IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.7, NO. 4, OCTOBER-DECEMBER 2001 1

Extracting Objects from
Range and Radiance Images

Yizhou Yu, Andras Ferencz, Student Member, IEEE, and Jitendra Malik

Abstract—In this paper, we present a pipeline and several key techniques necessary for editing a real scene captured with both
cameras and laser range scanners. We develop automatic algorithms to segment the geometry from range images into distinct
surfaces, register texture from radiance images with the geometry, and synthesize compact high-quality texture maps. The result is an
object-level representation of the scene which can be rendered with modifications to structure via traditional rendering methods. The
segmentation algorithm for geometry operates directly on the point cloud from multiple registered 3D range images instead of a
reconstructed mesh. It is a top-down algorithm which recursively partitions a point set into two subsets using a pairwise similarity
measure. The result is a binary tree with individual surfaces as leaves. Our image registration technique performs a very efficient
search to automatically find the camera poses for arbitrary position and orientation relative to the geometry. Thus, we can take
photographs from any location without precalibration between the scanner and the camera. The algorithms have been applied to large-
scale real data. We demonstrate our ability to edit a captured scene by moving, inserting, and deleting objects.

Index Terms—Scene editing, object-level representation, range image segmentation, image registration, texture-mapping, image-

based modeling, image-based rendering, augmented reality.

1 INTRODUCTION

CAPTURING real environments to faithfully recreate them
on a computer screen has become an important
research area. Most of the work in this field, image-based
modeling and rendering [27], [6], [32], [47], [28], [18], [11],
[41], [40], [42], [45], [51] has focused on static environments
that can be viewed from novel viewpoints as well as under
novel lighting conditions. However, challenges remain in
making modifications to geometric properties, such as the
relative position, orientation, and size of objects, and
photometric properties, such as color or specularity. For
example, we would like to animate the objects in the
environment or move a statue to a different place in a
virtualized museum.

An object is made up of a collection of surfaces which in
turn have geometric properties such as size and shape as
well as photometric properties such as color and texture.
Editing operations should be performed at object level,
which requires us to give each object geometric and
photometric representations that are independent of the
rest of the scene. Since a scene is usually acquired as a
whole, this kind of object-level information is not directly
available from the captured geometry or from photographs.

There are two basic problems related to this issue. First,
we need to segment the scene into objects. In this paper, we
use a laser range finder to acquire a discrete representation
of the geometry, a point cloud. Each point in the cloud has a

o Y. Yu is with the Department of Computer Science, University of Illinois at
Urbana-Champaign, 1304 W. Springfield Ave., Urbana, IL 61801.
E-mail: yyz@cs.uiuc.edu.

e A. Ferencz and]. Malik are with the Computer Science Division,
University of California, Berkeley, CA 94720.

E-mail: {ferencz, malikj@cs.berkeley.edu.

Manuscript received 24 July 2000; revised 7 Dec. 2000; accepted 6 Feb. 2001.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number 112573.

3D position, an estimated normal orientation of the under-
lying surface at that point, and a returned laser intensity
value. These cues give adequate information to distinguish
points that belong to different objects. Therefore, we do
segmentation on the point cloud before a mesh is actually
built. Our technique is an extension of a 2D image
segmentation algorithm using spectral graph theory. The
result is a binary tree with individual surfaces as leaves. We
first oversegment the scene into a set of coherent surfaces
and then ask the user to interactively group surfaces into
semantically meaningful objects.

Second, we need to attach detailed photometric proper-
ties, such as reflectance and texture, to the objects. We use a
digital camera to capture such information and then recover
the camera poses. In this way, we can set up correspon-
dences between pixels in the photographs and 3D points in
the scene. Using calibration targets, we developed an
automatic technique for recovering camera pose for arbi-
trary position and orientation relative to the geometry. We
efficiently search for the correct matches between the
detected calibration targets in these two types of images
and then solve a least-squares problem to recover the
parameters of camera pose. This technique has much better
average time complexity than previous algorithms [26] in
the same category. With correctly registered images, space
efficient texture maps can be synthesized for hardware
texture-mapping.

Addressing these two problems adds much more
flexibility to geometric and photometric data capture, cleans
the obstacles in extracting individual objects from range
and radiance images, and allows humans to interactively
manipulate them. It makes it easier to build an object library
based on the real world, which can be composed to form
novel scenes using the objects for rendering and animation.

1077-2626/01/$10.00 © 2001 IEEE

2
Range Radiance
Tmages Tmages
lRegistration ¢ Pose Estimation
Point Calibrated
Cloud Images
l Segmentation
Point — 1 Texture
Groups .| Maps
lReconstruction
Simplified .
Meshes s
eshes Meshes Objects

Fig. 1. Pipeline. This figure shows the multiple stages in our data
processing procedure.

1.1 Overview

The input to our pipeline is a set of range images and
photographs. The range images are registered together first
to give a unified point cloud by using Cyra Technologies’
software [9] to automatically locate calibration targets in
each scan and interactively setting up corresponding targets
among different scans. The rotation and translation between
two laser scans can be recovered from three pairs of
correspondences, but the more the better. The calibration
targets are designed to be strongly retroreflective at the
wavelength of the laser beam in order to be identified
automatically.

The segmentation algorithm is then run on the point
cloud, breaking it into groups. With some user interaction,
we can assemble these groups into objects. We then build a
mesh for each object and run mesh simplification to reduce
its complexity. At the same time, the camera poses of the
photographs are recovered automatically relative to the
unified point cloud. To attach detailed texture information
to the objects, we compose texture maps using data from
multiple photographs for all the objects. In the end, we can
realistically rerender the scene using the extracted geo-
metric and photometric properties and manipulate the
objects as we wish.

From this process, we can see that range data segmenta-
tion can be useful in multiple stages. Fitting smooth
parametric surfaces to individual objects is much easier
after segmentation and memory capacity becomes less of a
limitation if we only reconstruct a mesh for one object at a
time. Mesh simplification is improved since we do not
intend to simplify over segmentation boundary. Segmenta-
tion into surfaces with approximately uniform specularities
would aid in recovering specular reflectance models of the
surfaces.

2 PREviOus WORK

The work we present in this paper has been made possible
by previous work in geometry acquisition, mesh recon-
struction and simplification, image-based rendering and
texture-mapping, 2D image registration and segmentation,
and range image registration and segmentation.

Recent work in laser range scanning has made it possible
to recover accurate geometry of real-world scenes. Besl and

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.7, NO. 4, OCTOBER-DECEMBER 2001

McKay [3] introduced the iterative closest point (ICP)
algorithm to register multiple range images. Pulli [37]
addressed the same problem for large data sets. A number
of robust techniques for merging multiple range images into
complex models are now available [7], [48], [8], [49], [35].
The authors of [22], [12], [1] also introduced techniques to a
more general problem, which is mesh reconstruction from
unorganized points. The reconstructed meshes from the
above techniques usually have a huge amount of complex-
ity, which makes rendering inefficient. There is a large
amount of work on obtaining simplified meshes with
minimal deviation in shape [23], [14], [29].

