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Fig. 1. Comparison of visual results from state-of-the-art algorithms for ×4 single image superresolution. (a) RDN [Zhang et al. 2018]: State-of-the-art

algorithm under PSNR/SSIM. (b) SRGAN [Ledig et al. 2017]: Sate-of-the-art algorithm in visual quality. (c) DTSN (Deterministic-sTochastic Synthesis Net): the

proposed method. (d) High-resolution ground truth.

Single image superresolution has been a popular research topic in the last
two decades and has recently received a new wave of interest due to deep
neural networks. In this paper, we approach this problem from a different
perspective. With respect to a downsampled low resolution image, we model
a high resolution image as a combination of two components, a deterministic
component and a stochastic component. The deterministic component can
be recovered from the low-frequency signals in the downsampled image. The
stochastic component, on the other hand, contains the signals that have little
correlation with the low resolution image. We adopt two complementary
methods for generating these two components. While generative adversarial
networks are used for the stochastic component, deterministic component
reconstruction is formulated as a regression problem solved using deep
neural networks. Since the deterministic component exhibits clearer local
orientations, we design novel loss functions tailored for such properties for
training the deep regression network. These two methods are first applied
to the entire input image to produce two distinct high-resolution images.
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Afterwards, these two images are fused together using another deep neural
network that also performs local statistical rectification, which tries to make
the local statistics of the fused image match the same local statistics of the
groundtruth image. Quantitative results and a user study indicate that the
proposed method outperforms existing state-of-the-art algorithms with a
clear margin.
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1 INTRODUCTION

Single image super-resolution (SISR) aims to estimate high reso-
lution images from low resolution inputs. It has been a popular
research topic in the last two decades and has recently received a
new wave of interest due to deep neural networks. Image super-
resolution has been used for many different applications, including
facial image improvement [Baker and Kanade 2000; Hu et al. 2010],
compressed image/video enhancement [Gunturk et al. 2004; Segall
et al. 2003], high dynamic range imaging [Bengtsson et al. 2012],
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Fig. 2. Examples of the stochastic components generated by SRGAN [Ledig

et al. 2017]. SRGAN may destroy structures while producing too many

stochastic details in certain areas.

image mosaicing [Capel and Zisserman 1998] as well as satellite
and aerial imaging [Yldrm and Gungor 2012].
It is well known that single image super-resolution is ill-posed

because certain high frequency signals in the high resolution image
is irrecoverably lost in the corresponding low resolution image due
to downsampling. Thus SISR does not have a unique solution, and
many slightly different high resolution images could become the
same low resolution image after downsampling. Therefore, a high
resolution image can be decomposed into two components, a deter-
ministic component and a stochastic component. The deterministic
component contains all the low-frequency signals as well as part of
the high-frequency signals highly correlated to the low-frequency
signals, which implies that the high-frequency signals in the deter-
ministic component could still be recovered from the low-frequency
signals in a downsampled image. The stochastic component, on the
other hand, contains the rest of the signals that have little correla-
tion with the low-frequency signals. It is the stochastic component
that makes image super-resolution ill-posed.

According to the above analysis, the biggest challenges in natural
image super-resolution is two-fold: first, how to reconstruct the
deterministic components in the high resolution image from the low
resolution image? second, how to hallucinate plausible stochastic
components for the high resolution image which is compatible with
the low resolution image?
To tackle these challenges, it is necessary to distinguish salient

curvilinear structures, such as edges and contours, from the remain-
ing pixels. Curvilinear structures exhibit clear and spatially coherent
orientations while the orientation at other pixels, including those
in texture regions, is more ambiguous or spatially incoherent. This
distinction implies that the deterministic component plays a much
more dominant role than the stochastic component around curvi-
linear structures while the stochastic component becomes more
important at other pixels. We call pixels on curvilinear structures
structural pixels, and the rest of the pixels non-structural pixels.

In this paper, we approach single image super-resolution from a
different perspective and propose novel solutions to the aforemen-
tioned challenges. Our solution contains three cascaded stages. In
the first stage, we perform deterministic component reconstruction
and stochastic component hallucination independently. Determinis-
tic component reconstruction is formulated as a regression problem
solved using deep neural networks because high-frequency signals
in the deterministic component are strongly correlated to signals
in the low-resolution image. We design novel loss functions for
training the deep regression network. Specifically, in addition to the
mean absolute error (MAE) typically used for regression networks,
we introduce a generalized gradient loss for better preserving local
variations as well as an orientation loss that reconstructs local ori-
entations. The orientation loss is particularly useful for structural
pixels because the deterministic component at such pixels exhibits
clear local orientations. For stochastic component hallucination,
generative adversarial networks (GANs [Goodfellow et al. 2014])
are adopted to generate natural high frequency signals. Because
GANs [Ledig et al. 2017] usually introduce artifacts that destroy
image structures, they are better suited for non-structural pixels.

Although the above two methods are complementary and better
suited for different subsets of pixels, both of them are applied to the
entire input image to produce a pair of deterministic and stochastic
components for every pixel. In the second stage, these two high
resolution components are fused together to produce a single image,
which should mostly preserve the deterministic component only at
structural pixels and combine the two components at non-structural
pixels. Since structural pixels are unknown at test time, we train
another deep neural network to implicitly label structural pixels
and complete the fusion. The input to this network consists of the
original low-resolution input image and the aforementioned two
high resolution images generated from the two complementary
methods, respectively.
Although GANs can be used for generating natural stochastic

components, the synthesis process is a global operation and is inca-
pable of generating stochastic components with spatially varying
statistical properties that accurately match the local deterministic
component. Therefore, in the last stage, we rectify deviations intro-
duced into the stochastic component in earlier stages by matching
local statistics of the fused image with the same local statistics of
the groundtruth high resolution image. Even though matching local
statistics does not enforce uniqueness at the pixel level, it serves
as an as-strong-as-possible constraint due to the ill-posedness of
the problem. Inspired by deep learning based style transfer [Gatys
et al. 2016] and texture synthesis [Sendik and Cohen-Or 2017], local
Gram matrices and local correlation matrices are adopted as local
statistics.
We have evaluated our method on a few popular benchmark

datasets. Quantitative experimental results demonstrate that our
deterministic component reconstruction algorithm achieves state-of-
the-art PSNR and SSIM on Set5 [Bevilacqua et al. 2012], Set14 [Zeyde
et al. 2010], B100 [Martin et al. 2001], Urban100 [Huang et al. 2015]
and DIV2K validation set [Timofte et al. 2017]. On the other hand,
the synthesized stochastic component may be either perceptually
or statistically similar to the stochastic details in the ground truth,
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but does not have strict pixelwise correspondences with the lat-
ter. Therefore, subjective evaluation based on user studies is better
suited than quantitative measures based on pixel-level registration
for evaluating image superresolution results with stochastic compo-
nents. To this end, a user study with 42 participants concludes that in
comparison to existing state-of-the-art superresolution algorithms,
our proposed method is capable of generating high resolution im-
ages with significantly better visual quality.

