j 6= li

Standard SVMs need to solve a quadratic programming problem,
which is expensive on large training datasets compared with linear
problems. Fortunately, there exist much more efficient variants of
multicategory SVMs, including least-squares SVMs [Suykens and
Vandewalle 1999] and linear programming SVMs [Oladunni and
Singhal 2009]. Their training time is much shorter than standard
SVMs while their classification performance is still comparable to
a standard SVM. Inspired by linear programming SVMs, we for-
mulate our objective function based on the L1 norm as follows.

min
w,b,ξ

m∑
j=1

‖wj‖1 + λ
∑
ij

ξij , (4)

where wj’s and bj’s are considered as the parameters of the multi-
phase implicit function F . The first term is a regularization term,
preventing wj’s L1 norm from becoming too large, and the second
term minimizes the classification error by minimizing the sum of
the slack variables. The first term also has an indirect effect, which
maximizes the aforementioned margins between parallel planes.
This is because when the norm of both wj and wk becomes smaller,
so does the norm of wj −wk. The objective function in (4) subject
to constraints in (3) is equivalent to the following linear program-
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( W1 - W2,  b1 - b2 )

( W2 - W3,  b2 - b3 )
( W1 - W3,  b1 - b3 )

(W1 - W2)’ X + (b1 - b2) = 1
(W1 - W2)’ X + (b1 - b2) = -1

( W1 - W2,  b1 - b2 )

( W2 - W3,  b2 - b3 )( W1 - W3,  b1 - b3 )

(W1 - W2)’ X + (b1 - b2) = 1
(W1 - W2)’ X + (b1 - b2) = -1

( W1 - W2,  b1 - b2 )

( W2 - W3,  b2 - b3 )
( W1 - W3,  b1 - b3 )

(W1 - W2)’     (X) + (b1 - b2) = 1
(W1 - W2)’     (X) + (b1 - b2) = -1

(a) (b) (c)

Figure 4: Multicategory Support Vector Machines. (a) Linear separators with margins; (b) linear separators with slack variables; (c)
polynomial separators with margins (separating hyperplanes in a higher-dimensional space).

ming problem,

min
w,s,b,ξ

m∑
j=1

∑
l

slj + λ
∑
ij

ξij

s.t. (wli −wj)
Txi + (bli − bj) ≥ 1− ξij ,

wj ≤ sj , wj ≥ −sj , (5)
ξij ≥ 0, sj ≥ 0,

i = 1, . . . , n, j = 1, . . . ,m, j 6= li,

where sj is an auxiliary vector variable representing the upper
bounds of wj’s elements, and slj is its l-th component. This linear
programming problem can be solved using many software packages
such as GLPK (GNU Linear Programming Kit) [Makhorin 2006].

Very often region boundaries are curved and not linearly separa-
ble (Figure 4(c)). A polynomial separating surface would be more
desired. We will show that the above optimization framework can
be generalized to polynomial separating surfaces. This generaliza-
tion needs the assistance of a nonlinear function ϕ(x), which maps
x = [x y z]T into a higher dimensional space. For example, if
we would like to solve for quadratic separating surfaces, ϕ(x) =
[x2 y2 z2 xy xz yz x y z], which is the second-degree polyno-
mial basis without the constant term. Once all the data points have
been mapped to such a higher dimensional space, we still follow the
above optimization framework to solve for separating hyperplanes.
Such hyperplanes in the higher dimensional space actually repre-
sent polynomial separating surfaces in the three-dimensional space.
Thus, polynomial scalar components in our MIF can be expressed
as

Fj(x) = wT
j ϕ(x) + bj , j = 1, . . . ,m, (6)

And the constraints in (3) should be rewritten as follows,

(wli −wj)
Tϕ(xi) + (bli − bj) ≥ 1− ξij ,

ξij ≥ 0, (7)
i = 1, . . . , n j = 1, . . . ,m j 6= li

Therefore, the linear programming problem for polynomial sepa-
rating surfaces should be

min
w,s,b,ξ

m∑
j=1

∑
l

slj + λ
∑
ij

ξij

s.t. (wli −wj)
Tϕ(xi) + (bli − bj) ≥ 1− ξij ,

wj ≤ sj , wj ≥ −sj , (8)
ξij ≥ 0, sj ≥ 0,

i = 1, . . . , n, j = 1, . . . ,m, j 6= li.