Techniques have been developed recently for texture-
mapping recovered geometry [11], [10], [52], [33]. Some
image-based rendering work has been introduced to
implicitly make use of recovered depth information in
addition to images [32], [42], [35].

There are two areas of research that are most related to
this paper: segmentation and camera pose estimation.

2.1 BRange Image Segmentation

There has been much work on range image segmentation in
the computer vision and graphics community [4], [21], [34],
[2], [24]. Most of these techniques consider every range
image as a rectangular array of points with 3D positions.
Due to the similarity between range images and 2D images,
most of the image segmentation techniques, such as edge
detection, region growing, and pixel clustering, can be
applied to range image segmentation [24]. The major cues
used include the depth value and normal orientation at
each pixel. Most of the previous work in this area was for
fitting surface primitives, such as planar and quadric
patches, and generalized cylinders. Therefore, statistical
tests are often incorporated into the segmentation algo-
rithms to verify whether a particular surface primitive can
fit well to a group of pixels and to determine whether
region split or merge should be considered. This type of
algorithm works well on range images of mechanical CAD
models which consist of planar and simple curved surfaces.

However, most real objects have unknown free-form
shapes, such as statues and curtains. To extract objects from
a real scene, we are more interested in a segmentation
algorithm that is independent of any surface primitive.
Region growing approaches based on local split and merge
decisions are not very appropriate, either, because the
decisions made are local, which is suboptimal in finding
object boundaries. We need some top-down algorithm to
make global decisions. On the other hand, we may need
multiple range images from different angles to capture a
complex model. A segmentation algorithm, which can work
on multiple registered range images simultaneously, is
more interesting. In this situation, the order of points
defined by the rectangular array in a single image is lost.
We need new techniques to solve this more complicated
problem. In the 2D image segmentation literature, some
recent spectral graph theory-based algorithms [44], [36], [30]
appeared to perform better than other techniques. They
make decisions on where to partition the data using global
information. We will extend the normalized cut framework
in [44] to 3D range image segmentation in the next section.

YU ET AL.: EXTRACTING OBJECTS FROM RANGE AND RADIANCE IMAGES

Mangan and Whitaker [31] propose a technique for
segmenting surface meshes by generalizing morphological
watersheds. It is not directly relevant to the problem we are
looking into because we consider segmentation as a very
fundamental data processing stage which should happen at
least in parallel to mesh reconstruction, not after. Effective
segmentation of points into groups should be able to benefit
mesh reconstruction.

2.2 Camera Pose Estimation

The mathematical foundation for pose estimation from
points, lines, and curves has been extensively studied.
Estimation based only on point correspondences from four
[25] and more points is introduced in [13], [19]. Haralick
et al. [20] provides a review of many 3-point techniques
with a careful analysis of their stability. Ji et al. [39]
develops an analytic least squares technique for pose
estimation from points, lines, and ellipse-circle pairs. These
methods all assume a known correspondence between
geometry and image features, which often requires ex-
tensive user involvement.

Several techniques have been developed for automatic
detection of features in the image and the geometry and
finding their correspondences. Most of these techniques are
applicable to discrete geometric objects whose shape is
known exactly. Huttenlocher and Ullman [26] find corners
and run a combinatorial search to find matches. Wunsch
and Hirzinger [50] propose another method based on the
iterative closest point algorithm [3]. These methods, how-
ever, are very restrictive as to the types of models they can
handle, restricting themselves to simple CAD objects.

A compromise solution is to ask the user to suggest an
initial pose by, for example, selecting a few point
correspondences and then using object silhouettes to
refine the estimation. Neugebauer and Klein [33] use this
technique in addition to aligning the texture maps on the
surface. They require an exact model and numerous
photographs of the object, conditions we are not
guaranteed.

3 RANGE DATA SEGMENTATION

The input data to this problem is a 3D point cloud created
by merging the points from multiple registered range
images. In addition to 3D position, each point has two
associated attributes, a normal orientation estimated from
neighboring pixels in the scan image, and a returned laser
intensity value which depends mostly on the surface
reflectance corresponding to the wavelength of the laser
beam. The output of this module is a partition of the point
cloud, treated as a set, into subsets such that each subset
defines a complete object. The subsets are mutually
exclusive, and their union is the complete set.

We achieve this goal in two steps. For the first step, we
developed an automatic algorithm to partition the points
into surface regions, each of which has approximately
uniform geometric and photometric properties represented
by 3D locations, surface normals, and returned laser
intensities. In the second step, we interactively group
surface regions into individual objects such that each object
can be treated separately but points in the same object are

treated in the same way. Note that surfaces in the same
object may have very different surface properties. To give
an example, suppose one of the objects in the scene is a cube
resting on a table. The first step would return five surfaces;
the user is responsible for indicating that all these surfaces
belong to one object. Considerable semantic knowledge can
be involved in judging whether an object is merely resting
on another or is rigidly attached and is thus part of the same
object; at this stage, we think it prudent to leave this
judgment to a user.

In the rest of the section, we introduce the algorithm for
automatic segmentation of the point set into surface regions.
This is done by generalizing the normalized cut algorithm
[44] to range data. There are three key issues to consider
here. Namely, 1) what the appropriate similarity measure
for range data is, 2) precisely what the criterion to partition
the graph is, and 3) what the technique to obtain
approximate solutions for large datasets is.

3.1 Normalized Cut Framework

We introduce some details of the normalized cut algorithm
[44] here. A graph G = (V, E) is defined on the input data.
In our context, the nodes represent local clusters derived
from the point cloud with the associated attributes. An edge
in E, (s,t) with s,¢t € V, has a weight w(s, t) defined by the
similarity between the location and attributes of the two
nodes defining the edge. The idea is to partition the nodes
into two subsets, A and B, such that the following
disassociation measure, the normalized cut, is minimized.

cut(A, B)
asso(A,V)

cut(A, B)
asso(B,V)’

Necut(A, B) = (1)
where cut(A, B) =3 ca,cpw(u,v) is the total connection
from nodes in A to nodes in B, asso(A, V) =3 4 oy w(s, 1)
is the total connection from nodes in A to all nodes in the
graph, and asso(B,V) is similarly defined. This measure
works much better than cut(A, B) because it favors
relatively balanced subregions instead of cutting small sets
of isolated nodes in the graph.

To compute the optimal partition based on the above
measure is NP-hard. However [44] shows that a good
approximation can be obtained by relaxing the discrete
version of the problem to a continuous one which can be
solved using eigendecomposition techniques. Let y be the
indicator vector of a partition. Each element of y takes two
discrete values to indicate whether a particular node in the
graph belongs to A or B. If y is relaxed to take on
continuous real values, it can be shown that the optimal
solution can be obtained by solving the generalized
eigenvalue system:

(D= W)y = ADy, (2)

where D is a diagonal matrix with D(i,i) = >, w(i,), W is
the weight matrix with W (i, j) = w(i,j). The eigenvector
corresponding to the second smallest eigenvalue is the
optimal indicator vector in real space. A suboptimal
partition can be obtained by first allowing y to take on
continuous real values, solving the above generalized
eigenvalue system for y, and then searching a certain

4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.7, NO. 4, OCTOBER-DECEMBER 2001

number of discrete values for the best threshold to
partition the real-valued elements of y into two sub-
groups. The two resulting subregions from this partition
can be recursively considered for further subdivision. To
improve efficiency, the complete graph defined by the
data is usually simplified to only have edges that connect
two nearby nodes. This algorithm can be used to solve
different segmentation problems by choosing different
edge weight W(u,v) [43], [30].

