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Abstract
Many natural phenomena involve dynamic fluids whose
motion differs radically from that of rigid bodies. This pa-
per presents a novel approach for estimating fluid motion
fields. It first estimates a local flow probability distribution
function at each pixel using the STAR model and the data
from a spatio-temporal neighborhood. It then feeds the set
of distribution functions into a global optimization frame-
work. As a result, the optimization returns a motion field
with a unique velocity vector at each pixel. Experiments
with real fluid sequences show that this method can suc-
cessfully estimate their motion fields.

1 Introduction
Dynamic fluids, such as rivers, ocean waves, moving
clouds, smoke and fires, appear everywhere in the nature.
They give us visual richness as well as spiritual inspiration.
Nonetheless, they may also interfere with vision tasks such
as image registration and geometry reconstruction. Good
understanding and estimation of their motion can lead to
more universal and robust vision algorithms. On the other
hand, fluid motion estimation can also be very useful in syn-
thesizing dynamic textures [16, 14, 15].

Optical flow is the traditional method to estimate motion
fields. The initial hypothesis in optical flow methods is that
the intensity structures of local time-varying image regions
are approximately constant under motion for at least a short
duration. Formally, if I(x, t) is the image intensity func-
tion, then

I(x, t) ≈ I(x + δx, t + δt). (1)

Expanding the right-hand side and ignoring second and
higher order terms, we have the optical flow constraint
equation,

dI

dt
=

∂I

∂t
+ ∇I · v = 0 (2)

Since the above equation has two unknowns, usually we as-
sume all the pixels in a local block share the same flow vec-
tor to overconstrain the problem.

Since we would like to focus on the motion analysis of
fluids, we need to consider the features present in fluid dy-
namics. A fluid whose density and temperature are nearly
constant is described by a velocity field u and a pressure
field p. These quantities generally vary both in space and
in time and depend on the boundaries surrounding the fluid.
Given that the velocity and the pressure are known for some
initial time t = 0, the evolution of these quantities over time
follows the Navier-Stokes equations [5, 9]:

du

dt
=

∂u

∂t
+ (u · ∇)u

= −1
ρ
∇p + ν∇2u + f (3)

∇ · u = 0 (4)

where ν is the kinematic viscosity of the fluid, ρ is its den-
sity and f is an external force. The velocity field here can
be either two-dimensional or three-dimensional. The first
equation bears a resemblance to Eq.(2) except that its un-
known variable is the velocity vector itself and the right-
hand side of the equation is not likely to be zero because
of external forces such as gravity, the gradient field of pres-
sure and diffusion. The second equation means the fluid is
incompressible and volume-preserving.

Based on the motion of fluids described by the Navier-
Stokes equations, we understand that fluids have nonrigid
motion. That means relative positions among points in a
fluid change constantly at every possible scale. A good ex-
ample is the changing surface geometry of a water surface.
This is because the self-advection term (u·∇)u can quickly
distort the relative positions of neighboring points to in-
validate the assumption that neighboring points share the
same flow vector. Other terms in the Navier-Stokes equa-
tions, such as diffusion, make this problem even more se-
vere. For instance, the diffusion of smoke particles in the
air changes the distribution of participating media, adding
another level of nonrigidity. In summary, fluid motion is the
opposite of rigid body motion. As a result, traditional op-
tical flow methods based on affine neighborhood matching
would have a difficult time estimating the projected motion
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field of a 3D fluid in an image.
Meanwhile, in time series analysis, there are some mod-

els that have shown potential to model the behavior of flu-
ids. The autoregressive(AR) model has been often used for
predicting the value of a state variable s at time t. The fore-
cast is a linear combination of some number, m, of previous
values:

st = A1st−1 + · · · + Amst−m + nt (5)

where the At are r × r(s ∈ Rr) matrix constants which
characterize the sequence. The term nt is drawn from a
zero-mean noise distribution, typically taken to be Gaus-
sian. This AR model can be generalized to include a spatial
neighborhood as well. The result is the spatio-temporal au-
toregressive model (STAR) which does prediction using a
linear combination of the values in a spatio-temporal neigh-
borhood:

s(x, y, t) =
m∑

i=1

Ais(x+∆xi, y+∆yi, t+∆ti)+n(x, y, t)

(6)
where ∆xi, ∆yi and ∆ti specify the neighborhood struc-
ture of the model. The STAR model only exploits first and
second-order statistics, hence cannot model curved lines.