And the dimensionality of wj’s and sj’s has become larger.

3.2 Distance Transform as a Multiphase Implicit

Many operations, such as blending, deformation and collision pre-
diction, not only need the region membership of a given point, but
also require an estimation of closeness between the point and the
implicit surface under a distance measure. In the following, we
present a revised multiphase implicit function that facilitates dis-
tance estimation from a given point to the multiphase implicit sur-
face it represents in the higher-dimensional space ϕ(x) maps to.

Computing the distance from a mapped point ϕ(x0) to the entire
mapped multiphase implicit surface is equivalent to computing its
distance to the boundary of the mapped region that encloses ϕ(x0).
We can obtain the region membership of x0 using our MIF de-
fined in (6). Suppose x0 belongs to region Ωj , and Nj denotes the
set of regions adjacent to Ωj . According to the definition of our
MIF, the hyperplane that separates ϕ(Ωj) from an adjacent region
ϕ(Ωk)(k ∈ Nj) is

Pjk : (wj −wk)Tϕ(x) + (bj − bk) = 0.

The signed distance fromϕ(x0) to one of the bounding hyperplanes
of ϕ(Ωj), Pjk, can be computed as follows,

D(ϕ(x0), Pjk) =
(wj −wk)Tϕ(x0) + (bj − bk)

‖wj −wk‖
. (9)

Since the mapped training points are linearly separable in the higher
dimensional space (otherwise we need to further increase the di-
mension of the training space), a mapped region bounded by sep-
arating hyperplanes is always convex. Thus the distance between
ϕ(x0) and the boundary of ϕ(Ωj) is mink∈Nj (D(ϕ(x0), Pjk)).
Based on this observation, we define the following revised multi-
phase implicit function:

F ′
j(x) = min

k∈Nj

(D(ϕ(x), Pjk)), j = 1, . . . ,m, (10)

which represents exactly the same multiphase implicit surface as
that represented by Equation (6). However, its function value is
much more meaningful, and has the following properties.

• ∀x ∈ Ωj , F ′
j(x) > 0 and F ′

k(x) < 0 (k = 1, . . . ,m, k 6=
j).

• If x0 lies on the separating surface between Ωj and Ωk,
F ′
j(x0) = 0 and F ′

k(x0) = 0.

• ∀x ∈ Ω, maxj(F
′
j(x)) (j = 1, . . . ,m) is the unsigned dis-

tance from ϕ(x) to the entire mapped multiphase implicit sur-
face.

Note that if linear separators are used, the distance in Equation (9) is
exactly the 3D Euclidean distance. This is not the case for higher-
degree polynomial separating surfaces. However, in applications
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that do not require exact Euclidean distance, we can use the distance
in (9) as an estimation of closeness since computing the Euclidean
distance from a point to a higher-degree polynomial surface is much
more computationally expensive.

4 Piecewise Blended Multiphase Implicits

Inside a heterogeneous volume object, the boundary surface of a
region may have local geometry that is hard to model using poly-
nomials. Furthermore, ’region’ is only a logical concept and one
region may have multiple disconnected subregions assigned with
the same region label. It would also be hard to model such discon-
nected subregions using a polynomial. Because the level of struc-
ture complexity that can be modeled with a polynomial is limited,
we propose to perform adaptive spatial subdivision and represent
subdivided boundary surfaces with a piecewise polynomial multi-
phase implicit.

We choose octree-based adaptive subdivision because every subdi-
vided node in an octree is an axis-aligned cube, which facilitates
subsequent blending operations. For every octree node, we com-
pute a local polynomial multiphase implicit by solving the linear
programming problem in (8) on the subset of training data falling
into a bounding sphere of the octree node. The radius of the bound-
ing sphere is r = αu, where u is the size of the node, and α is
a constant. We make the sphere larger than the tightest bounding
sphere so that we can include more training points to make the re-
sulting local multiphase implicit surface more spatially coherent.
In all experiments, we set α = 2. A kd-tree is used for efficiently
collecting the subset of training points. If the bounding sphere is
completely located inside a region, in another word, all the training
points inside the bounding sphere have the same label, there is no
need to train a local MIF. In that case, we simply store the label of
the region in the node. In addition, we can also save other spatially
varying attributes in the node by fitting an analytic model, such as
a polynomial, to such attribute values.