In summary, this paper has the following contributions:

• A novel pipeline for single image super-resolution is introduced
by decomposing SISR into three consecutive stages, deterministic
component reconstruction and stochastic component hallucination,
deterministic and stochastic component fusion, and local statistical
rectification.

•Adeep learning algorithm is designed for deterministic component
reconstruction. Novel loss functions, including a generalized gradi-
ent loss and an orientation loss, are proposed to enforce properties
of the deterministic component.

• A deep learning algorithm is designed for image fusion as well
as local statistical rectification. Novel loss functions based on local
Gramm matrices and local correlation matrices are proposed to
make local statistics of the generated high resolution image match
the same local statistics of the groundtruth high resolution image.

2 RELATED WORK

Exemplar or Dictionary Based Super-Resolution. Exemplar-
based methods require a database of external images, and synthesize
a high-resolution version of the input image by searching for exem-
plars in the image database and transferring relevant patches from
the retrieved exemplars [Chang et al. 2004; Freeman et al. 2002].
To synthesize high-quality results, the image database needs to be
fairly large, increasing the computational cost for exemplar and
patch-level retrieval. Dictionary-based methods aim to mitigate this
problem by learning a compact dictionary in a feature space [Timo-
fte et al. 2013, 2014]. Alternatively, over-complete dictionaries are
learned in methods based on the sparse signal reconstruction the-
ory [Jianchao et al. 2008; Zeyde et al. 2010]. Such methods build over-
complete dictionaries for both low-resolution and high-resolution
images, and make certain assumptions about the sparse coefficients
for the dictionaries in both domains. Because there could be multiple
high resolution images corresponding to a given low resolution im-
age, dictionary-based methods in essence average multiple possible
solutions and usually generate blurry results.
Almost all exemplar-based super-resolution algorithms need a

high-resolution initial image upsampling the low-resolution input
image. Edge-based methods [Fattal 2007; Zhou et al. 2011] can be
used to produce better initial images. Tai et al. [2010] further com-
bined edge-based methods with exemplar-based synthesis. There
exist major differences between our proposed method and the algo-
rithm in [Tai et al. 2010]. First, the deterministic component in our
model exists everywhere, including texture regions, and not just
at edge pixels. Second, while Tai et al. [2010] treat all edge pixels
equally, edge pixels in texture regions are not structural pixels in
our method because they do not exhibit spatial coherence to form
lines or curves. In addition to such conceptual differences, at the

algorithmic level, our method is based on deep neural networks and
learning while Tai et al. [2010] rely on exemplar-based synthesis.
Deep Learning Based Super-Resolution. Given pairs of low-
resolution and high-resolution images, super-resolution can be natu-
rally cast as a regression problem thatmaps low-resolution images to
their corresponding high-resolution images. On the other hand, deep
neural networks are well known for their strong regression capabil-
ity. Therefore, in recent years, many researchers have approached
image super-resolution using deep learning. SRCNN [Dong et al.
2014] is a deep network with three convolutional layers designed
for super-resolution regression. Other researchers have focused
on designing better network architectures and more powerful loss
functions. Unlike SRCNN, VDSR [Kim et al. 2016] learns the dif-
ference between the high-resolution image and the low-resolution
image with a much deeper convolutional network. SRResNet [Ledig
et al. 2017] shows that multiple concatenated residual blocks can
further improve the regression performance. EDSR [Lim et al. 2017]
uses very deep and wide residual networks and the mean absolute
error for both the original images and the image gradients. Lap-
SRN [Lai et al. 2017a] uses both residual networks and the Laplacian
pyramid to perform regression at multiple intermediate resolutions.
Although using the mean absolute error or the mean squared er-
ror as the training loss favors numerical measures, such as peak
signal-to-noise ratio (PSNR), such loss functions do not emphasize
the visual quality of the results.

As discussed earlier, SISR is ill-posed and only the high-resolution
deterministic component can be uniquely reconstructed from the
low-resolution image. Although the resulting images have high-
resolution structures, they lack interesting high-frequency details
from the stochastic component. Therefore, regression alone is un-
able to produce results that closely resemble natural images. To this
end, generative adversarial networks (GANs) can help to a certain
extent. SRGAN [Ledig et al. 2017] incorporates a perception-friendly
discriminator that is trained to tell what kind of high-frequency
details look natural. High-resolution images generated from SRGAN
do have higher visual quality than those from regression only net-
works. Nevertheless, GANs do not completely solve the problem.
They can only broadly tell whether certain high-frequency details
look natural, but cannot tell whether such details are consistent with
the given low-resolution input, or more specifically, consistent with
every local region in the low-resolution input. This is the reason
why SRGAN often generates high-resolution images where certain
high-frequency details do not appear to be in the right place. In ad-
dition, GAN sometimes generates naturally looking high-frequency
details at the cost of destroying existing image structures in the
low-resolution input.

In contrast, the method proposed in this paper handles structural
pixels and non-structural pixels in a more balanced way. To preserve
image structures, high-resolution structural pixels are still recon-
structed using regression but with additional novel loss functions.
The synthesized stochastic component not only looks natural, but
also is consistent with local contents in the low-resolution input.
Texture Enhancement Based Super Resolution. Previous work
exists on generating high-resolution textures for SISR. Huang et

al. [2015] exploit self-similarity of an image at different scales and
adopt a patch-based transformation model to handle geometric
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transformations. Ahn et al. [2016] first generate a high-resolution
texture and then use this texture image to produce another high-
resolution style image with scaling and tiling. Finally they apply a
style transfer algorithm to transfer the high-resolution style to the
target image. Sun et al. [2017] complete main image structures with
user interactions and then generate textures via structure propa-
gation. They treat SISR as a constrained texture transfer problem,
and need an example texture/style image when hallucinating high-
frequency image details.
High-frequency details in natural images are usually complex

and spatially varying. Therefore, existing SISR methods based on
texture enhancement are not well suited for the intended task be-
cause they either use homogeneous textures or fail to specify the
spatial correspondences between the texture style image and the
estimated high-resolution image. In our proposed method, we aim
to synthesize high-resolution stochastic details that satisfy spatially
varying statistical properties defined by local Gram matrices and
local correlation matrices.
Style Transfer and Texture Synthesis. Gatys et al. [2016] use
global Gram matrices computed for a subset of feature maps in a
convolutional neural network to represent the style of an image.
They transfer the style from a style image to a target image by min-
imizing a content loss and a style loss. There has been much work
that adopts the same style representation while improving various
other aspects, such as efficiency. Sendik et al. [2017] use a global
correlation matrix computed for the top convolutional layer in a
deep neural network to perform texture synthesis and achieve state-
of-the-art results. In contrast, to be able to rectify high-frequency
details with spatially varying statistics, we generalize the global
Gram matrix and global correlation matrix used in such work to
densely computed local Gram matrices and local correlation matri-
ces during local statistical rectification of high-resolution stochastic
components.

