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Shape-constrained flock animation

By Jiayi Xu, Xiaogang Jin*, Yizhou Yu, Tian Shen and Mingdong Zhou
..........................................................................

We propose a novel shape-constrained flock animation system for interactively controlling
flock navigation in virtual environments. This system is capable of making the spatial
distribution of a flock meet static or deforming shape constraints while performing flock
simulation. Such a capability can find many applications in the entertainment industry.
Given a 3D constraining shape, our system first draws a set of uniform sample points
through a 3D surface mosaicing process or a stratified point sampling strategy. Once
correspondences between flock members and sample points have been established, points on
the target shape are used as homing destinations to guide flock migration. Under a global
path control scheme, an effective fuzzy control logic, which dynamically adjusts steering
forces and control forces, has been developed to create visually pleasing shape-constrained
flock animations. Copyright © 2008 John Wiley & Sons, Ltd.
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Introduction

A flock of birds or a school of fish can exhibit beautifully
orchestrated group behaviors. We are often amazed at
their elegance as well as their level of coordination and
synchronization. This is especially true when a flock as-
sumes the approximate shape of a real object. It is indeed
an exhilarating event because of its rareness. We would
like to develop techniques for digitally reproducing such
effects. This type of techniques have many applications
in the entertainment industry especially in advertising
and film making because group animation techniques
have been widely applied there recently to either reduce
the shooting cost or create scenarios not existing in the
real world. Our goal in this paper is to introduce meth-
ods that produce physically plausible flock animation,
which at the same time, assume a recognizable static or
deforming shape. Although every member of a flock fol-
lows the overall behavior of a leader, the actual velocity,
and motion trajectory of the member may have local fluc-
tuations. Therefore, “plausible” means such local visual
characteristics of flocking should be retained.

A flock in general consists of discrete creatures, each
with a set of parameterized rules governing its behav-
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ior. The control rules can be inferred from user-defined
scripts, local forces, and so on. Pioneering work of flock
animation can be traced back to the seminal work of
Reynolds,1 which is popularly known as local control
agents of flock animation. This model demonstrated that
flocking behavior could be generated from simple local
rules.

Controlling the movement of flocks has often been
a desired goal during flock simulation. Many previous
works only allowed users to set initial conditions at the
very beginning of such simulation. In the literature, only
a few methods were devoted to the interactive control
of flocks. Crowdbrush, proposed by Ulicny et al.,2 is fea-
tured with convenient graphical interface elements for
controlling crowds. But the control operations are still
limited to individuals by specifying the property or re-
sponse rule of agents, which becomes tedious work for
large crowds.

Vector fields have proved to be useful in guiding the
animation of particle systems. It was first proposed by
Reynolds,3 where a vector field can be used as a veloc-
ity field to drive the flow direction of a flock. However,
an effective and efficient method to calculate such a field
was not described. Other papers motivated by this idea
use the concept of fields, for example, velocity field, force
field, potential field, or road-map to represent the veloc-
ity or moving direction of an entire flock. Nevertheless,
controlling flock behavior in a global setting without any
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Figure 1. A flock of butterflies flies in the virtual environment and tracks a running horse.

autonomous behavior among individuals would not be
adequate. In our simulation system, besides the naturally
inherited flock steering property, we introduce a vector
field simulating external environmental forces in a scene.

In this paper, we propose an agent-based flock simu-
lation system that is capable of satisfying user-specified
static or dynamic shape constraints. The global flocking
behavior emerges from the action of the individuals, pro-
ducing large-scale flock animations in real time that is
otherwise hard to achieve. As an example, in Figure 1,
we have created a simulation to show a flock of butter-
flies that covers the surface of a horse flying under user-
specified route in the virtual environment while keeping
visual characteristics of flocking.

Our approach has the following contributions:

� During simulation, we can make an entire flock meet
shape constraints with arbitrary topology. Desirable
visual effects have been achieved using a surface mo-
saic algorithm or stratified point sampling method.

� We have employed the Kalman filter4 to compute local
control forces necessary for tracking dynamic shape
constraints. Tracking can be successfully performed
even when the target shape deforms rapidly.

� By carefully integrating the effects of basic steering
forces, local control forces and external vector fields
using a fuzzy logic, individual flocking behavior can
be naturally generated on the fly.