According to the result of linear programming in (8), if the max-
imum slack variable max(ξij) in (8) exceeds a prescribed thresh-
old ξmax or the number of misclassified training points is larger
than a predefined value nmiss, we subdivide the octree node and
recurse on every child node. In our experiments, we typically set
ξmax = 0.01 and nmiss = 10.

Note that even when there are a large number of regions in a vol-
ume, the number of different regions within an octree leaf node is
unlikely to exceed four, and we only need to represent the scalar
components corresponding to these regions while leaving the other
scalar components undefined. This is because at a non-manifold
feature, there are typically only three or four simultaneously adja-
cent regions.

Solving a large linear programming problem when training a local
MIF can still be time-consuming. We use the following strategies
to prune training data. First, in most cases, data points near region
boundaries are sufficient to train a local MIF. Therefore we discard
most data points that are not closest to region boundaries. To pre-
vent the trained MIF from having incorrect labels away from region
boundaries, we take some sample points on the bounding sphere
under consideration as training points if they do not introduce ad-
ditional labels into the local training dataset. Those sample points
are generated by projecting the eight corners and six face centers of
the octree node to the bounding sphere. Second, if the total number
of data points inside a bounding sphere is larger than a predefined
value, nmax, we randomly choose nmax points from them as the
training points. However, all the original data points will partici-
pate in classification error evaluation to help determine whether the

(a) (b)

(c) (d)

Figure 5: (a) A MIF for a fruit fly brain dataset, (b) A vertical
cross section of (a), (c) octree leaf nodes containing local MIFs.
Color codes represent the size of the leaf nodes. The smallest leaf
nodes are shown in red, and the largest ones are shown in blue. (d)
illustrates the blending process. The white sphere is a query point.
The octree leaf nodes participating in the blending are shown in
red. Their support spheres are shown in blue.

octree node needs to be subdivided. In our experiments, we set
nmax = 150.

Once we have computed all local MIFs, we need to blend them
together to form a spatially coherent global MIF. For ease of under-
standing, we illustrate our blending technique using a 2D example
shown in Figure 6. In this example, there are two MIFs from two
adjacent octree nodes. Inside each node, there are three regions sep-
arated by three planes. Each plane has its own signed distance func-
tion (SDF). Once we have blended the SDFs of every pair of corre-
sponding planes in the two MIFs, we define the separating planes
(shown in red) of the blended MIF using the blended SDFs. In gen-
eral, there might be many local MIFs participating in the blending.
We use the blending function in [Ohtake et al. 2003] to blend signed
distances to corresponding hyperplanes from different local MIFs.
Our global blended MIF is defined as

F bj (x) = min
k∈Nj

(
Σ
nf

i=1α
(i)(x)D

(
ϕ(x), P

(i)
jk

))
, j = 1, . . . ,m,

α(i)(x) =
ρ(i)(x)

Σ
nf

j=1ρ
(j)(x)

, (11)

where P (i)
jk is the hyperplane separating Ωj from Ωk in the local

MIF, Fi, nf is the number of local MIFs, α(i)(x) is a nonnegative
compactly supported function associated with Fi and ρ(i)(x) is a
compactly supported weighting function for Fi. In our implemen-
tation, we define the weighting function ρ(i)(x) using a quadratic
B-spline B(t) as in [Ohtake et al. 2003]:

ρ(i)(x) = B

(
3|x− ci|

2βui

)
, (12)

where ci is the center of the corresponding leaf node of the octree,
ui is the size of the node and β is a constant. In all our experiments,
we set β = 1.75. Note that the MIN operator is applied after blend-
ing. It is used to choose the closest blended separating surface,
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0 1

2

Figure 6: 2D example to illustrate our blending scheme. There
are three regions labeled 0, 1 and 2 respectively and two SVMs
shown in green and blue respectively. The corresponding separat-
ing planes from the two SVMs are shown in the same line style. The
blended result is shown in red.

which changes only at sharp features and non-manifold features.
Thus the MIN operator does not affect the degree of continuity on
the rest of the implicit surface. Since the weighting function is a
quadratic B-spline, the final implicit surface in (11) is C0 at sharp
features and non-manifold features and C1 elsewhere.

Figure 5 shows a MIF for a fruit fly brain. And Figure 7 shows a
MIF constructed from another 3D segmented medical dataset from
[3D-IRCADb ].