3 OVERVIEW

Given a low-resolution image as input, SISR aims to estimate a high-
resolution counterpart that meets the following two requirements:
1) it looks like a natural image, and 2) its downsampled version is
the same as the low-resolution input. For SISR based on supervised
learning, one training image pair contains a high-resolution image

Ihr and its downsampled low-resolution version (usually bicubic

interpolation) Ilr . In our approach, SISR is decomposed into three
sequential stages: the first stage performs high-resolution recon-

struction of the deterministic component Ihr,d and high-resolution

hallucination of the stochastic component Ihr,t independently; the
second stage fuses the high-resolution deterministic and stochas-
tic components generated in the previous stage; in the final stage,
spatially varying local statistics are introduced to rectify the the
stochastic component in the fused image, and produces the final
high-resolution image.

4 HIGH-RESOLUTION DETERMINISTIC COMPONENT

RECONSTRUCTION

4.1 Network Architecture

As shown in Fig. 3, we adopt an existing deep network, called resid-
ual dense network (RDN [Zhang et al. 2018]) for deterministic com-
ponent reconstruction. This network is composed of 4 convolutional
layers, 1 upscaling module, and 16 residual dense blocks (RDBs).
The detailed structure inside each module is also shown in Fig. 3.
Each residual dense block has local dense connections among all
of its convolutional layers. It takes the features from the preceding
RDB as the input, and feed these features to all of its own convo-
lutional layers. Each convolutional layer in a residual dense block
also receives features from all the preceding convolutional layers
in the same RDB. In addition, RDBs adopt the global residual learn-
ing mechanism in SRResNet [Ledig et al. 2017] to combine shallow
features near the input and deep features near the output together,
resulting in better regression ability.

4.2 Training Loss

In addition to the conventional color loss, we design novel loss func-
tions for training the above deep network. Specifically, we introduce
a generalized gradient loss for better preserving local variations and
an orientation loss that reconstructs local orientations. The general-
ized gradient loss suppresses noise while preserving gradients. The
orientation loss preserves curvilinear structures, including lines and
curves.

Color Loss. To make the reconstructed image match the pixel

colors of the groundtruth high-resolution image Ihr , we use their
mean absolute difference (L1 norm) as the color loss, which is
defined as follows.

Lcolor =
1

Zc

∑
m,n

���Ihr,dm,n − Ihrm,n

���
1
, (1)

where Ihr,dm,n is the color value vector at (m,n) in Ihr,d , Ihrm,n is the

color value vector at (m,n) in Ihr , Zc = 3MN , M and N are the
numbers of rows and columns of Ihr , and 3 is the number of color
channels.

Generalized Gradient Loss. To emphasize edges and local struc-
tures during image reconstruction, we design a generalized gradient
loss. Inspired by handcrafted features, such as local binary patterns
(LBP), which compare pairs of nearby pixels, a generalized gradient
vector at pixel (m, n) is defined as a feature vector holding pair-
wise differences between I(m,n) and all other pixels in its r × r
neighborhood. This feature is called generalized gradient because a
conventional gradient for a discrete image is defined as a vector with
two pairwise differences. The generalized gradient includes more
structural information because it can use a larger neighborhood
and a much larger number of pixel pairs. To improve the quality of
deterministic component reconstruction, we wish the generalized

gradients in Ihr,d to be as close to the corresponding generalized

gradients in Ihr as possible.
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Fig. 3. Pipeline for high resolution deterministic component reconstruction. (a) Low resolution input image Il r . (b) The deterministic component reconstruction

network ϕd (·, θd ), which is composed of 4 convolutional layers, 1 concatenation layer, 1 upsampling module, and 16 residual dense blocks. (c) Training

loss Ld , which contains a mean color loss Lcolor , a generalized gradient loss Lддrad and an orientation loss LGabor . (d) A residual dense block. (e) The

upscaling modules for × 2, × 3 and × 4 superresolution.

Thus, the generalized gradient loss Lддrad is defined as follows.

Lддrad =
1

Zд

∑
m,n

∑
i, j ∈Rmn

���(Ihr,dm,n − Ihr,di, j

)
−
(
Ihrm,n − Ihri, j

)���
1
,

(2)
where Zд = 3MN

(
r2 − 1

)
, and Rmn is a neighborhood of the pixel

at (m, n). Neighborhood size is set to 15 × 15 (r = 15).

Orientation Loss. Gabor filters are widely used in image process-
ing because of its strong ability in texture analysis. In the spatial
domain, a 2D Gabor filter is essentially a Gaussian kernel modulated
by a sinusoidal plane wave. By modifying the standard deviation of
the Gaussian kernels in the two principal directions or changing the
frequency and phase of the sinusoidal plane wave, we can obtain a
set of 2D Gabor filters. Here we follow the parameter setting used in
[Ahn and Nam 2016]. Our Gabor filters have 4 scales and a dense set
of 18 orientations. We set up a filter every 10 degrees to accurately
characterize curvilinear structures with different orientations. In
addition, we adopt three different ratios between the standard devi-
ations in the two principal directions–1 : 1, 1 : 2, and 2 : 1. When
both real and imaginary parts are used, in total, there are 432 Gabor
kernels. Supplementary materials show a subset of these filters.
The orientation loss LGabor measures the mean difference be-

tween corresponding Gabor filter responses once they have been

applied to both Ihr,d and Ihr , and can be written as follows.

LGabor =
1

ZG

∑
m,n

���G(Ihr,d )m,n −G(Ihr )m,n

���
1
, (3)

where CG = 432 is the number of Gabor filters, ZG = 3CGMN , and
G(·) represents the concatenation of Gabor filter response maps of 3
image channels. In our experiments, the spatial support of a Gabor
filter is a local image patch with 51x51 pixels.

Final Training Loss. The final training loss for deterministic com-
ponent reconstruction is a weighted sum of all three previously
defined losses.