� Using a global path control scheme, we can impose
hard constraints on agents’ positions at specific times
while retaining visual characteristics of flocking.

The rest of the paper is organized as follows.
Section “Related Works” reviews related works. Section
“Overview” gives an overview of our framework.
Section “Shape Constraints” addresses issues related to
the initialization and setup of shape constraints. Section
“Local Force Model” gives a detailed description of
our local control model. Section “Global Path Control”
discusses our global path control scheme. Experimental
results will be presented in Section “Results,” and we
come to the conclusions in Section “Conclusion and
Discussion.”

Related Works

A natural way to simulate large crowds is based on agents
who have individualized behavior. This approach is at-
tractive for several reasons. First, such models are able to
mimic complex global behavior with a few simple local
control rules. In addition, such models can capture each
agent’s personality, which is helpful in yielding complex
heterogeneous behavior.

Reynolds proposed a distributed behavioral model
that described the behavior of large groups of birds,
herds, and fish with perceptual skills existing in the
real world.1 This pioneering work can generate com-
plex flocking animation from a few predefined rules,
mainly separation, cohesion, and alignment rules. Since
this work, flock animation has attracted widespread at-
tention in crowd simulation. Each individual of a flock
acts according to its local perception of the dynamic en-
vironment. Extensions of this approach integrate locally

............................................................................................
Copyright © 2008 John Wiley & Sons, Ltd. 320 Comp. Anim. Virtual Worlds 2008; 19: 319–330

DOI: 10.1002/cav



SHAPE-CONSTRAINED FLOCK ANIMATION
...........................................................................................

controlled agents with other models. Erra et al.5 mapped
steering behaviors model onto the GPU. The testing
shows that simulating 4000 boids runs at 30 frames per
second. Tu and Terzopoulos6 created behavioral anima-
tion for artificial fishes, where virtual agents are en-
dowed with synthetic vision and perception of the en-
vironment. Bayazit et al.7,8 studied four kinds of group
behaviors, namely, homing, exploring, passing through
narrow areas, and shepherding. Global information in
the form of a roadmap enables these flocking behaviors.
Furthermore, the global knowledge of the environment
is updated by communication between individuals. Lien
et al.9,10 addressed the problem of shepherding flocks in
their system. The work concentrated on the implemen-
tation of how a group of shepherds work cooperatively
without communication to efficiently control the flock.
Once again, the simulated behaviors do not accurately
resemble those in real life. Saber11 proposed in his theo-
retical framework three distributed flocking algorithms.
Two for free flocking and one for constrained flocking
with the presence of multiple obstacles. Among them,
cost functions are employed to model the migration of
flocks. However, no animation result is provided. Hart-
man and Beness̃12 simulated bird-like creatures based
on the work of Reynolds. They introduced a comple-
mentary force to define the chance of the boid to be-
come a leader and try to escape. The simulation runs
at 30 frames per second with hundreds of boids. Skrba
et al.13 described in their paper how to animate and
render large herds of furry animals. In their system, a
leading sheepdog is in charge of the cohesion and sep-
aration behaviors of sheep. The rendering can be real-
time using impostors. However, only a few basic behav-
iors have been explored. Sometimes, visual artifacts may
appear.

Previous works had addressed interactive control of
flock simulation. But complex static or dynamic shape
constraints have not been thoroughly investigated. An-
derson et al.14 used an iterative sampling method to gen-
erate user-constrained group animation. The constraints
are agent based. However, this method is computation-
ally intensive. Lai et al.15 produced controlled flock be-
haviors with significantly reduced computational cost
by building group motion graphs. Their model relies on
clustering group configurations from sample animations.
Wojtan et al.16 approached this problem from a nonlinear
constraint minimization point of view. The actual mini-
mization is performed using the adjoint method. How-
ever, the type of control that can be applied is quite lim-
ited, typically in the form of a straight path or simple
planar shapes.