(a) (b)

(c) (d)

Figure 7: (a) A MIF constructed from a segmented 3D medical
image of a section of the human body, (b)-(d) three vertical cross
sections. Original segmented data courtesy of IRCAD.

In all our results in this paper, we use piecewise quadratic MIFs. In
comparison with piecewise linear MIFs, piecewise quadratic MIFs
significantly reduce the number of leaf nodes in an octree, making
the representation much more compact. On the other hand, higher-
order polynomials are much more expensive to compute while only
marginally more compact. A quadratic separating surface in an oc-
tree node could be a hyperbolic surface with two sheets, one of
which is not generated from training but simply as the companion
of the other. When this happens, we further check whether both

sheets are inside the bounding sphere. If the companion sheet is
outside the bounding sphere, it has zero weight and does not af-
fect the shape of the final implicit surface. Otherwise, we simply
subdivide the octree node. If we obtain a hyperbolic surface at the
prescribed maximum depth, dmax, of the octree, we fall back to
compute a linear MIF. We typically set dmax = 9.

5 Computing MIFs from Meshes

Meshes are the most popular choice for representing 3D objects
probably because it is convenient to construct and manipulate a
mesh during interactive modeling or after data acquisition from
scanning devices. Therefore meshes, either manifold or non-
manifold ones, are one of our most important data sources for cre-
ating multiphase implicit functions.

5.1 MIFs from Closed Non-Manifold Meshes

A closed non-manifold mesh partitions the 3D space R3 into a set
of regions (Ω1,Ω2, . . . ,Ωm). Such a non-manifold mesh can be
either directly extracted from segmented medical images or created
by fusing multiple cross sections [Boissonnat and Memari 2007;
Liu et al. 2008]. In this subsection, we focus on converting such
non-manifold meshes to MIFs. During such a conversion, the most
important unsolved issue is how to obtain a set of labeled sample
points within every region of the mesh. This is because the al-
gorithm developed in Section 3.1 can be readily applied to obtain
a MIF once such labeled sample points become available. In the
following, we present an algorithm for extracting labeled sample
points from a closed non-manifold mesh, which is assumed to be
free of holes and foldovers.

A face in a closed non-manifold mesh is always on the boundary
of two adjacent regions since the space outside the mesh is also
counted as a region. Because of this, we conceptually split every
face into two half faces, each of which belongs to one region. The
normal of a half face always points to the interior of the region
the half face belongs to. Suppose we adopt the right hand rule
when defining the normal of a half face. That means the vertices
of the half face follow counterclockwise order around its normal.

C

A

B

D

E

We adopt a clustering approach to de-
termine the region membership of every
half face. We first create an initial clus-
ter for every half face, then repeatedly
perform the following cluster merge step
until convergence. Let4hABC be one
of the half faces. There may be more
than two faces sharing the same edge
AB when the mesh we process is a non-
manifold surface. We sort these faces
so that they follow a counterclockwise order around the vector
→
AB. If 4ABD is the face following 4ABC in this sorted or-
der and 4hBAD belongs to a cluster that is different from the
one4hABC belongs to, we merge the two clusters4hABC and
4hBAD belong to. Convergence has been reached if such half
face pairs do not exist any more. The final number of clusters is
equal to the number of regions in the non-manifold mesh. We as-
sign a distinct region label to each of them. All the half faces in a
cluster are assigned the same region label.

In the next stage, we build an octree for the mesh. We start from the
bounding cube of the non-manifold mesh, and recursively subdivide
the octree nodes overlapping with the mesh until a predefined depth
dmax is reached. All the leaf nodes intersecting with the mesh are
marked as boundary nodes and the rest of the leaf nodes are marked
as internal nodes. To determine the region label of an internal node,
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(a) (b) (c)

Figure 8: MIFs converted from non-manifold meshes of mechani-
cal parts. Original meshes courtesy of Drexel University.

we trace a ray from the center of the node along a random direction
until it hits a half face, whose region label is then assigned to the
internal node.

Once we have obtained the region membership of all half faces and
internal leaf nodes, we can easily use such information to determine
the region label of any sample point, x, as follows. If x falls in an
internal leaf node, we can simply assign it the label of the node. If it
is outside the octree, we assign it the label of the outmost region. If
it falls in a boundary leaf node, we start ray tracing from x follow-
ing a random direction. The ray either enters an internal leaf node
or hits a half face. In either case, the label of the internal node or
half face is assigned to x.