Ld = Lcolor + α1Lддrad + α2LGabor , (4)

where α1 = 1 and α2 = 1 in all our experiments. These parame-
ters are set to make the gradients of the three losses have similar
magnitude.

5 HIGH-RESOLUTION STOCHASTIC COMPONENT

HALLUCINATION

Generative adversarial networks [Goodfellow et al. 2014] have been
successfully incorporated into recent image superresolution algo-
rithms [Ledig et al. 2017], which are capable of generating natural
high-resolution details by exploiting a combination of color loss,
perceptual loss and adversarial loss in the training process. How-
ever, we have observed that the adversarial loss cannot well preserve
curvilinear structures with spatially coherent orientations, as shown
in Fig 2. This is due to the fact that the architecture of GANs is not
tailored for modeling spatially varying long-range correlations. Be-
cause of this, we limit the application of GANs to high resolution
stochastic component hallucination only. In practice, we use the SR-
GAN algorithm in [Ledig et al. 2017]. Note that in the loss functions
for SRGAN, the color loss is for reconstructing the deterministic
component, and the perceptual loss and adversarial loss are used for
generating the stochastic component. As a result, results from SR-
GAN have both deterministic and stochastic components. To extract
the stochastic component, we obtain the deterministic component
from a second network trained with the color loss only, and subtract
the deterministic component from the final image generated from
SRGAN. The second network shares the same architecture as the
generator network in SRGAN.
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Fig. 4. Pipeline for image structure detection. Form left to right. (a) The ground truth image Ihr and the high resolution deterministic component Ihr ,d . (b)
Detected curves in GT image and the high resolution deterministic component. (c) Curve filtering. (d) Image structure detection by curve filtering.

6 DETERMINISTIC AND STOCHASTIC COMPONENT

FUSION

We need to fuse the two complementary components generated in
the previous stage to generate a single high-resolution image. In
general, every pixel in the fused image should be a weighted sum
of these two components. Since the deterministic component can
be used for all pixels while the stochastic component from SRGAN
is suited for non-structural pixels only, the fused image should take
the deterministic component only at structural pixels and combine
the two components at non-structural pixels. Since groundtruth
structural pixels are unknown at test time, we cannot directly gen-
erate the fused image by following this observation. Fortunately,
structural pixels can be explicitly detected in groundtruth high res-
olution images. A mask of structural pixels for every groundtruth
image can be incorporated into the training data for a deep neural
network, which implicitly labels structural pixels and completes the
fusion at test time.

6.1 Network Architecture

As shown in Figure 5, our deep network for deterministic and sto-
chastic component fusion, ϕs (·,θs ), is composed of convolution
layers, residual blocks and upscaling layers. Each residual block has
two convolutional layers. There are 16 residual blocks in total and
the nonlinear activation function is PReLU [He et al. 2015]. The
input to this deep network consists of three parts: the original low-
resolution input imageIlr and two high resolution images. The first

high resolution image, Ihr,d , is generated from the deterministic
component reconstruction network, and the other high resolution

image, Ihr,t + Ihr,d , is the stochastic component generated using
SRGAN [Ledig et al. 2017].

6.2 Network Training

To make the above deep network produce correct image fusion re-
sults, we need to prepare a training set. Each training sample in the

training set includes the aforementioned three input images and a
corresponding binary mask separating structural pixels from non-
structural ones. This binary mask is only used in the loss function
for training the network. The loss function evaluates the quality of
the fused image produced by the network. Pixel colors at structural
pixels of the fused image should match those from the first high
resolution image fed to the network (the deterministic component)
while pixel colors at non-structural pixels of the fused image should
be the sum of those from the two high resolution images (determin-
istic + stochastic components). The binary mask includes all pixels
in the 5 × 5 neighborhood of any image structures detected in the
next section. Given such a training set, the guided regression loss,
Lдreд , for training the fusion network can be defined as follows.

Lдreд =
∑
m,n

Mm,n

3m0

���Ihr,sm,n −
(
Ihr,dm,n + Ihr,tm,n

)���
1
+

∑
m,n

1 −Mm,n

3m1

���Ihr,sm,n − Ihr,dm,n

���
1

(5)

where Ihr,s represents the fused image, M is the binary mask
(M(x ,y) = 0 means the pixel at (x ,y) is a structural pixel), mc

denotes the number of color channels,m0 is the total number of
structural pixels, andm1 is the total number of non-structural pixels.

6.3 Image Structure Detection

Image structure detection aims to identify important curvilinear
structures that define the content and layout of an image. Most of
these structures lie along object boundaries. However, traditional
edge detection produces too many unimportant intensity/color
changes, especially in the presence of high frequency textures.
Deep learning based methods, such as HED [Xie and Tu 2015] and
COB [Maninis et al. 2018], actually perform edge detection accord-
ing to changes in local semantic meaning. They cannot accurately
locate edges and contours, thus cannot be used in image structure
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Fig. 5. Pipeline for image fusion and local statistical rectification. (a) Deterministic component, stochastic component and low resolution input image. (b)

Image fusion and local statistical rectification network. (c) The local Gram matrix loss LGram , and the local correlation matrix loss Lcorr in the combined

loss Lt . (d) A residual block. (e) The guided regression loss Lдreд in the combined loss Lt .

detection. ELSD [Pătrăucean et al. 2012] detects and vectorizes curvi-
linear image structures, including line segments, circular arcs and
elliptic arcs, by fitting relevant conic sections to detected edges.
In this paper, we identify structural pixels through the primitives
vectorized by ELSD.

Since the deterministic component is reconstructed from a low
resolution image, not all curvilinear structures in the groundtruth
high resolution image belong to the deterministic component. Struc-
tural pixels are defined as pixels on the groundtruth curvilinear
structures that can be reconstructed from the low resolution image.
This definition implies a structural pixel should lie on vectorized
curves in two high resolution images, the groundtruth high res-
olution image and the high resolution image generated from the
deterministic component reconstruction network. Thus, structural
pixel labeling can be achieved as follows. First, use ELSD to detect
and vectorize curves in both aforementioned high resolution images.
Second, identify pixels lying on both sets of vectorized curves as
structural pixels.

Let S = {si }
NS

i=1 be the set of vectorized curves in the high resolu-

tion image, Ihr,d , from the deterministic component reconstruction
network. For a curve si in S, its analytic expression can be written

as follows.