3.2 Setting Up the Graph

Since we have multiple high-resolution scans, solving the
graph partition problem on the original point set is
impractical. For example, we have a dataset for a large
room with 19 800 x 800scans. For comparison, note that, in
the application of normalized cut to image segmentation,
[44] considered 200 x 200 images. Thus, we group nearby"
points into clusters such that each cluster is a node. All the
points within the same cluster have similar normal
orientations and laser intensities. Clustering is actually
carried out incrementally to minimize memory consump-
tion. Only one of the original range scans remains in
memory every time. Part of its points get integrated into
existing clusters, while others create new clusters. For every
point in this range scan, we check whether there are existing
clusters whose centroids are within a certain small distance
from the considered point, whether the difference between
the average laser intensity of such an existing cluster and
the intensity of the considered point is below a threshold,
and whether the difference in terms of normal orientation is
also below another threshold. If there is no cluster satisfying
these conditions simultaneously, a new cluster is created.
The number of nodes after initial clustering is reduced to
about 40,000 for the room dataset. We use the averaged
spatial location, normal, and returned laser intensity of each
cluster as the attributes of its corresponding node in the
graph. Here, the returned laser intensity is a better cue than
color from photographs because it is a better approximation
of surface albedo, which is lighting independent. Thus, we
do not need to worry about oversegmentation due to
shadows and shading effects in photographs. Local edges
are set up among clusters that are within a certain distance
of one another. We also set up random long-range
connections among clusters to help use global context
[44]. The number of random edges incident to each node is
the same, /n, where n is the number of nodes in the graph.
In this way, the adjacency matrix of the graph is sparse,
which makes it possible to solve the problem efficiently.

The weight w(u, v) over an edge (u, v) is the product of a
similarity term S(u,v) and a proximity term P(u, v), both of
which are in the form of a Gaussian distribution. w(u, v) is a
local measure of how likely the points (or clusters) are to
belong to the same surface. w(u,v) is close to 1 for points
which are likely to belong together and close to 0 for points
which are likely to belong to separate objects, as judged
purely from local evidence.

1. To accelerate nearest point lookup, we set up a two-dimensional grid
on a virtual plane with its normal set to the average normal orientation of all
the input points. Each cell in the grid has a list of points that are projected
into it. To look up points that are near a certain point, we only need to check
the points around the cell into which that point is actually projected.

A B

Fig. 2. Two regions, A and B, are adjacent. A correct graph partition
should happen at their border, not in the middle of A.

S(u,v) = exp(~dif f*(u,v)/207,), 3)

where diff(u,v) is the angular difference in the case of
normal orientation and is the scalar difference in the case of
laser intensity. Similarity in both normal orientation and
laser intensity is considered during segmentation.

The proximity term over an edge (u,) is used to model
spatial coherence, which means that nearby points are more
likely to belong to the same surface. Both similarity and
proximity are well-known Gestalt grouping factors.

P(u,v) = exp(—dist*(u,v)/207), 4)

where dist(u,v) is some distance measure. The parameters
oy and o, should be set a little bit larger than the standard
deviation of noise present in the input data. The standard
deviation of noise can be calibrated using laser returns from
a piece of flat wall with constant color. Smaller values for
the parameters tend to produce oversegmented results.

Surfaces and objects at different depth should be
separated in segmentation. To enhance the difference
caused by depth discontinuity, we define an anisotropic
distance metric dist(u,v) as follows: First we define a
tangential plane at each of the points u and v given the
normals and positions. Let the vectors w, and u, be the
projections of the vector uv onto the normal and tangential
plane, respectively, at point w. Then,

dist, (u,0) = \/E * |[unl* + [,/ B,

where E(> 1) is some adjustment parameter to magnify the
difference along the normal direction and shrink the
difference along the tangential direction. This parameter
can make sure to segment out surfaces belonging to
different layers. dist,(u,v) can be defined similarly. Finally,

dist(u,v) = MAX(dist,(u,v), dist,(u,v)). (5)

3.3 Criterion for Graph Partition

Let us first look at the region shown in Fig. 2, where two
subregions A and B are adjacent to each other. Surface
attributes are uniform within the same subregion but
different across subregions. Although the correct partition
should happen at the boundary between A and B, normal-
ized cut with local connections tends to partition the region
in the middle of A because subregion A is quite thin in the
middle and the normalized cut value in (1) is very small
there. In the context of image segmentation, this can be
justified as a segmentation of the image into “parts,” but we
felt that this was not too important a consideration for us.
We therefore introduce a slight modification of the
segmentation criterion by defining the normalized weighted
average cut.

YU ET AL.: EXTRACTING OBJECTS FROM RANGE AND RADIANCE IMAGES

NW Acut(A, B) = MIN(WAcut(A, B) WAcut(A, B) >’

W Aasso(A, A)’ W Aasso(B, B)
(6)

where

ZUEA;UEB S(“v U)P(uv U)
ZueAﬁueB P(u,v) ’

Zu,veA S(u,v)P(u,v)
Zu‘UEA P(ua U) '

and WAasso(B, B) is similarly defined. It is quite easy to
figure out that, in Fig. 2, normalized weighted average cut is
minimized at the boundary between A and B. This new
measure does not favor balanced subregions as normalized
cut, so it is not appropriate as the basic criterion to be used
for segmentation; but, by setting a threshold on the
minimum weighted average cut, we can reduce the chance
of splitting in the middle of region A.

Algorithmically, we proceed as follows: For the currently
considered region, first solve the sparse eigensystem (2)
using Lanczos algorithm [17] to come up with a candidate
partition, then check the normalized weighted average cut
along the candidate boundary. If both normalized weighted
average cut and normalized cut are below the threshold
Teu, split the region and consider the two subregions in
turn; otherwise, stop recursion on the considered region.

WAcut(A, B) =

W Aasso(A, A) =

3.4 The Complete Algorithm

We have two postprocessing steps, boundary improvement
and fine segmentation, which are aimed at getting high
quality segmentations, in spite of the fact that we could not
process the original dataset directly in (2) because of its
large size.

After a region is split into two subregions, we have an
initial boundary between them. In practice, this boundary
may deviate a little from the real surface boundary. To
improve its localization, we exploit the linear order on the
nodes in the original region according to the magnitude of
their corresponding elements in the second smallest
eigenvector of (2). A local segmentation problem is solved
at each point cluster close to the initial boundary. At each of
these clusters, collect all clusters in its neighborhood and set
up a complete graph among them since the size of graph is
small. Then, search for the node that best partition the linear
order into two parts under normalized cut criterion. Every
cluster near the initial boundary may be included into
multiple local segmentations. Each local segmentation
assigns the cluster to one side of the boundary or the other.
We use majority voting to decide which side of the
boundary it should belong to. Once we have determined
the membership of all clusters, the final boundary also
becomes clear.