Finally, we draw sample points within every internal leaf node as
well as on every half face of the mesh. For each sample point on a
half face, we further offset it along the normal direction of the half
face to obtain a final sample point. The region label of every sample
point is determined using the aforementioned method. Then we can
use the method in Section 3.1 to compute a MIF from these labeled
training points.

It is important to preserve sharp features in a MIF. Note that a sharp
feature shared by three or more regions can be well preserved by
the MIF because, by definition, the feature is the intersection of
multiple separating hyperplanes. However, it is hard to use a single
MIF to preserve sharp features on a boundary shared by exactly
two regions. In that case, we detect sharp features by checking the
dihedral angle between every pair of adjacent faces. If the dihedral
angle between two faces is smaller than a predefined value θ, we
mark their shared edge as a feature edge. We typically set θ = 2π

3
.

All feature edges inside an octree node separate the triangle faces
therein into several groups. We optimize a distinct elementary MIF
for each group. Then, as in [Ohtake et al. 2003], we construct a
composite MIF with sharp features from these elementary MIFs
using Boolean operators [Ricci 1973]. This composite MIF is the
final local MIF stored in the octree node and used for blending with
other local MIFs.

Figures 8 and 9 show examples of MIFs generated from non-
manifold meshes.

5.2 MIFs from Multiple Manifold Meshes

One of the most obvious choices would be using multiple mani-
fold meshes to create a volume with multiple internal regions, and
further training a MIF to represent the geometry of this complex
volume. To facilitate region label determination in a later step, we
again build an octree for each of the manifold meshes, and obtain a
binary label for every internal leaf node of the octree and every half
face in the mesh by following a similar procedure as in the previ-
ous subsection. This binary label indicates whether an octree node
or a half face is inside the mesh object or not. We further define a

distinct Boolean variable for every participating mesh. Any region
created from the meshes can be defined with a Boolean expression
over these variables.

We draw sample points inside the entire volume as well as on ev-
ery face of the individual meshes. For each sample point on a face,
we duplicate it and further offset the resulting two points respec-
tively along the positive and negative normal direction of the face
to obtain two final sample points. Then we test every sample point
against each of the constructed octrees to determine whether it is in-
side each of the original meshes. The result is a sequence of binary
values. The region membership of a sample point can be deter-
mined straightforwardly by evaluating the aforementioned Boolean
expressions using these binary values. Finally we apply the method
in Section 3.1 to compute a MIF from these labeled training points.

Figures 10, 11 and 1-bottom show examples of MIFs generated
from manifold meshes.

6 Experimental Results

We have implemented the algorithms presented in previous sections
and successfully used them to compute MIFs from the following
three types of datasets, segmented 3D medical images (Figs. 5 and
7), non-manifold meshes (Figs. 8 and 9), and manifold meshes
(Figs. 10, 11 and 1-bottom). Our algorithms only involve a small
number of parameters, and their setting has been discussed in pre-
vious sections. In particular, the parameter λ in (8) can be used
as a control knob to provide tradeoff between visual quality and
numerical accuracy. Results generated with smaller λ values are
smoother and visually more appealing while those generated with
larger λ values are numerically more accurate. All experimental
results were generated on an Intel Xeon X5690 3.47GHz proces-
sor with 24GB RAM. Table 1 summaries the number of regions,
the number of local MIFs computed, and the storage cost for all
datasets and results.

Note that, when working with SVMs, appropriate scale normaliza-
tion of the training points can significantly improve classification
accuracy. To perform this normalization, we scale the bounding
sphere of the training points to a unit sphere. The coordinates of
the training points inside the bounding sphere are scaled accord-
ingly before solving the linear programming in (8). When we use
the resulting MIF to compute the region label of a given point, the
same scaling must be applied to the point as well.