Vector fields have been explored in the animation
of particle systems. Xiao and Hubbold17 introduced
artificial force fields to guide navigation in virtual
environments. The flow tiles model developed by
Chenney18 ensures the smooth flow of agents without
resorting to explicit collision detection. Sakuma et al.19

used a vector field for navigation in their psychological
model. They designed a vector field that covers the
scene using an attractive and repulsive force model.
Pedestrians determine their moving direction by refer-
ring to the vector field at the present location. Relying
on global vector fields but no autonomous movement
component, realism has been sacrificed to some extent
in crowd simulations produced in most previous works.
Treuille et al.20 integrated global navigation with a
resolution-dependent dynamic potential field, solving
the motion of crowd. However, shape constraints were
not considered in their approach.

Overview

Figure 2 gives an illustration of our framework. In this
paper, we focus on interactively controlling the behavior
of huge flocks. The members of a flock are constrained to
a given static or deforming shape during the animation.
First of all, we perform a uniform surface sampling
operation on the input target shape. We designate
each agent in a flock a destination on the 3D shape.
Driven by local fuzzy control and global path control,
individual agents move toward their destinations along
user-defined trajectories.

Figure 2. The framework of our flock model.
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To process a 3D object, we first cover the surface
with a set of evenly distributed sample points based
on the surface mosaicing technique in Reference [21]
or the stratified point sampling method as described
in Reference [22]. Secondly, in accordance with the
relative location of these sample points, we establish
correspondences between agents in the flock and sample
points on the surface.

To smoothly transform the present spatial distribution
of agents to the distribution of samples on the target sur-
face, each individual agent moves itself from the present
source location to its corresponding destination obeying
local control rules. This destination of an agent controls
its homing behavior, global route, and other additional
adjustments. When an agent remains far from its des-
tination, its behavior primarily complies with that of
Reynolds’s boid model,1 which consists of separation,
cohesion, and alignment rules. When an agent becomes
close to its destination, additional local control forces, in-
cluding homing and damping forces, are applied in order
to smoothly reach the destination. In the most complex
situation when target itself is moving, Kalman filter is
incorporated; therefore, the agent will keep pace with its
target object. The overall performance is emerged from
the behaviors of all flock members.

A variety of creatures and objects can be the agents of
a flock. They can be represented using static meshes or
animation models.

Following the aforementioned approach, we can make
a flock smoothly transforming among different static
shapes as well as tracking a deforming shape.

Shape Constraints

As discussed, we impose shape constraints on an entire
flock. Such constraints are realized by establishing corre-
spondences between flock members and sample points
on the shape. In this paper, we choose to have shape con-
straint on the model surface instead of inside a 3D model.
The reason is simply as for small creatures like butter-
flies, bees, ants, etc., prevalence in the physical world;
they tend to cover a certain real object, a trunk for ex-
ample, instead of filling a volume. Since the constrain-
ing shapes are represented as triangle meshes, we aim to
spread these sample points evenly on the mesh surfaces.
In the experiments shown in this paper, we always ap-
ply one of the following two sampling methods: surface
mosaic sampling and stratified point sampling.

For better performance, the sample positions on the
target surface are obtained in the preprocessing step.

They are retrieved later during every time-step of flock
simulations. If the shape constraint is a deforming object,
we only perform this preprocessing for the object shape
in the first frame of the deformation sequence assuming
there exist vertex correspondences throughout the entire
sequence.

Surface Mosaic Sampling

In order to capture the shape of an object, we present
an optimized sampling technique based on 3D surface
mosaicing methods21,23 with necessary revisions.

Once the 3D model and number of sample points have
been determined, we assign the initial position of sample
points using random sampling. After the random initial-
ization, the final position of sampling points is defined by
an energy minimizing iterative process. We assume each
flock member contains spring-like energy. The energy
between any two gives rise to a repulsive force, which
helps define the final stable position of the flock mem-
bers. In practice, we only consider repulsive forces be-
tween neighbors whose Manhattan distance is less than
A, where A is related to the number of elements N and
the total surface area M as follows:

A = k

√
M

N
(1)

where k is 2.0 in our current implementation. Thus, the
spring-like energy between points i and its neighbor j can
be defined as

Eij = e

−dis2
ij

2σ2 (2)

where σ is the interaction radius. It is used to control the
fall-off of potential energy, and does not affect the final
pairwise distances in equilibrium. σ can be set as follows:

σ = w
M

N
(3)

In this version, we choose w as 0.9. Decrease the value
of w will increase the influence of j to i, which will even-
tually cause the convergence of sampling process slowly
and differently. We can choose disij as Manhattan dis-
tance or Euclidean distance. Manhattan distance tends to
produce quadrangular distributions and Euclidean dis-
tance tends to produce hexagonal ones.