[x y 1]

⎡⎢⎢⎢⎢⎣
w11
i w12

i w13
i

w21
i w22

i w23
i

w31
i w32

i w33
i

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
x
y
1

⎤⎥⎥⎥⎥⎦
= 0, (6)

where x1 ≤ x ≤ x2, y1 ≤ y ≤ y2. (x1, y1) is the starting point, and
(x2, y2) is the end point. wi is the 3 × 3 parameter matrix defining
the i-th curve si in S.

Let T = {ti }
NT

i be the set of vectorized curves in the groundtruth
high resolution image. Since curves in S may not necessarily ap-
pear in T , to obtain the subset of image structures that can be
reconstructed from low resolution images, we identify the subset of
curves in S that lie closely to curves in T . The closeness score σi of
a curve si in S, when it is compared with curves in T , is calculated
as follows.

f (zk ;w
t
m ) = min

z∈tm
‖zk − z‖2 , (7)

σi =
1

Ki

∑
zk ∈si

χ
(
δa −min

m
f (zk ;w

t
m )

)
, (8)

where zk = [xk , yk , 1] is the homogeneous coordinate vector of the
k-th point on si , z ∈ tm implies the following constraint zTwt

mz =

0 (x1 < x < x2,y1 < y < y2), (x1, y1) and (x2, y2) are the starting

2018-09-16 23:39. Page 7 of 1–14. ACM Transactions on Graphics, Vol. 37, No. 6, Article 260. Publication date: November 2018.



260:8 • Weifeng Ge, Bingchen Gong, and Yizhou Yu

and end points of tm , and wt
m is the parameter matrix of the m-

th curve tm in T . χ (x) represents a step function. When x > 0
, χ (x) = 1; otherwise, χ (x) = 0. Ki denotes the total number of
points on si , and δa (= 4) is a distance threshold. If σi > δb (= 0.8),

the curve si is added into the vectorized structure set E = {ei }
NE

i=1.
Finally, pixels on or near the curves in E are labeled as structural
pixels, and a binary mask can be generated for them.

7 LOCAL STATISTICAL RECTIFICATION

As shown in Figure 8, although the fusion step in the previous sec-
tion produces results with clear structures and natural stochastic
details, it can still be further enhanced. For example, a minor stochas-
tic component could be added onto the structural pixels in the fused
image. In addition, since GANs are unsupervised, they cannot make
a synthesized stochastic component have prescribed local statistical
properties. To make the synthesized results more natural looking
and eliminate deviations introduced into the stochastic component
in earlier stages, we propose a local statistical rectification step,
which matches the local statistics of the synthesized image with
the same local statistics of the groundtruth high resolution image.
We discover that the combination of a local Gram matrix loss and a
local correlation matrix loss can achieve this goal.

7.1 Local Gram Matrix

The feature map, F , generated by a convolutional layer can be com-
puted once we run a convolutional neural network over an image I.
For the location (m,n) in the feature map, in its r × r neighborhood,
we calculate a local Gram matrix Gl (m,n) ∈ RCl×Cl in a similar
manner as in [Gatys et al. 2015] except that the Gram matrix is
computed for a square window centered at the location instead of
over the entire feature map. Here Cl is the number of channels in
the feature map generated by the l-th convolutional layer. The ele-
ment Gl

i j (m,n) in the local Gram matrix represents the correlation

between the i-th channel and the j-th channel of the l-th layer in
the r × r neighborhood of the location.

Gl
i j (m,n) =

1

r2

∑
k ∈Rmn

F l
ik
F l
jk
, (9)

where Rmn is the r × r neighborhood centered at (m,n), and F l
ik

is
the value of the i-th channel of the feature map generated by the

l-th convolutional layer at location k ∈ Rmn . Let I and Î be the
groundtruth image and the synthesized image, and Gl and Ĝl be
their respective collections of local Gram matrices computed for the
l-th layer. Then the local Gram matrix loss (L2 norm) for the l-th
layer is calculated as follows,

Ll
Gram =

1

2ClMlNl

∑
m,n

∑
i, j

���Gl
i j (m,n) − Ĝl

i j (m,n)
���
2
. (10)

7.2 Local Correlation Matrix

The Gram matrix describes the degree of correlation between differ-
ent feature channels. Here we also incorporate spatial correlation
matrixes to describe the stochastic component over local regions.
For the location (m,n) in the l-th convolutional layer, the local cor-
relation matrix Rl,c ∈ RM×N for a neighborhood of (m,n) and the

c-th feature channel is defined as follows,

Rl,ci j (m,n) =
1

r2

∑
p,q∈Rmn

wmn
ij f l,cp,q f

l,c
p−i,q−j , (11)

where f l,cp,q is the value of the c-th feature channel of the l-th con-

volutional layer at location (p,q), i ∈
[
− r
2 ,

r
2

]
and j ∈

[
− r
2 ,

r
2

]
, and

(p − i,q − j) ∈ Rmn . R
l,k
i j (m,n) represents shifting the local feature

patch f l,km,n by i locations vertically and j locations horizontally and
then performing a point-wise multiplication between the original
and shifted patches.wmn

ij is the inverse of the area of the overlapping

region between these two patches, and is written as

wmn
ij = [(r − |i |) (r − |j |)]−1 . (12)

Then the local correlation matrix loss for the l-th layer can be
written as follows.

Ll
cor r =

1

2ClMlNl

∑
k

∑
m,n

∑
i, j

���Rl,ki j (m,n) − R̂l,ki j (m,n)
���
2
. (13)

7.3 Combined Loss

We use the same network architecture for both image fusion and
local statistical rectification. We find out that the loss for image
fusion still needs to be incorporated when local statistical rectifica-
tion is performed. Thus, the loss for local statistical rectification is
a combination of the loss for image fusion, the local Gram matrix
loss and the local correlation matrix loss. The combined loss Lt is
defined as follows.

Ls =
∑
l

(
βl0L

l
Gram + β

l
1L

l
cor r

)
+ Lдreд , (14)

where (βl0, β
l
1) are weights for the local Gram matrix loss and local

correlation matrix loss respectively.
We use the VGG-16 network [?] pre-trained on ImageNet ILSVRC

2012 training set [?] to compute the feature maps used in the local
Gram matrix loss and local correlation matrix loss. Denote layers
"Pool1", "Pool2", "Pool3" and "Conv4_3+ReLU" as the 1-st, 2-nd, 3-rd
and 4-th layer, respectively. As shown in Figure 5, the local corre-
lation matrix loss is only defined over the feature map generated
by the layer "Pool2", and the local Gram matrix loss is defined over
the feature maps generated by layers "Pool3" and "Conv4_3+ReLU",
respectively. β21 is set to 1e-11, both β30 and β40 are set to 1e-10. The
weights of individual losses are set to keep their gradients at the
same order of magnitude. Neighborhood size is set to 7 × 7, 5 × 5
and 3 × 3 for L2

corr , L
3
Gram

and L4
Gram

, respectively.