Cues on normal orientation and laser intensity should
not be applied at the same time since they have different
noise levels and may interfere with and reduce each other’s
effectiveness during segmentation. For example, it is hard
to decide where to cut first if we have two perpendicular
walls with regions of distinct colors on them. In practice,
segmentation is done in two passes. Continuity in normal
orientation has been assigned a higher priority and is

applied in the first pass. Continuity in laser intensity is
applied in the second pass. But, proximity is needed in both
passes to maintain spatial coherence.

To reduce the impact of the initial point clustering
(which is suboptimal as it is local) at the beginning of the
algorithm, we introduce an additional step at the end of the
algorithm to refine segmentation results. Based on the
previous segmentation, it reads in all points belonging to
one group at a time, clusters them at a finer scale, and runs
segmentation on the new clusters once again. The spirit of
both these postprocessing steps is a coarse-to-fine refine-
ment, something that has been tried quite extensively in
various computer vision settings.

The whole segmentation algorithm is summarized as
follows.

o Coarse Segmentation:

- Clustering: Group all points into clusters such
that points in the same cluster are within a
prescribed radius from its centroid and have
close normal orientation and laser intensity.

- Cluster Segmentation:

* Recursive segmentation based on normal
continuity and proximity.

* Recursive segmentation based on continuity
in returned laser intensity and proximity.

* Stopping Criterion: Both the normalized
cut value and weighted average cut value
are below a threshold.

* Boundary Improvement: Once the stopping
criterion is satisfied, apply local optimal
segmentation and voting at each boundary
cluster to improve boundaries.

e Fine Segmentation: Based on coarse segmentation
results, every time only read all points that belong to
one group, set smaller radius for clustering and
smaller ¢ value in proximity term, and repeat the
same steps in coarse segmentation on them.

4 MesH RECONSTRUCTION AND SIMPLIFICATION

Given the segmentation results on a point cloud, we can
recognize the points that belong to an object and build a
mesh or fit surfaces for that object. Although these are not
the focus of this paper, we introduce the techniques that are
applied to perform these tasks here.

There are two different methods to build a mesh for an
individual object. The first method tries to extract all the
points that belong to the object. This is actually a set of
unorganized points since the scan order inherent in a range
image is lost. We can then build a mesh using the
algorithms in [22] and [1]. In practice, we use the “crust”
algorithm in [1].

The crust algorithm works well for objects of which we
have dense samples. However, our range images are not
dense enough for objects that have fine details. So, we try to
make use of the scan order in a range image and build
nearest neighbor connections. In each of the original range
images, we first mark the points that belong to the object
and then build a connection between two points if they are

direct neighbors and both are marked. So, we can extract a
partial mesh from each range image that covers the object
and put them together to represent the geometry of the
object. Applying the algorithms in [48] and [8] merges these
partial meshes and comes up with a single mesh.

Once we have the meshes for individual objects, we
continue to simplify them to improve rendering perfor-
mance. Most of the previous algorithms on mesh simplifi-
cation can be applied. In practice, we use the technique
presented in [14]; while it is much less time-consuming to
scan multiple objects simultaneously in an environment,
there is little information for back-facing surfaces and
surfaces that are heavily occluded. For the same reason,
these surfaces are less visible and therefore less important.
We interactively insert some simple polygons to model
these back-facing and occluded surfaces.

5 IMAGE REGISTRATION

Given a mesh, we are interested in texture mapping the
surface from photographs. We wish to allow the user to take
these photographs from any position and orientation and
then effortlessly align the pictures to the geometry from
range scans. More specifically, given an image and a
geometry, we need to find the translation (three para-
meters) and the rotation (another three parameters) that
describe the exact pose of the camera when the image was
taken. Here, we assume that we know the internal
parameters of the camera, such as focal length and radial
distortion, with which we can convert the real camera into
an ideal pinhole camera [13].

To calculate the pose for arbitrary rotation and transla-
tion, we need to know correspondences between features in
the image and the geometry. Automatically discovering
suitable features (such as lines and corners) in general
scenes and matching them is extremely difficult and
currently no reliable methods exist. Another possibility is
to ask the user to supply the features. However, this is very
labor intensive and often not very accurate (users tend to
label features with an accuracy of a few pixels at best and
their performance diminishes after the first dozen images).
An alternative is to place unique calibration objects in the
scene that are identifiable from both laser range data and
images. With an ample number of such features in each
image, the pose can be determined automatically and
accurately without user intervention. The disadvantage of
this method is that more planning must go into scene
capture, ensuring that enough calibration objects are visible
from each image, and that these artificial objects must then
be removed from the scene. However, these limitations
seem much less severe than the disadvantages of the other
options.

Cyra Technologies’ laser scanner which we used for this
project can achieve best performance in registering multiple
scans by using calibration targets taped to surfaces. We use
these same targets to determine the camera pose. While
these targets are specifically designed for this scanner, our
techniques can be applied in general when calibration
targets can be placed in the scene. These targets are flat
square green patches with a white circular area in the
middle. They are designed to be easily identifiable from

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.7, NO. 4, OCTOBER-DECEMBER 2001

both laser range and image data while being small to cover
as little of the surface as possible. These constraints,
combined with a wide variety of lighting situations that
inevitably changes the apparent cover of any object, prevent
us from adding a unique identifier to each target. Thus, for
each image, finding the pose involves locating the targets in
the image, finding the correspondences between these
targets and known targets in the geometry, and, finally,
calculating the six parameters of rotation and translation for
the camera.

5.1 Finding Targets in Images

To find the targets in an image we first sweep target
templates (white circles with green borders) of several
scales over the image, using sum of squared distances (S5D)
as a metric. As the circular targets actually project to
elliptical patches in the image, template matching (with a
liberal threshold) is only effective at locating candidate
target locations (since ellipses centered at a point have three
degrees of freedom, prohibitively many templates would be
needed to accurately find targets using only template
matching). To verify candidate regions, we attempt to fit
an ellipse to the central white region and evaluate the
match, again using SSD. This is equivalent to matching
against the best possible elliptical template. Since the ellipse
is found using a region of the image, not just a few pixels,
the amount of redundancy enables us to estimate the
parameters of the ellipse to subpixel accuracy. Conveni-
ently, this technique provides five constraints for each
target, which can be used to greatly reduce the combinator-
ial search for target correspondences.

5.2 Finding Target Correspondences

Once targets in the image have been identified, we must
find their correspondence to known target locations in the
geometry. This can be posed as a combinatorial search
problem: Pick correspondences for enough targets to
generate an overdetermined set of constraints, solve for
the best pose, and test the error. If the error is within a
threshold, which, in turn, is based on the expected accuracy
of the point locations, accept the conjecture. If we only use
the location of the center of the ellipses (z;,y;), without any
initial guess, three correspondences is enough to find the six
parameters of the pose to within four ambiguous locations,
while four resolves the ambiguity and generates an over-
determined system. Unfortunately, this simple combinator-
ial search thus takes O(n?) time, where n is the number of
targets in the geometry. Since a large scene may require a
hundred or more targets (we used 66 for our room model),
this search could be prohibitively expensive.