In principle, the gradient of this energy introduces
repulsive force. In addition, we will make sure that
the repulsive force be restricted to the tangent plane.
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1: Compute the value of M, σ and A
2: for each step do
3: for each neighborhood j of i do
4: Calculate the distance between i and j

disij = |pi(x) − pj(x)| + |pi(y) − pj(y)| + |pi(z) − pj(z)|
5: Compute repulsive force Fi = ∑

j∈U norm(pi − pj) × Eij

6: Compute new position of i p′
i = pi + σt × Fi

7: end for
8: Projection p′

i onto the mesh
9: end for

Table 1. Algorithm 1: overall sampling process

However, the computation is quite involved and does
not ensure a simple closed-form solution. By using a
simplified version introduced by Lai et al.,21 we define
the repulsive force as

Fi =
∑
j∈U

norm(pi − pj) × Eij (4)

where U represents the neighborhood of point i, and
i does not belong to U. Function norm(·) returns the
normalized input vector.

Finally, we arrive at the new position of point i after
each iteration:

p′
i = pi + δt ×

∑
j∈U

norm(pi − pj) × Eij (5)

Here, δt is the size of the time step. However, the new
position of point i may not lie on the model surface, an
orthogonal projection back onto the mesh is necessary.

The overall sampling process of a triangular mesh
model is listed in Table 1.

Stratified Point Sampling

The surface mosaic sampling process is computationally
expensive for complex objects. If the uniform point dis-
tribution is not required, we choose the stratified point
sampling strategy proposed by Nehab and Shilane.22

This algorithm involves three steps. First of all, the
model is voxelized using octree. After that, one trian-
gle is chosen from each voxel and from this triangle a
new sample is produced. Instead of choosing the sur-
face point closest to the center of each voxel, we pick a
vertex according to a probability distribution that favors
points close to the center, while allowing for a user con-
trollable variation. In this sampling procedure, we use an
exponential distribution function λe−λd with the distance

d between the sample point and the center of the origi-
nal voxel. Each triangle in a voxel is subdivided until the
probability density function can be considered constant
throughout its area. The function value at the centroid
of a terminal subtriangle is multiplied by its area and
is defined as the priority. The subtriangle for sampling
is selected according to this priority. In the last step, we
eliminate those sample points that are too close to each
other. Our solution is to enforce minimum distance be-
tween any two samples.

Point Correspondence
Establishment

When establishing correspondences between flock
agents and sample points on the constraining shape, a
random assignment suffices in most scenarios. Never-
theless, when there is a sequence of constraining shapes
and subsequent constraining shapes have a large over-
lap, random assignment may generate chaotic results.
To achieve better temporal coherence between two over-
lapping constraining shapes, we obtain initial correspon-
dences by spherically projecting source positions on the
first shape onto the surface of the second shape, and let
these projected points subject to energy optimization. Be-
cause of the initial correspondences, during the interac-
tions, the movement of the projected points on the sec-
ond shape is in a relatively small scale. As a result, the
generated flock animation becomes fluent.

Local Force Model

In this paper, we focus on simulating large groups of
creatures acting in concert using flocking models. In this
section, we propose a fuzzy local control model for sim-
ulating shape-constrained flock animation. We treat each
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Figure 3. The definition of perceptual neighborhood of a boid.

agent in the flock as a particle. Its actual behavior is
determined by a series of steering forces and control
forces, which we will introduce in the following sections.

Basic Steering Behaviors

Basic flocking behaviors used here comply with
Reynolds’s boid model.1 Each flock member observes
three steering rules: separation, cohesion, and align-
ment. The definitions of these steering rules rely on the
neighbors of the flock member. The neighbors of one
flock member include its surrounding partners who are
sufficiently close and also within the angle of perception
(Figure 3).