8 EXPERIMENTAL RESULTS

Both the high-resolution deterministic component reconstruction
and image fusion networks are implemented using Caffe [Jia et al.
2014]. GAN-based high resolution stochastic component synthesis is
implemented using Tensorflow on the basis of the code from Tensor-
Layer1. All experiments run on NVIDIA TITAN X (Maxwell) GPUs
with 12GB memory. Network training for deterministic component
reconstruction takes 1 week using 4 GPUs in parallel while training
for image fusion and local statistical rectification takes two days on

1https://github.com/tensorlayer/srgan
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1 GPU. During testing, it takes around 135 seconds to generate the
final result when the input is 270 x 480, and the output is 1080 x 1920.
Generating the deterministic component only takes 60 seconds.

8.1 High-Resolution Deterministic Component

Reconstruction

8.1.1 Network Settings and Parameters. In the network for deter-
ministic component reconstruction, ϕs (·,θs ), the kernel size of all
the convolutional layers except the 1 × 1 convolutional layer after
the concatenation layer ("Concat" in Figure 3) is 3× 3. In Figure 3(b),
the number of channels in Conv1 through Conv4 is 64. There are 8
convolutional layers in a residual dense block, and a total of 16 resid-
ual dense blocks in ϕs (·,θs ). In the pixel shuffle module, the number
of channels in Conv1 is 256, 576 and 256 for "2×", "3×" and "4×"
superresolution, respectively. For "4×" superresolution, the Conv2
layer has 256 channels. The final output layer Conv5 has 3 channels.
The stride for all the convolutional layers is 1. We use ReLU as the
nonlinear activation function following all convolutional layers.

8.1.2 Datasets and Performance Evaluation. In the NTIRE 2017
Challenge on Single Image Super Resolution, Timofte et al. [Timofte
et al. 2017] released a high-quality (2K resolution) dataset, called
DIV2K, which consists of 800 training images, 100 validation im-
ages, and 100 test images. It has become a standard benchmark for
single image super resolution. In our experiments, we train our
deep network on the training set of DIV2K, and test it on five stan-
dard benchmark datasets including Set5 [Bevilacqua et al. 2012],
Set14 [Zeyde et al. 2010], B100 [Martin et al. 2001], Urban100 [Huang
et al. 2015] and DIV2K validation set [Timofte et al. 2017]. Note
that the ground truth of the DIV2K test set is not publicly available.
Therefore, we use the DIV2K validation set during testing. Images in
this validation set were never used for training or parameter tuning.
PSNR and SSIM [Wang et al. 2004] of the Y channel (i.e., luminance)
of the transformed YCbCr space are used to quantitatively evalu-
ate the performance of different SR algorithms in addition to user
studies.

8.1.3 Training Details. During network training, eachmini-batch
contains 5 training samples. The low-resolution input in each train-
ing sample is a 36× 36 RGB patch. Following the data augmentation
setting in [Lim et al. 2017], every patch is filpped horizontally or
vertically and then rotated by 90◦ randomly. We train the network
with the Adam optimizer. The initial learning rate is set to 0.0001,
and the weight decay is set to 0.0005. Due to large on-board mem-
ory consumption, each experiment is run in parallel on 4 TITAN X
(Maxwell) GPUs. Training converges after 350000 iterations. The
learning rate is decreased by half every 70000 iterations.

8.1.4 Comparisons. We have compared our high-resolution de-
terministic component reconstruction algorithm with six existing
state-of-the-art superresolution algorithms, including SRCNN [Dong
et al. 2016], LapSRN [Lai et al. 2017b], DRRN [Tai et al. 2017a], Mem-
Net [Tai et al. 2017b], EDSR [Lim et al. 2017], and RDN [Zhang et al.
2018]. Table 1 compares PSNR/SSIM results for three scales (× 2, ×
3, and × 4) on five different benchmarks, including Set5 [Bevilacqua
et al. 2012], Set14 [Zeyde et al. 2010], B100 [Martin et al. 2001],
Urban100 [Huang et al. 2015] and DIV2K validation set [Timofte

et al. 2017]. All the six existing SISR algorithms participating in this
comparison are deep learning based methods. They treat the SISR
problem as a regression problem. The loss used their network train-
ing is the mean color loss with the L1 norm (mean absolute error,
MAE) or L2 norm (mean squared error, MSE). From SRCNN to RDN,
the performance (PSNR/SSIM) of the regression results improves due
to better network architectures and training strategies. In addition to
such advances, we introduce two new loss functions, the generalized
gradient loss and the orientation loss, to better preserve curvilinear
structures. Experiments show that our algorithm achieves the best
performance on all the benchmarks for all the scales except the "2×"
scale on Set5. When compared with state-of-the-art algorithms, the
degree of improvement ( 0.1dB) on a saturated benchmark such as
DIV2K is actually substantial. In comparison to RDN [Zhang et al.
2018], which is the previous best-performing algorithm, the pro-
posed loss functions further improve PSNR and SSIM. In particular,
on the popular DIV2K validation set [Timofte et al. 2017], our com-
bined loss function outperforms the mean color loss alone by 0.09
db, 0.10 db and 0.12 db on the "2×", "3×" and "4×" scales, respectively.
Figure 6 compares visual results from different state-of-the-art al-
gorithms. Our proposed algorithm exhibits a stronger ability than
EDSR and RDN in preserving structural lines and curves.

8.1.5 Ablation Study. To verify the effectiveness of the general-
ized gradient loss and the orientation loss, we remove one of them
from the combined loss every time, and use the rest of the terms
in the loss to train the network while keeping all other settings
exactly the same as before. The results for the "2×", "3×" and "4×"
scales are also reported in Table 1. When we remove the orientation
loss, the performance drop ranges from 0.01 db to 0.05 db on the
five benchmarks. When we remove the generalized gradient loss,
the performance also drops similarly. This indicates that both the
generalized gradient loss and the orientation loss can improve the
regression accuracy. When they are combined, a larger performance
gain can be achieved.

8.2 High-Resolution Stochastic Component Hallucination

8.2.1 Network Settings and Parameters. We use the same net-
work settings as in the original paper [Ledig et al. 2017] in our
implementation. There are 16 residual blocks in the generator net-
work. The kernel size of all the convolutional layers except the
input and output layers is 3 × 3. The number of channels in all the
convolutional layers except the output layer is 64. The kernel size
of the input and output layers is 9 × 9 and the number of channels
in the output layer is 3. The discriminator network is a VGG-type
network that has 8 convolutional layers including the input layer.
The kernel size of all the convolutional layers is 3 × 3. The number
of channels increases by a factor of 2 every time we move from one
layer to the next. Like in the VGG network, the number of channels
in a convolutional layer increases from 64 to 512. "Dense 1" has 1024
outputs and "Dense 2" has 1 output.