As noted above, we fit an ellipse to each target, yielding
three additional parameters: major axis a;, minor axis b;,
and rotation of the major axis to the vertical ;. Given a
target in the geometry and an associated normal vector, we
can compute the projection of the circle onto an arbitrary
image plane giving a,, b,, v,. Let T, and T;, be the position
and normal of target T" in the geometry and C), the camera
location. For computational convenience we only consider
image planes perpendicular to the vector Q = C, — T, (ie,,
where the target is at the center of the image). For targets
not located at the center of the image, we reproject them

YU ET AL.: EXTRACTING OBJECTS FROM RANGE AND RADIANCE IMAGES

onto such a plane and compute a;, b;, and ~; relative to this
new plane (this needs to be done only once for each image
target). Let C,, be the up vector for this new image plane,
r be the physical radius of the inner circle of the targets, and
f the focal length of the camera. Given these, a,, by, 7, are
computed by:

r
agfm*f
by =ayx(QT,)

Yg = cos™! <7‘ xQ

- Cyp * sign |,
Tox Q" g)

where
Sign = (Tn . Cup)/‘Tn . Oup|-

Thus, two target correspondences provide 10 constraints
(six from the two ellipses and four from the two pixel
locations), which is enough to solve for a unique camera
pose in the general case. We do this by anchoring the image
target centers to their counterparts in the geometry,
constraining the six-dimensional system to a two-dimen-
sional manifold. We then minimize the function

i((ati - atg)2+(bt7; - btg)2+

&(;z - %g) * (a1 = bu) 2 (at” — bm))2>>

using a standard least squares optimizer. As this optimiza-
tion is typically prone to a small number of local minima,
we run it from multiple initial positions. A detailed
treatment of pose estimation from circle/ellipse pairs can
be found in [39].

Since this system with 10 equations and six unknowns is
overdetermined, each solution returns an error that can be
used to weed out most bad correspondences immediately.
Otherwise, we use this initial guess for the pose to find a
small set (typically less than three) of candidate correspon-
dences for each remaining image target. We try these one at
a time, solving the optimization for a new pose given three
targets, and using the remaining targets to confirm or reject
the solution.

While this still has a worst-case running time of O(n?),
for any practical arrangement of targets (without many
targets clumped together), we expect the running time to be
Q(n?). As reported in the results section, this is the observed
behavior, which is much faster than previous algorithms
[26] whose complexity is always O(n?).

5.3 Recovering Camera Pose

Once we find an acceptable set of correspondences, we fine-
tune the pose by solving a final least-squares optimization,
over all six parameters, using the previous estimate as an
initial position. This optimization minimizes the function:

Z(Iti —219)* + (i — yg)°
=1

where (z,,) is the location of the projected center of
target t in the image. (We do not attempt to fit a, b, v in this
function for these vary much more slowly than the
projection of the center points, so they become irrelevant
when enough targets are available.)

6 TEXTURE-MAPPING

For rendering and manipulation, meshes with attached
texture maps are used to represent objects. Given camera
poses of the photographs and the mesh of an object, we can
extract texture maps for the mesh and calculate the texture
coordinates of each vertex in the mesh.

We use conventional texture-mapping for the objects,
which means each triangle in a mesh has some correspond-
ing triangular texture patch in the texture map and each
vertex has a pair of texture coordinates which is specified
by its corresponding location in the texture map. For our
situation, conventional texture-mapping is better than
projective texture-mapping [11]. While texture will be
projected incorrectly in projective texture-mapping once
an object moves, conventional texture-mapping makes
texture stick to the mesh when we move the objects.
Directly mapping photographs onto a mesh using conven-
tional texture-mapping would generate perspective distor-
tion because photographs involve a perspective
transformation and conventional texture-mapping is accu-
rate only under affine maps. However, we can remove this
kind of distortion by resampling the original photographs
with a perspective transformation and warping the samples
to produce new texture maps which are correct under affine
maps.

Since each triangle in a mesh may be covered by multiple
photographs, we actually synthesize one texture patch for
each triangle to remove the redundancy. This texture patch
is the weighted average of the projected areas of the triangle
in all photographs. The weight for each original area from
photographs is set in such a way that the weight becomes
smaller when the triangle is viewed from a grazing angle or
its projected area is close to the boundaries of the
photograph to obtain both good resolution and smooth
transition among different photographs. Visibility is deter-
mined using Z-buffer for each pixel of each original area to
make sure only correct colors get averaged. We apply the
scheme in [46] to place the synthetic triangular texture
patches into texture maps and therefore obtain texture
coordinates. This scheme quantizes the edge length
(number of texels along each edge) of every texture patch
to be a power of 2.

The colors for triangles invisible in all of the photographs
can be obtained by propagating the colors from nearby
visible triangles. This is an iterative process because
invisible triangles may not have immediate neighboring
triangles with colors at the very beginning. If an entire
triangle is invisible, a color is obtained for each of its
vertices through propagation. This color is a weighted
average of the colors from the vertex’s immediate neighbors
with the weight in inverse proportion to their distance. If a
triangle is partially visible, it is still allocated with a texture
patch and the holes are filled from the boundaries inwards
in the texture map. The filled colors may be propagated

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,

VOL. 7, NO.4, OCTOBER-DECEMBER 2001

(@)

(b)

Fig. 3. (a) An original photograph; (b) the result of applying the derivative of the Gaussian to the image in (a). Areas with edges are allocated with

more pixels during texture map synthesis.

from neighboring triangles since holes may cross triangle
boundaries.

We make use of some information measure to decide the
size of each texture patch so only a small number of texels
are allocated for a patch without significant color variations.
The response of an edge detection operator (the derivative
of the Gaussian) is taken as our information measure, and
applied to all original photographs (Fig. 3). For each texture
patch, we use the maximum response at its corresponding
pixels in the photographs to determine the number of texels
it actually needs to keep the original variations on the
triangle.

Additional savings of texture memory can be achieved
by reusing texture patches for multiple 3D triangles when
the texture over these triangles looks similar. For example, if
the walls in a room are all white, it is possible to represent
the shading variations on the walls with a small number of
texture patches, even if the number of triangles for the walls
is quite large. This requires that we cluster the texture
patches and set the same texture coordinates to all triangles
in the same cluster. The K-means algorithm (Lloyd
algorithm) in vector quantization [16] can then be used to
cluster all the texture patches with the same size. Because of
the Mach Band effect, slight color difference along the edge
shared by two 3D triangles may be rather obvious. The
K-means algorithm adopts summed squared difference as
its objective function. We change it slightly by allowing a
distinct weight for each squared difference in the summa-
tion and set a larger weight for difference on edge texels to
alleviate this effect. Given an error tolerance, we need to run
a binary search to find the minimum number of clusters
that can achieve that error. This process is quite time-
consuming since each step of the binary search needs to run
the K-means algorithm whose complexity is O(nmd), where
n is the number of initial vectors, m is the number of
clusters, and d is the dimensionality of each vector. This
complexity becomes O(n?d) when m is a large fraction of n.
In practice, we exploit a two-level scheme to improve the
performance by first grouping the n vectors into /n clusters

and then running the binary search on the vectors
belonging to each cluster, which in turn splits into multiple
clusters.