In our technique, every agent maintains its own at-
tribute list, including maximum speed, maximum accel-
eration, viewable neighborhood radius, and angle. The
overall behavior of each agent is mainly determined by
the mixture of these different steering forces. Thus, we
assign every steering force a different weight to express
individuality. More specifically, each agent has the fol-
lowing parameters:

� MaxForce, MaxSpeed;
� SeparationRadius, SeparationAngle, SeparationWeight;
� AlignmentRadius, AlignmentAngle, AlignmentWeight;
� CohesionRadius, CohesionAngle, CohesionWeight.

where MaxForce and MaxSpeed are used for con-
straining flock behavior within a reasonable range.
SeparationRadius and SeparationAngle are, respectively,
the perceptual radius and angle in the separation rule.
The meaning of other parameters can be inferred simi-
larly. Figure 4 illustrates the definitions of separation, co-
hesion, and alignment steering rules. Each rule defines its
own perceptual radius and angle. Usually, the separation
radius is the largest one while the alignment radius the
least one. The separation angle and the cohesion angle
are usually larger than the alignment angle. In summary,
the radius of each steering rule is related to the number
of members in the flock N:

r = J
2
√

N
(6)

where J is a random floating point number which is dif-
ferent for these three kind of radius. In our present im-
plementation, 60.0 to 120.0 for separation radius, 30.0 to
120.0 for cohesion radius, 30.0 to 60.0 for alignment ra-
dius are appropriate.

In most crowd control methods, collisions are pre-
vented in advance locally by adjusting direction and
speed when other agents or obstacles approach. In our
flock model, because of the separation force, agents
move away from each other automatically when they
become too close. Therefore, we do not explicitly handle
collision avoidance.

External Vector Fields

Since a flock typically consists of lightweight creatures
or objects and they are immersed in the air or water,
their motion is inevitably influenced by the surrounding
fluid medium. Thus, considering the influence from the
surrounding medium makes it possible to produce more
natural flocking animations. On the other hand, the fluid
medium has its own dynamics. But we choose to only

Figure 4. Separation, cohesion, and alignment rules. (a) Separation: maintains a certain separation distance from other nearby
flockmates. (b) Cohesion: coheres with the average position of other nearby flockmates. (c) Alignment: aligns itself with other

nearby flockmates.

............................................................................................
Copyright © 2008 John Wiley & Sons, Ltd. 324 Comp. Anim. Virtual Worlds 2008; 19: 319–330

DOI: 10.1002/cav



SHAPE-CONSTRAINED FLOCK ANIMATION
...........................................................................................

focus on simulating the motion of the agents themselves
because they are directly visible and do not strongly in-
fluence the large-scale dynamics of the fluid. The external
force field, such as a wind force field, the flock receives
from the surrounding medium is modeled as a vector
field directly specified by the user. This vector field is
smooth and can be time varying during the simulation.

For example, to simulate a simple rotational vortex
field, the vector field at any position can be computed
as

p = Pos − Poscenter (7)

F = d × Vec3(p.z, 0, −p.x) (8)

where Pos is the position of an agent, Poscenter is the center
of the vortex. Vec3 represents a vector, d is a constant that
can be used to scale the effect of this vector field.

Homing Behavior

As stated by Reynold, the original boid model can only
model flock wandering behavior. Sometimes, people are
more interested in pointing flock with time varying des-
ignation. In this section, we present an enhanced ver-
sion by introducing a new steering behavior: homing.
This technique is especially useful when dealing with
dynamic tracking problem which is hard to implement
using existing methods.

In our algorithm, all the simulated agents belong to
one flock. Each agent is designated a virtual destination.
This homing behavior always drives an agent toward its
own destination. As a result, if the destination is defined
to a point on the constraining shape, the agent will move
gradually to the destination point while maintaining the
dynamic characteristics of a boid. Note that in the event
that the constraining shape is moving or deforming, the
agents need to approach their dynamically changing des-
tination points. This is actually a dynamic tracking prob-
lem, and our solution is based on the Kalman filter4 which
was originally designed for similar purposes. See Fig-
ure 5 for an explanation of Kalman filter. Its specific equa-
tions for time and measurement updates are listed in the
following equation array:

Kalman filter time update equations:
Predicted state: x̂k|k−1 = Ax̂k−1|k−1 + Buk;
Predicted estimate covariance: Pk|k−1 = APk−1|k−1

AT + Q;
Kalman filter measurement update equations:

Optimal Kalman gain: Kk = Pk|k−1H
T (HPk|k−1H

T +
R)−1;

Figure 5. A Kalman filter cycle. The time update projects the
current state estimate ahead in time. The measurement update
adjusts the projected estimate by an actual measurement at

that time.