8.2.2 Training Details. We train the network on 115 thousand
images from the ImageNet dataset and the RAISE dataset. Each mini-
batch has 8 training samples, and the low-resolution input in each
sample is a 48× 48 RGB patch. We train the network with the Adam
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Table 1. Comparison of numerical results on Set5 [Bevilacqua et al. 2012], Set14 [Zeyde et al. 2010], B100 [Martin et al. 2001], Urban100 [Huang et al. 2015]

and the DIV2K validation set [Timofte et al. 2017]. Average PSNR/SSIM values for scaling factors × 2, × 3 and × 4 are reported. The best results are shown in

red, and the second best are shown in blue except for the ablation study results.

Dataset Scale Bicubic SRCNN LapSRN DRRN MemNet EDSR RDN (Baseline) w/o GGrad w/o Orientation DTSN(Ours)
× 2 33.66/0.9299 36.66/0.9542 37.52/0.9591 37.74/0.9591 37.78/0.9597 38.11/0.9601 38.24/0.9614 38.23/0.9611 38.23/0.9611 38.23/0.9611

Set5 × 3 30.39/0.8682 32.75/0.9090 33.82/0.9227 34.03/0.9244 34.09/0.9248 34.65/0.9282 34.71/0.9296 34.72/0.9298 34.73/0.9299 34.73/0.9299
× 4 28.42/0.8104 30.48/0.8628 31.54/0.8855 31.68/0.8888 31.74/0.8893 32.46/0.8968 32.47/0.8990 32.55/0.8988 32.57/0.8995 32.58/0.9001
× 2 30.24/0.8688 32.45/0.9067 33.23/0.9130 33.23/0.9136 33.28/0.9142 33.92/0.9195 34.01/0.9212 34.10/0.9216 34.09/0.9216 34.10/0.9217

Set14 × 3 27.55/0.7742 29.30/0.8215 29.79/0.8320 29.96/0.8349 30.00/0.8350 30.52/0.8462 30.57/0.8468 30.59/0.8469 30.58/0.8469 30.59/0.8469
× 4 26.00/0.7027 27.50/0.7513 28.19/0.7720 28.21/0.7721 28.26/0.7723 28.80/0.7876 28.81/0.7871 28.87/0.7878 28.84/0.7875 28.89/0.7882
× 2 29.56/0.8431 31.80/0.8950 31.80/0.8950 32.05/0.8973 32.08/0.8978 32.32/0.9013 32.34/0.9017 32.36/0.9020 32.36/0.9020 32.36/0.9020

B100 × 3 27.21/0.7385 28.82/0.7973 28.82/0.7973 28.95/0.8004 28.96/0.8001 29.25/0.8093 29.26/0.8093 29.29/0.8095 29.29/0.8095 29.29/0.8095
× 4 25.96/0.6675 27.32/0.7280 27.32/0.7280 27.38/0.7284 27.40/0.7281 27.71/0.7420 27.72/0.7419 27.73/0.7421 27.73/0.7421 27.74/0.7421

Urban100 × 2 26.88/0.8403 30.41/0.9101 30.41/0.9101 31.23/0.9188 31.31/0.9195 32.93/0.9351 32.89/0.9353 32.96/0.9356 32.96/0.9356 32.96/0.9356
× 4 23.14/0.6577 25.21/0.7553 25.21/0.7553 25.44/0.7638 25.50/0.7630 26.64/0.8033 26.61/0.8028 26.66/0.8038 26.65/0.8035 26.70/0.8040
× 2 31.35/0.9076 -/- -/- -/- -/- 35.03/0.9475 35.17/0.9478 35.26/0.9483 35.26/0.9483 35.26/0.9483

DIV2K × 3 28.49/0.8339 -/- -/- -/- -/- 31.26/0.8910 31.39/0.8919 31.49/0.8931 31.48/0.8928 31.49/0.8930
× 4 26.92/0.7774 -/- -/- -/- -/- 29.25/0.8440 29.34/0.8442 29.44/0.8446 29.43/0.8443 29.46/0.8451

Fig. 6. Visual comparison of deterministic component reconstruction results for the ×4 scale. The input images are taken from the DIV2K [Timofte et al. 2017]

validation set.

(b) (c) (d) (a) (e) Ground Truth

Fig. 7. Effects of individual losses on deterministic component reconstruction for the ×4 scale. Lcolor represents the results from RDN [Zhang et al. 2018].

optimizer (β = 0.9). The initial learning rate is set to 0.0001. Experi-
ments related to this network run on a single TITAN X (Maxwell)
GPU. Training converges after 1000000 iterations. The learning rate
is decreased by a factor of ten every 400000 iterations. We first
train the generator alone until convergence, and then alternate the
training of the generator and discriminator.

8.3 Image Fusion and Local Statistical Rectification

8.3.1 Network Settings and Parameters. There are three inputs
to the image fusion and local statistics rectification network shown
in Figure 5. All convolutional layers except those in the upscaling
module, the residual blocks and the final output layer, use 3 × 3
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(b) Stochastic Component 
Synthesis

(c) Detected Image 
Structures

(d) Image Fusion (e) Locally Statistical 
Rectification

(f) Ground Truth(a) Deterministic Component 
Reconstruction

Fig. 8. Visual comparison of intermediate results from our complete image superresolution pipeline for the "4×" scale.

kernels and have 64 channels. The upscaling module is the same as
that in ϕs (·,θs ). In a residual block, the Conv1 layer has 64 channels
and uses 1 × 1 kernels; the Conv2 layer has 64 channels and uses
3 × 3 kernels. The output layer Conv12 has 3 channels. The stride is
set to 1 for all convolutional layers. PReLU is used as the activation
function following all convolutional layers.

8.3.2 Datasets and Training Details. We train the image fusion
and local statistics rectification network on the DIV2K training set
and test its performance on the DIV2K validation set as well as other
benchmarks. We train the image fusion network ϕt (·,θt ) using the
guided regression loss Lдreд at first. The initial learning rate is
set to 0.0001, and the weight decay is set to 0.0005. The network is
trained using a single TITAN X (Maxwell) GPU. Training stops after
90000 iterations. The learning rate is decreased by half every 30000
iterations. Then we continue to train the local statistics rectification
network using the combined loss function Lt . The learning rate
is kept at 0.00001 at the beginning, and is decreased by half every
10000 iterations. The training stops after 30000 iterations. The Adam
optimizer is used as in the previous stages.