7 RESuLTS

Our algorithms have been tested on a complete real
scene—a large reading room—as well as on individual
laser range scans and photographs. We took 19 800 by 800
range scans of the reading room and also scanned a piano
from three positions in a separate setting with Cyra
Technologies’ time-of-flight laser scanner [9]. Most visible
surfaces were covered at centimeter accuracy. The scans
were registered together using Cyra’s software. A little
more than 100 photographs were taken with a Sony DSC-
D770 digital camera.

7.1 Geometry Segmentation and Reconstruction

Since there is noise and outliers in the scans, we filter the
scans before sending them to our segmentation algorithm
which runs on a Pentium II 450MHz PC. For the reading
room, our segmentation code produced 393 groups in four
hours which were further grouped into 95 objects and
surfaces within two hours of user interaction. No user-
assisted segmentation is needed. The results from segmen-
tation are shown in Fig. 4c. A visualization of the meshes
after user-assisted grouping is shown in Fig. 4d with
different colors for different objects. All the curtains and
furniture, including lamps, tables, couches, dressers, and
chairs, are correctly segmented out. Before user interaction,
the number of groups for each object ranges from two to 20,
with an average of four. Oversegmentation produced extra
groups on walls and along object boundaries, most of which
are not very visually noticeable. Some of them are marked
out with white circles in Fig. 4c. We did not group
oversegmented pieces on walls together interactively
because we do not have the need to manipulate a complete
piece of wall. Fig. 4a and Fig. 4b also give the segmentation
results for a different, but simpler, room and a single
facade. In Fig. 4a, a person was sitting in the next room

YU ET AL.: EXTRACTING OBJECTS FROM RANGE AND RADIANCE IMAGES

Adddddd 223 ddad iad
A daddadddddaid

FYFFFTYFETIERY)
FrFFFFFrFFFFEFY|

¥
d.

iyl
FP

tu"[::‘u‘u‘uuu
)
Adid,

1444

iy
Fi
Py

i

Frav)

FIFF
ddididsad,

b

HE
)

¥

-~
RRRS
Ny
RAS
AA]

T N
g \
S

Y

daaaasesdrfaddy
SEi

R
#]
FF

o
T2
B

7

¥

(d)

Fig. 4. The segmentation results on three data sets: (a) A simple room with portals, (b) Albert Hall facade, (c) a large reading room. (a), (b), and (c)
show the segmentation results from our algorithm. Each dot represents one point cluster. Clusters in the same group are shown with the same color
and density. Some oversegmentations are marked out with white circles in (c). (d) Shows the segmentation results as multiple pieces of colored
meshes for the reading room with furniture and curtains after the user interactively grouped surfaces into objects. Objects are shown in distinct

colors.

while it was scanned. We can see his head and torso (in the
region marked out with a red line) are correctly segmented
out from the rest of the environment. Fig. 4b shows that our
anisotropic distance metric in (5) can effectively separate
layers at different depth.

Most of the meshes, including the piano, were recon-
structed using the “crust” algorithm [1]. Antique tables and
chairs, as well as curtains, were reconstructed using an
algorithm similar to [8]. Fig. 5 shows an image of the

meshes which includes lamps, tables, curtains, couches, as
well as the ceiling and walls. To demonstrate that we really
have extracted individual objects, Fig. 6 shows the
individual models of an antique table, a chair, and the
piano. The points on the floor were segmented out
automatically and a single plane was fit to replace those

points.

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.7, NO. 4, OCTOBER-DECEMBER 2001

Fig. 5. The reconstructed meshes with targets (green) and recovered camera poses (red and blue) for the reading room. There is a separate mesh

for each object.

(@)

. . E ;
(b) (c)

Fig. 6. Geometric models of three objects. The meshes were built after their corresponding points were segmented out from the range images using
our segmentation algorithm. (a) An antique table. (b) A Piano. (c) An antique chair.

7.2 Camera Pose Estimation

To evaluate our camera pose estimation technique, we look
at three aspects: 1) the amount of user intervention, 2) the
accuracy of the resulting pose, and 3) the computational
cost of our algorithm. We ran our automatic algorithm on
62 images with four or more targets visible. In these images,
the automatic target detector found 90 percent of the visible
targets, while finding four false matches. These errors were
easily correctable by prompting the user to localize the
search. Poses were estimated correctly for 58 of the
62 images. The remaining four coincidentally lined up with
an erroneous set of targets in the geometry. These errors
could also be easily corrected interactively by supplying
one pair of correspondences. The amount of user interven-
tion was approximately 15 minutes.

We found the accuracy of our estimated pose to be very
high, typically within one pixel. An example of this is
shown in Fig. 7, where a sample image is texture-mapped
onto the geometry and the resulting surfaces are displayed

from a different viewing direction (black areas in Fig. 7c
indicate backfacing or occluded areas in the geometry).
Note the object boundaries in the image line up with
geometric discontinuities in the scene.

As expected, our algorithm runs in O(n?) time for real-
world inputs. For 50 targets in the geometry, the running
time was 5.8 seconds, while, for 100 targets, the algorithm
took 21 seconds.

From those calibrated camera poses and simplified
meshes, we synthetically composed 22 1,024 by 512 texture
maps that are used to render the original as well as the
altered scene.

7.3 Scene Editing

Our ultimate goal is object manipulation. Fig. 8 shows two
comparisons to demonstrate our ability to do scene editing.
The images on the left are rerenderings of the original scene
from a novel viewpoint by texture-mapping the recon-
structed geometric models. The images on the right show

YU ET AL.: EXTRACTING OBJECTS FROM RANGE AND RADIANCE IMAGES

11

(@)

(b)

(c)

Fig. 7. (a) A real photograph with targets located. (b) The scanned point cloud viewed from the recovered camera pose. (c) Low-resolution texture-
mapping using a single photograph. Note the edge alignment between the image and the geometry.

synthetically composed scenes. In Fig. 8b, a couch is moved
and replicated to places near the fireplace, a piano inserted
and placed near where the couch was. In Fig. 8d, we can see
two lamps flying in the air. Fig. 9 gives two more images
with novel scene compositions.

8 CoNcLusIONS AND FUTURE WORK

We presented two automatic techniques, range data
segmentation and camera pose estimation, that are neces-
sary for building an object-level representation and scene
editing for a real scene captured with both cameras and
laser range scanners. Range data segmentation enables
building separate geometric models for each individual
object in the scene. Camera pose estimation enables
accurate alignment between photographs and geometry,
which in turn makes texture-mapping individual objects
possible.

A multistage data processing pipeline is proposed for
building such an object-level representation. In this pipe-
line, the stage of building a high-quality mesh for each
object remains challenging. This is because only incomplete

range data can be obtained for objects present in a large
environment due to accessibility and occlusion. Fitting
smooth models to local regions seems a promising
approach to filling in the missing parts.