Updated state estimate: x̂k|k = x̂k−1|k−1 + Kk(zk −
H )̂xk−1|k−1;

Updated estimate covariance: Pk|k = (I −
KkH)Pk−1|k−1.

In our solution, the state of each agent in a flock
is evaluated using a series of linear stochastic differ-
ence equations provided that local steering and exter-
nal forces, current position, and velocity are known. For
each agent, we record two positions, its current posi-
tion and the position of its virtual destination. We treat
the agent’s state from time step k − 1 to k as the pre-

dicted value x̂k|k−1, x̂k|k−1 =
[

Posk−1

Velk−1

]
, where Pos and Vel

are the position and velocity of the agent. Thus, we ob-

tain A =
[

I δtI

0 I

]
, B =

[
0 0

0 δt

]
, uk = a, where a is the accel-

eration. On the other hand, we set the virtual leader’s
state as the measurement zk and use it to generate a pos-

teriori state estimate x̂k|k, x̂k|k =
[

Posk

Velk

]
which represents

the actual state the agent will reach at time step k. Co-
variance Q and R are defined by users. With the com-
puted posteriori state estimate, the homing force can be
formulated as

Fh = 2 × m × (Posk − Posk−1 − Velk−1 × δt)
δt2

(9)

where m represents the mass of the agent.
Note that when covariance Q is fixed, covariance R

can be dynamically adjusted to control how closely the
agents follow the virtual destinations. When R becomes
zero, x̂k|k coincides with the state of the virtual leaders.
In principle, R should always be bounded away from
zero to allow local fluctuations and maintain visual
characteristics of flocking.
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Fuzzy Control Logic

In our flock simulation, all agents eventually need to
stay close to their destinations on the constraining shape.
When this happens, the density of agents around the con-
straining shape will increase significantly and the mag-
nitude of their interaction forces will also increase signif-
icantly. Strong interaction forces will give rise to a chaotic
situation where agents hover back and forth around
their destinations but cannot reach a relatively steady
state.

In summary, we propose a fuzzy control method to
tackle this problem by associating an adjustable weight
with each type of forces. External vector field forces is
always added to reflect the natural fluctuation. When
an agent is far away from its destination, its dynamics
are basically governed by basic steering forces. Thus, the
weights for these types of forces should be large while the
weights for other forces should be small. When the agent
moves closer to its destination, different strategies are
used depending on whether we are performing transfor-
mation between a series of static model objects or dealing
with dynamic tracking problem. In the former case, we
increase the weight of an additional damping force to
direct the movement. This damping force plays the role
of slowing down the agent nearby its destination and
prevents excessive overshooting. While for the later one,
the weights for basic steering forces and external vector
field forces decrease, and the weight for the homing force
increases.

Actually when the target positions are rapidly chang-
ing, a portion of the agents may not catch up with
them, reflecting the different personality of the agents.
When an agent almost reaches its destination, we use a
stepped steering method to perfect the result. In other
words, by setting up a local coordinate frame for ev-
ery one, we rotate and move it in a right pace to
navigate it smoothly toward the target position. When
the destination is finally reached, the agent can ei-
ther be completely bound to the destination or float
around it.

Figure 6 shows the weight curves for basic steering
forces, homing force, damping force, and external vector
field force, respectively. They are piecewise continuous
functions.

Figure 7 shows the comparison between two exam-
ples. The left picture of Figure 7 indicates a distribu-
tion of flock agents with relatively large basic steering
forces among them. While in the right one, the flock has
a smaller weight for the basic steering forces, therefore,
its spatial distribution appears more concentrated.

Figure 6. Weighting scheme for basic steering forces, homing
force, external force, and damping force.

Figure 7. Comparison of a crowd of flock with a non-flock one.

Global Path Control

In order to drive the motion of an entire flock in a more
coherent manner when it migrates from one constrain-
ing shape to another, users can interactively specify a
global path between the centers of the two shapes. We
use a cubic B-spline curve R(u) interpolating end points
for representing the global path. A similar path between
every pair of corresponding sample points on the two
shapes can be obtained automatically. The agents in the
flock will follow these paths during migration. As the B-
spline path curve for each agent is smooth and seldom
interleaving due to the good quality of point correspon-
dence, the simulation runs fluent.