8.3.3 Results. Figure 8 shows a visual comparison of intermedi-
ate results in our complete image superresolution pipeline for the
"4×" scale. Figure 8(a) shows the high resolution deterministic com-
ponent reconstruction result. Some non-structural pixels are blurred,
but high-resolution edges are well reconstructed. Figure 8(b) shows
GAN-based stochastic component synthesis result. GAN clearly
adds more realistic stochastic details, but gives rise to edge aliasing

at the same time. Figure 8(c) shows detected image structures. Fig-
ure 8(d) indicates that reconstructed deterministic components and
synthesized stochastic components can be effectively fused together
using the guided regression loss. After comparing the images in
Figure 8(d) and (e), we can find that local statistics rectification ef-
fectively enforces local statistical properties by refining previously
synthesized stochastic components to make the fused results have
more natural and realistic details. Compared with the ground truth
in Figure 8(f), Figure 8(e) presents very competitive results.

In Figure 9, we compare our final superresolution results (DTSN)
with those generated from state-of-the-art SISR algorithms (RDN
[Zhang et al. 2018] and SRGAN [Ledig et al. 2017]). Each odd num-
bered row shows the raw results from different algorithms. Mag-
nified local image patches from such results are shown in the row
immediately below. These results show that RDN can produce high-
quality edges and curves, but fail to generate fine stochastic details
for non-structural pixels. SRGAN can generate natural stochastic
details for all pixels without maintaining a proper balance between
the stochastic and deterministic components. The results from the
proposed superresolution algorithm show abundant stochastic de-
tails, which look more natural and pleasing than SRGAN, while
exhibiting high-quality curvilinear structures, such as curves and
lines. Figure 9 demonstrates that the proposed DTSN produces more
natural and accurate high-resolution images than both EDSR and
SRGAN, and these images are appealing even when compared with
the ground truth.
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8.4 User Study

As discussed earlier, with respect to a downsampled low resolution
image, a high resolution image can be decomposed into two compo-
nents, a deterministic component and a stochastic component. The
deterministic component can be recovered from the low-frequency
signals in the downsampled image by exploiting the correlation
between the two. The stochastic component, on the other hand, con-
tains the rest of the signals in the high resolution image that have
little correlation with the low resolution image. By using the low
resolution image as an anchor, the reconstructed high resolution
deterministic component is fully registered with the groundtruth
high resolution image. Therefore, any quality measures that rely on
pixelwise correspondences, such as PSNR, could be used to evaluate
the reconstructed results.
On the other hand, the high resolution stochastic component

cannot be uniquely recovered from the low resolution image. We
can only "hallucinate" this stochastic component through various
image synthesis techniques, including GANs and statistical property
matching. The synthesized stochastic component may be either
statistically or perceptually similar to the stochastic details in the
ground truth, but does not have strict pixelwise correspondences
with the latter. Therefore, quality measures based on pixel-level
registration is not well suited for evaluating image superresolution
results with stochastic components. Instead, subjective evaluation
based on user studies is a much more appropriate means to evaluate
our final superresolution results.

To test the perceptual quality of different methods, we developed
an online user study, which asks participants to mark superreso-
lution images generated by SRGAN, RDN, EDSR and our method.
We cropped 25 images from the DIV2K validation set in order to
make sure that the group of output images from all methods can
be displayed on the same screen and they contain recognizable
foreground objects. All generated images are 4x larger than the
input and divided into 25 groups. Each group has 4 images from
different methods using the same input. Thus there are a total of
25 × 4 images.

Every participant is asked to assign integral marks to all images
within 10 randomly chosen groups. The minimum score is 1, which
corresponds to very poor perceptual quality. And the maximum
score is 10, which corresponds to very high perceptual quality. The
display order of 4 images within the same group is randomized for
every group and participant. There were 42 worldwide participants
and 6 of them claimed they were photographers. A brief tutorial was
given by the online study before they started the test.We encouraged
participants to spend at least 3 minutes on each group.
At the end, for each method, we collected 420 scores. The mean

score of our method (μb = 7.59) is the highest among all 4 meth-
ods. To verify if our mean score is significantly higher than other
methods’(μa ), a paired T-test was performed between our method
and every other method with the following hypotheses:

H0 : μa ≥ μb ,

H1 : μa < μb .

Table 2. Paired T-test Results (α = 0.05)

Method μa T P(two-tail)
SRGAN 5.69 -15.67 7.43e-44
RDN 4.76 -23.01 2.47e-76
EDSR 4.75 -23.58 7.60e-79

HypothesisH1 represents the mean score of our method is higher
than the compared method. We test those hypotheses against SR-
GAN, RDN and EDSR. The results are shown in Table 2.

Note that all P values are less than 0.05 and all T values are nega-
tive, which means we can reject H0 and accept H1 with statistical
significance. This gives rise to the conclusion that our method is
capable of generating images that is significantly perceptually better.

8.5 Limitations

Our proposed method has the following limitations. First, its per-
formance heavily relies on the accuracy of the structure detection
algorithm. ELSD can only detect line segments, circular and ellip-
tical arcs. When there exist more complex curves, their detected
location may drift around the true location. Second, We have found
that the local Gram matrix loss may cause halos/ringing around cer-
tain strong edges. When the local Gram matrix loss is only added to
deeper layers which are farther from the input layer, the halo/ringing
effect is likely to be reduced. Third, the hallucinated details dur-
ing local statistical rectification are too strong in certain images.
We have experimentally found that decreasing the weight of the
local Gram matrix loss and the local correlation matrix loss can
potentially make the hallucinated details less noticeable.

9 CONCLUSIONS

In this paper, we have presented a new pipeline for single image
superresolution. Different from previous algorithms, we model a
single pixel using two complementary components – a deterministic
component and a stochastic component. The SISR problem is de-
composed into independent problems generating these components.
Then we fuse the two components using a deep neural network that
also performs local statistical rectification, which tries to make the
local statistics of the fused image match the same local statistics of
the groundtruth image. Quantitative results and a user study indi-
cate that the proposed method outperforms existing state-of-the-art
algorithms with a clear margin.
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Fig. 9. Visual comparison of final superresolution results from our method (DTSN) and other state-of-the-art algorithms for the ×4 scale. The input images are

taken from the DIV2K [Timofte et al. 2017] validation set. More results are given in the supplementary materials.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 260. Publication date: November 2018. 2018-09-16 23:39. Page 14 of 1–14.