Images shown in this paper were generated using ray tracing. The
octree data structure not only holds our local MIFs, but also pro-

(a) (b)

Figure 9: (a) A MIF converted from a non-manifold mesh modeling
a segmented mouse brain, (b) a cross section of (a). Original mesh
courtesy of Tao Ju (WUSTL).
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(a) (b)

Figure 10: A MIF constructed from a section of the Weaire-Phelan
structure. The Weaire-Phelan structure uses cells of equal volume
to fill up the entire 3D space [Weaire and Phelan 1994]. An impor-
tant property of the cells is that the ratio between their surface area
and volume is near-optimal, i.e. close to the minimum, if not al-
ready the minimum, among all similar space-filling cells. Original
mesh courtesy of Lvdi Wang (MSRA).

vides a space partition that accelerates ray tracing. We first record
the region enclosing the start point of the ray as current region.
If a ray enters the bounding sphere of a leaf node holding a local
MIF, we compute the intersection between the ray and the separat-
ing surface defined by the local MIF. In this way, we can identify
the closest local MIF intersecting the ray as well as the intersec-
tion point x. Note that this intersection may not lie on the blended
global MIF. Thus, we first search around x for two points xin and
xout lying inside and outside the current region, respectively, and
then use binary search to find an approximate intersection between
the ray and the global MIF. The final pixel color is computed using
the predefined material color of the region which the ray enters.

6.1 Comparisons

There has been little work on true object-space multiphase implic-
its. We have compared our piecewise polynomial multiphase im-
plicits with two popular implicit approaches for representing mul-
tiple regions on representation (classification) accuracy, memory
consumption and running time. One of these approaches defines
a two-phase implicit function for every region and stacks them to-
gether to “simulate” a multiphase implicit function. A point is clas-
sified to the region whose corresponding two-phase implicit func-
tion returns the maximum value. We chose the multi-level partition
of unity implicits (MPU) in [Ohtake et al. 2003] as the two-phase
implicit function in this approach.

The second approach we compare with is the binary SDF tree in
[Wang et al. 2011]. In this approach, the regions are organized as

#local MIFs #regions memory cost
Fruit fly 36617 63 6.11MB

Human torso 47948 21 7.85MB
Mouse brain 55554 46 9.42MB

Mechanical A 2818 8 0.59MB
Mechanical B 3386 3 0.75MB
Mechanical C 6840 4 1.31MB
Weaire-Phelan 21232 65 3.34MB

Bunny et al. 35967 5 6.71MB
Neptunes 200694 334 30.83MB

Table 1: Summary statistics for all datasets and results.

(a) (b) (c) (d)

(e) (f)

Figure 11: (e) A MIF converted from four manifold meshes shown
in (a)-(d). (f) A cross section of (e). Note that the pink knot model is
inside the BUNNY. Original meshes courtesy of Stanford University
Computer Graphics Lab (a) and The University of British Columbia
Imager Lab (c-d).

leaf nodes in a binary tree. At each intermediate node of the tree,
there is an SDF that defines the boundary between the regions in its
left subtree and those in its right subtree. In our implementation,
each SDF in an SDF tree is again represented as an MPU implicit
instead of an interpolated uniform grid as in [Wang et al. 2011]
because an MPU implicit is more memory efficient.

The comparison was performed on three representative datasets
with a reasonably large number of regions. Numerical results for
typical parameter settings are shown in Table 2. According to the
comparison results, with similar or even less memory consump-
tion, our multiphase method achieves an error rate one order of
magnitude smaller than the two alternatives, which leverage two-
phase implicits. Note that in all three methods the classification
error varies with the error tolerance/threshold used. Smaller error
tolerance values/thresholds in general increase memory consump-
tion. Nevertheless, as long as memory consumption is kept the
same among all methods, our method exhibits similar degrees of
improvement in accuracy for other error tolerance settings.

7 Conclusions and Future Work

In this paper, we have presented a novel class of object-space mul-
tiphase implicit functions that are capable of accurately and com-
pactly representing objects with multiple internal regions. Our pro-
posed multiphase implicit functions facilitate true object-space ge-
ometric modeling of heterogeneous objects with non-manifold fea-
tures. We have also presented multiple methods to create object-
space multiphase implicit functions from existing data, includ-
ing meshes and segmented medical images. Our algorithms were
inspired by machine learning algorithms for training multicate-
gory max-margin classifiers. Comparisons with existing techniques
demonstrate the superiority of our approach.
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dataset method error rate memory cost constr. time query time (106 pts)
I. Fruit fly brain Our method 0.255% 6.11MB 158.84s 2.02s

Multi-MPUs 2.29% 14.28MB 149.11s 156.38s
SDF tree 3.63% 29.79MB 36.24s 14.77s

II. Human torso Our method 0.159% 7.85MB 205.19s 1.44s
Multi-MPUs 1.38% 37.49MB 89.03s 53.54s

SDF tree 2.26% 61.76MB 39.83s 7.17s
III. Weaire-Phelan Our method 0.139% 3.34MB 329.03s 2.33s