Some other stages in the pipeline also need improve-
ment. One should be able to recover surface reflectance
from photographs using the techniques in [40], [51] to
obtain a lighting independent representation of each object.
Surface reflectance also gives more information for geome-
try segmentation and image registration. However, recover-
ing surface reflectance information itself requires
segmentation and image registration. So, it may be possible
to improve these three types of estimation simultaneously
in an iterative framework.

ACKNOWLEDGMENTS

The authors would like to thank Ben Kacyra, Mark Wheeler,
Daniel Chudak, and Jonathan Kung at Cyra Technologies,
Inc. for their help and advice in using their time-of-flight
laser scanner and the accompanying Cyrax software.
Thanks to Marc Levoy, Brian Curless, and Lucas Pereira

12 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.7, NO. 4, OCTOBER-DECEMBER 2001

(©

(d)

Fig. 8. (a) and c) Synthetic images with objects in their original positions rendered using texture-mapping. (b) and (d) Synthetic images with object
insertion and relocation. A piano is added to the room, a couch and two lamps moved and replicated.

(a)
Fig. 9. (a) and (b) More synthetic images with object manipulation.

for providing us with their volumetric mesh reconstruction
software during an early testing stage of this project, Jianbo
Shi for some helpful discussions on normalized cuts,

Johnny Chang for his help on demonstrations during the

(b)

preparation of an earlier version of this paper, and the
reviewers for their valuable comments. Mesh simplification
was done with the software from Michael Garland. This

research was sponsored by a Multidisciplinary University

YU ET AL.: EXTRACTING OBJECTS FROM RANGE AND RADIANCE IMAGES

Research Initiative on 3D direct visualization from the US
Office of Naval Research and BMDO, grant FDN00014-96-1-
1200, the California MICRO program, and the Microsoft
Graduate Fellowship program.

REFERENCES

(1]

(2]

(3]

(4]

(5]
(6]
[

(8]

]
(10]

(1]

[12]
[13]
(14]

(15]

[16]
(17
(18]

[19]

(20]

(21]

(22]

(23]

[24]

(23]

N. Amenta, M. Bern, and M. Kamvysselis, “A New Voronoi-Based
Surface Reconstruction Algorithm,” Proc. SIGGRAPH '98, pp. 415-
421, 1998.

A. Leonardis, A. Gupta, and R. Bajcsy, “Segmentation of Range
Images as the Search for Geometric Parametric Models,” Int’l |.
Computer Vision, vol. 14, no. 3, pp. 253-277, 1995.

PJ. Besl and N.D. McKay, “A Method for Registration of 3-D
Shapes,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 18, no. 5, pp. 239-256, May 1992.

PJ. Besl and R.C. Jain, “Segmentation through Variable-Order
Surface Fitting,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 10, no. 2, pp. 167-192, Feb. 1988.

J.-Y. Bouguet and P. Perona, “3D Photography on Your Desk,”
Proc. Int’l Conf. Computer Vision (ICCV), 1998.

E. Chen, “QuickTime VR—AnN Image-Based Approach to Virtual
Environment Navigation,” Proc. SIGGRAPH '95, 1995.

Y. Chen and G. Medioni, “Object Modeling from Multiple Range
Images,” Image and Vision Computing, vol. 10, no. 3, pp. 145-155,
Apr. 1992.

B. Curless and M. Levoy, “A Volumetric Method for Building
Complex Models from Range Images,” Proc. SIGGRAPH ’96,
pp- 303-312, 1996.

Cyra Technologies, Inc., Online Documents, www.cyra.com/
cyrax.html, year?

P. Debevec, Y. Yu, and G. Borshukov, “Efficient View-Dependent
Image-Based Rendering with Projective Texture-Mapping,” Proc.
Ninth Eurographics Workshop Rendering, pp. 105-116, 1998.

P.E. Debevec, CJ. Taylor, and J. Malik, “Modeling and Rendering
Architecture from Photographs: A Hybrid Geometry- and Image-
Based Approach,” Proc. SIGGRAPH 96, pp. 11-20, Aug. 1996.

H. Edelsbrunner and D.P. Miicke, “Three-Dimensional Alpha
Shapes,” ACM Trans, Graphics, vol. 13, pp. 43-72, 1994.

O. Faugeras, Three-Dimensional Computer Vision. Cambridge,
Mass.: MIT Press, 1993.

M. Garland and P.S. Heckbert, “Surface Simplification Using
Quadric Error Metrics,” Proc. SIGGRAPH 97, pp. 209-216, 1997.
S. Geman and D. Geman, “Stochastic Relaxation, Gibbs Distribu-
tions, and the Bayesian Restoration of Images,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 6, no. 6, pp. 30-50, 1984.

A. Gersho and R.M. Gray, Vector Quantization and Signal
Compression. Boston: Kluwer Academic, 1992.

? Golub and ? Van Loan, Matrix Computations. John Hopkins Press,
1989.

S.J. Gortler, R. Grzeszczuk, R. Szeliski, and M.F. Cohen, “The
Lumigraph,” Proc. SIGGRAPH 96, pp. 43-54, 1996.

R.M. Haralick, H. Joo, C.-N. Lee, X. Zhuang, and M.B. Kim, “Pose
Estimation from Corresponding Point Data,” IEEE Trans. Systems,
Man, and Cybernetics, vol. 19, no. 6, p. 1426, 1989.

R.M. Haralick, C. Lee, K. Ottenberg, and M. Nolle, “Review and
Analysis of Solutions of the Three Point Perspective Pose
Estimation,” Int’l]. Computer Vision, vol. 13, no. 3, pp. 331-356,
1994.

R.L. Hoffman and A K. Jain, “Segmentation and Classification of
Range Images,” IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 9, no. 5, pp. 608-620, May 1987.

H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle,
“Surface Reconstruction from Unorganized Points,” Proc. SIG-
GRAPH 92, pp. 71-78, 1992.

H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle,
“Mesh Optimization,” Proc. SSIGGRAPH 93, pp. 19-26, 1993.

A. Hoover, G. Jean-Baptiste, X.Y. Jiang, P.J. Flynn, H. Bunke, D.B.
Goldgof, K. Bowyer, D.W. Eggert, A. Fitzgibbon, and R.B. Fisher,
“An Experimental Comparison of Range Image Segmentation
Algorithms,” IEEE Trans. Pattern Analysis and Machine Intelligence,
pp. 673-689, 1996.

Y. Hung, P.S. Yeh, and D. Harwood, “Passive Ranging to Known
Planar Point Sets,” Proc. IEEE Int’l Conf. Robotics and Automation,
pp. 80-85, 1985.

(26]

(27]

(28]

[29]

(30]

(31]

(32]

[33]

[34]

(35]

(30]

[37]
[38]

(39]

[40]

(41]

(42]
(43]
(44]
(43]

[46]

(47]
(48]

(49]

[50]

[51]

[52]

(53]

13

D.P. Huttenlocher and S. Ullman, “Recognizing Solid Objects by
Alignment with an Image,” Int’l]. Computer Vision, vol. 5, no. 2,
pp- 195-212, 1990.

S. Laveau and O. Faugeras, “3-D Scene Representation as a
Collection of Images,” Proc. 12th Int’l Conf. Pattern Recognition,
vol. 1, pp. 689-691, 1994.