Let O1 and O2 represent the centers of the source mesh
and the target mesh, respectively. We set O1 as the start
point, O2 as the end point of the B-spline curve. Between
O1 and O2, users can insert other control points. We re-
parameterized the path using its arc length in order to
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Figure 8. User-designed global path (a) and the computed path for one pair of sample points (b).

better control the speed.24 Similarly, assuming C1 and C2

are two corresponding points on the two constraining
shapes, we get the expression C(t), t ∈ [0, 1].

O(t) = (1 − t)O1 + tO2 (10)

C(t) = (1 − t)C1 + tC2 (11)

Let α be the ratio between ‖C1C2‖ and ‖O1O2‖, that is,
α = ‖C1C2‖

‖O1O2‖ . We use α as a scale parameter to modulate
the global path R(t). The path between C1 and C2 can be
constructed as

R̃(t) = αR(t) − αO(t) + C(t) (12)

It is easy to verify that R̃(0) = C1 and R̃(1) = C2.
Figure 8(a) shows an example of a global path. The auto-
matically calculated path between a pair of sample points
is shown in Figure 8(b).

One major advantage of this path control scheme is that
we only need to parameterize the path once for all sample
points. When following its path to a new destination, an
agent translates and rotates to make its velocity vector
align with the tangential direction of the path.

Results

We have developed a shape-constrained flock simulation
system and run a series of flock simulations consisting of
thousands of agents. All experiments are performed on
an Intel Core2 Duo 2GHZ CPU with 2GB memory and
an NVIDIA GeForce 8800 GTS graphics card. With this
system, we can simulate shape-constrained flock anima-
tion in real time. For static shape constraints, simulations
can achieve nearly 100 frames per second for thousands
of agents. When simulating a flock of 1500 agents track-
ing dynamic objects, including rendering, the update rate
can still reach 30 frames per second. We provide a clip of
screen captured video as can be seen from the accompa-
nied material.

We have run several simulations of flock transferring
between two different shapes. In Figure 9, we have cre-
ated a smooth transition of a shape-constrained flock
from a cylinder to a sphere while keeping visual charac-
teristics of flocking. Figure 10 is another example where
a dog-shaped flock gradually forms into a whale.

In Figure 11, our approach is applied to a deforming
waterfowl model. The target point for each individual
agent changes its position at each frame. This example
illustrates different flock behaviors under different mov-
ing speeds of the target shape. If the bird shakes his
head slowly, flock members will follow their target points

Figure 9. By one-to-one correspondence between sample points on two given meshes, our approach creates a smooth shape-
constrained flock animation from a cylinder to a sphere.
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Figure 10. By adopting different constraints at source and destination, a dog-shaped flock changes into a whale.

Figure 11. A flock transforms according to a dynamically changing waterfowl shape constraint.

strictly. If the virtual leaders move fast, the agents will
disperse but still flock to the new positions. We can ad-
just the tracking parameters in Kalman filter to reflect
how closely agents follow the virtual leaders. Figure 1
gives another illustration of dynamic tracking problem.
The whole flock tries to follow the running horse while
performing the flocking behaviors.

The pictures shown in Figures 1, 9–11 are rendered as
a post-process. More specifically, we output the control
data into scripts and read in by 3DS MAX for final ren-
dering.

Conclusion and Discussions
In this paper, we propose a straightforward and prac-
tical method for simulating shape-constrained flock an-
imation based on fuzzy control rules. Flock navigation
is governed by arbitrary shape constraints while follow-
ing a user-controlled global path. The animations created
are capable of satisfying user-specified static or deform-
ing shape constraints while keeping the characteristics
of flock. Such effects are desirable in producing motion
pictures.

............................................................................................
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When the number of agents included in flock is less
than 5000, the entire flock can be updated and rendered
in real time in our implementation. However, the com-
putation of flock behaviors increases rapidly when the
number of agents goes up. We will seek to simplify the
steering force computation. How to incorporate the pow-
erful parallel calculation ability of GPU into our system
is one of our future research topics.
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