Multi-MPUs 1.31% 3.37MB 667.28s 111.92s
SDF tree 2.31% 7.95MB 191.72s 12.00s

Table 2: Comparison of overall accuracy, memory cost and running times (construction time & query time) among three methods over three
datasets, fruit fly brain, human torso, and the Weaire-Phelan structure. The error tolerance values used in MPU for the three datasets are
0.015, 0.0095, and 0.022, respectively. In our method, we set λ = 200, ξmax = 0.01, nmiss = 10 and dmax = 9. Note that our method
achieves much higher accuracy and much faster query processing than the other two alternatives.

(a) Ground truth (b) Our method (c) Multi-MPUs (d) SDF tree

(e) Ground truth (f) Our method (g) Multi-MPUs (h) SDF tree

Figure 12: A qualitative comparison of internal region boundaries
between our method and two alternatives (multi-MPUs and SDF
tree) using a slice of implicit models constructed for the Weaire-
Phelan structure. (e)-(h) are magnified views of the highlighted re-
gions in (a)-(d), respectively. Our result is very close to the ground
truth while distorted boundaries and tiny disconnected regions may
exist in results from the other two alternative methods.

Limitations. There are aspects of our algorithms that require fu-
ture work. For example, our current algorithm for converting
meshes to multiphase implicit functions assume the meshes are
“clean”, i.e. they are free of defects, such as gaps, foldovers, holes
and “slivers”. In fact, removing defects is one of the most impor-
tant benefits of converting meshes to implicit surfaces [Shen et al.
2004]. A common practice for cleaning up a mesh is to first convert
it to an implicit surface and then polygonize the implicit surface.
We would like to generalize this pipeline to non-manifold meshes
and use our multiphase implicit functions as the intermediate im-
plicit representation.
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STALLING, D., ZÖCKLER, M., AND HEGE, H. 1998. Interactive
segmentation of 3d medical images with subvoxel accuracy. In
Proc. CAR’98 Computer Assisted Radiology and Surgery, 137–
142.

STEINKE, F., SCHLKOPF, B., AND BLANZ, V. 2005. Support
vector machines for 3d shape processing. Computer Graphics
Forum 24, 3, 285–294.

SUYKENS, J., AND VANDEWALLE, J. 1999. Multiclass least
squares support vector machines. In International Joint Con-
ference on Neural Networks (IJCNN’99).

TAKAYAMA, K., SORKINE, O., NEALEN, A., AND IGARASHI,
T. 2010. Volumetric modeling with diffusion surfaces. In ACM
Transactions on Graphics (TOG), vol. 29, ACM, 180.

TURK, G., AND O’BRIEN, J. 2002. Modelling with implicit sur-
faces that interpolate. ACM Transactions on Graphics 21, 4,
855–873.

VAPNIK, V. 1998. Statistical learning theory. John Wiley & Sons,
Inc.

WANG, L., YU, Y., ZHOU, K., AND GUO, B. 2011. Multiscale
vector volumes. ACM Trans. Graph. 30, 6, 167.

WEAIRE, D., AND PHELAN, R. 1994. A counter-example to
kelvin’s conjecture on minimal surfaces. Philosophical Maga-
zine Letters 69, 2, 107–110.

WYVILL, G., MCPHEETERS, C., AND WYVILL, B. 1986. Data
structure for soft objects. Visual Computer 2, 4, 227–234.

WYVILL, B., GUY, A., AND GALIN, E. 1999. Extending the
csg tree. warping, blending and boolean operations in an implicit
surface modeling system. Computer Graphics Forum 18, 2, 149–
158.

YAMAZAKI, S., KASE, K., AND IKEUCHI, K. 2002. Non-
manifold implicit surfaces based on discontinuous implicitiza-
tion and polygonization. In Proc. Geometric Modeling and Pro-
cessing 2002, 138–146.

ZHANG, Y., HUGHES, T., AND BAJAJ, C. 2010. An automatic 3d
mesh generation method for domains with multiple materials.
Computer methods in applied mechanics and engineering 199,
5, 405–415.

ZHAO, H.-K., CHAN, T., MERRIMAN, B., AND OSHER, S. 1996.
A variational level set approach to multiphase motion. Journal
of Computational Physics 127, 179–195.

10

http://www.gnu.org/software/glpk/