M. Levoy and P. Hanrahan, “Light Field Rendering,” Proc.
SIGGRAPH 96, pp. 31-42, 1996.

P. Lindstrom and G. Turk, “Evaluation of Memoryless Simplifica-
tion,” IEEE Trans. Visualization and Computer Graphics, vol. 5, no. 2,
pp- 98-115, Apr.-June 1999.

J. Malik, S. Belongie, J. Shi, and T. Leung, “Textons, Contours and
Regions: Cue Combination in Image Segmentation,” Proc. Int’l
Conf. Computer Vision, 1999.

A.P. Mangan and R.T. Whitaker, “Partitioning 3D Surface Meshes
Using Watershed Segmentation,” IEEE Trans. Visualization and
Computer Graphics, vol. 5, no. 4, pp. 308-321, Oct.-Dec. 1999.

L. McMillan and G. Bishop, “Plenoptic Modeling: An Image-
Based Rendering System,” Proc. SIGGRAPH '95, 1995.

P.J. Neugebauer and K. Klein, “Texturing 3D Models of Real
World Objects from Multiple Unregistered Photographic Views,”
Proc. Eurographics '99, pp 245-256, 1999.

T.S. Newman, P.J. Flynn, and A K. Jain, “Model-Based Classifica-
tion of Quadric Surfaces,” CVGIP: Image Understanding, vol. 58,
no. 2, pp 235-249, 1993.

L. Nyland et al., “The Impact of Dense Range Data on Computer
Graphics,” Computer Vision and Pattern Recognition MVIEW 99,
1999.

P. Perona and W.T. Freeman, “A Factorization Approach to
Grouping,” Proc. European Conf. Computer Vision '98 (ECCV ’98),
pp. 655-670, 1998.

K. Pulli, “Multiview Registration for Large Data Sets,” Proc. Int’l
Conf. 3D Digital Imaging and Modeling, pp. 160-168, 1999.

W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical
Recipes in C. New York: Cambridge Univ. Press, 1988.

Q. Ji, M. Costa, R. Haralick, and L. Shapiro, “An Integrated Linear
Technique for Pose Estimation from Different Features,” Int’l J.
Pattern Recognition and Artificial Intelligence, June 1999.

Y. Sato, M.D. Wheeler, and K. Ikeuchi, “Object Shape and
Reflectance Modeling from Observation,” Proc. SIGGRAPH 97,
pp- 379-387, 1997.

S.M. Seitz and C.R. Dyer, “Photorealistic Scene Reconstruction by
Voxel Coloring,” Computer Vision and Pattern Recognition, pp. 1067-
1073, 1997.

J. Shade, S. Gortler, L.-W. He, and R. Szeliski, “Layered Depth
Images,” Proc. SIGGRAPH '98, pp. 231-242, 1998.

J. Shi and J. Malik, “Motion Segmentation and Tracking Using
Normalized Cuts,” Proc. Int’l Conf. Computer Vision, 1998.

J. Shi and J. Malik, “Normalized Cuts and Image Segmentation,”
Proc. IEEE Conf. Computer Vision and Pattern Recognition, 1997.
H.-Y. Shum and L.-W. He, “Rendering with Concentric Mosaics,”
Proc. SIGGRAPH '99, pp. 299-306, 1999.

M. Soucy, G. Godin, and M. Rioux, “A Texture-Mapping
Approach for the Compression of Colored 3D Triangulations,”
Visual Computer, vol. 12, pp. 503-514, 1996.

R. Szeliski, “Image Mosaicing for Tele-Reality Applications,” IEEE
Computer Graphics and Applications, 1996.

G. Turk and M. Levoy, “Zippered Polygon Meshes from Range
Images,” Proc. SIGGRAPH 94, pp. 311-318, 1994.

M.D. Wheeler, Y. Sato, and K. Ikeuchi, “Consensus Surfaces for
Modeling 3D Objects from Multiple Range Images,” Proc. DARPA
Image Understanding Workshop, 1997.

P. Wunsch and G. Hirzinger, “Registration of CAD-Models to
Images by Iterative Inverse Perspective Matching,” Proc. Int’al
Conf. Pattern Recognition (ICPR), pp. 77-83, 1996.

Y. Yu, P. Debevec, J. Malik, and T. Hawkins, “Inverse Global
INumination: Recovering Reflectance Models of Real Scenes from
Photographs,” Proc. SIGGRAPH ’99, pp. 215-224, July 1998.

Y. Yu, “Efficient Visibility Processing for Projective Texture-
Mapping,” . Computers & Graphics, vol. 23, no. 2, pp. 245-253,
1999.

Y. Yu and J. Malik, “Recovering Photometric Properties of
Architectural Scenes from Photographs,” Proc. SIGGRAPH ‘98,
pp- 207-217, July 1998.

14 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.7, NO. 4, OCTOBER-DECEMBER 2001

Yizhou Yu received the PhD degree in compu-
ter science from the University of California at
Berkeley in 2000 and the MS degree in applied
mathematics and the BS degree in computer
science from Zhejiang University, China, in 1994
and 1992, respectively. He is currently an
assistant professor in the Department of Com-
puter Science at the University of lllinois at
Urbana-Champaign. During 1994-1996, he was
a PhD student at the University of California at
Santa Barbara. He has done research in computer graphics and vision,
including image-based modeling and rendering, image processing,
texture synthesis and mapping, visibility processing, radiosity, and
global illumination, and has authored or coauthored more than 20
research papers. He is a recipient of 1998 Microsoft Graduate
Fellowship and 1992 Chinese Computerworld Scholarship. His current
interests include appearance modeling, computer animation, and
computer vision problems with HCI applications.

Andras Ferencz studied computer science at
Cornell University, graduating with the BS
degree in 1997. He spent the next year in the
Image Understanding Area of Xerox’s Palo Alto
Research Center. Since 1998, he has been a
PhD student in the Computer Science Division of
the University of California at Berkeley. He is a
student member of the IEEE.

e |

Jitendra Malik received the BTech degree in
electrical engineering from the Indian Institute of
Technology, Kanpur, in 1980 and the PhD
degree in computer science from Stanford
University in 1985. In January 1986, he joined
the faculty of the Computer Science Division,
Department of EECS, University of California at
Berkeley, where he is currently a professor. His
research interests are in computer vision and
computational modeling of human vision. His
work spans a range of topics in vision, including image segmentation
and grouping, texture, stereopsis, and object recognition. His research
has found applications in image based modeling and rendering, content-
based image querying, and intelligent vehicle highway systems. He has
authored or coauthored more than 90 research papers on these topics.
He received the gold medal for the best graduating student in Electrical
Engineering from IIT Kanpur in 1980, a Presidential Young Investigator
Award in 1989, and the Rosenbaum fellowship for the Computer Vision
Programme at the Newton Institute of Mathematical Sciences, Uni-
versity of Cambridge in 1993. He received the Diane S. McEntyre Award
for Excellence in Teaching from the Computer Science Division,
University of California at Berkeley, in 2000. He is an editor-in-chief of
the International Journal of Computer Vision.

> For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