1.1 Related Work
There is a large body of literature on optical flow algorithms
which can be roughly grouped into differential, correlation
and frequency-based approaches. More specifically, there
are a few representative frameworks, including the itera-
tive first-order approximation method by Lucas and Kanade
[11], the hierarchical computational framework [1, 4], the
phase-based approach by Fleet and Jepson [7], the spatio-
temporal filtering framework [8, 17], the mixture frame-
work for motion segmentation [19] etc. Beauchemin and
Barron [2] gives an excellent survey on this problem.

Some of the above approaches have been adapted to es-
timate fluid flows. Quenot et.al. [13] presented an optical
flow technique based on the use of dynamic programming
along the two orthogonal major axes. It also incorporates
neighborhood matching. Artificial particles are deposited
into the fluid to provide more salient features in the images.
The computed flow fields from real images are roughly con-
sistent with numerical simulations. Larsen et. al. [10]
adapted the phase-based approach to estimating flow fields
in meteorological images.

Some other work explicitly incorporates the physical
properties of fluid mechanics during flow estimation, such
as the use of the conservation of brightness or mass in
[20, 3], the coupling between dense and parametric vector
fields in [12]. This approach works well for meteorological
and transmittance images where either 3D fluid properties
are preserved or distortions caused by 3D to 2D projection

are ignorable. In this paper, we are interested in natural
gray-scale or color images where pixel intensities are not
related to volumetric fluid properties and distortions due to
projection may be significant. Therefore, we will not ex-
plicitly make use of these physical properties.

In terms of temporal texture modeling, Szummer and Pi-
card [16] applied the STAR model to analyze and resyn-
thesize homogeneous temporal textures. Soatto et.al. [15]
adopted PCA and AR model fitting to the analysis and syn-
thesis of temporal textures and achieved broader and bet-
ter results. Schödl et.al. [14] addresses the same problem
by finding transition points in the original video sequence
where the video can be looped back on itself. A global im-
age registration approach for scenes with temporal textures
is presented by Fitzgibbon [6].

2 Local Flow Probability Distribu-
tion Functions

In this paper, we still assume that the brightness of a point is
a constant over a short period of time. However, a statistical
approach for determining flow vectors should be adopted
instead since the relative positions of neighboring points
change faster in a fluid than on a rigid body.

Based on the characteristics of fluid motion, we can build
a stochastic fluid motion model. The flow vector at a pixel at
a certain time can be considered as a random variable with a
probability distribution function. This probability distribu-
tion function at a pixel (xs, ys) at a certain time t can be rep-
resented as, φxs,ys,t(xd, yd), (xd, yd) ∈ Ds, where Ds is
the set of destination pixels ( which is often a neighborhood
of pixel (xs, ys) ) and

∑
(xd,yd)∈Ds

φxs,ys,t(xd, yd) = 1.
We assume that pixels in a local spatio-temporal region cen-
tered at (xs, ys, t) share the same probability distribution
function for their flow vectors. The flow vector at each
pixel in the local spatio-temporal region can be considered
as a random sample from this distribution function. There-
fore, the statistics of the flow vectors in the local region can
be used as an approximation to this distribution function.
Once we have the estimation of the probability distribution
function, the flow vector at the center pixel (xs, ys) is more
likely to be consistent with a vector with a high probability.

For the reasons mentioned in Section 1, recovering prob-
ability distribution functions for flow vectors becomes more
achievable than recovering accurate pixelwise flow vectors
for each frame. The STAR model appears to be very useful
for estimating local distribution functions. Let us first look
at Eq. (6) more carefully. The coefficient A i indicates the
degree of correlation between pixel (x, y) at time t and pixel
(x + ∆xi, y + ∆yi) at time t + ∆ti. When a causal neigh-
borhood is assumed, intuitively, Ai is proportional to the
probability of the fluid at pixel (x+ ∆xi, y + ∆yi) actually
ending up at pixel (x, y) after a time interval −∆ti. How-
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ever, if we consider pixel (x, y) as the source of flow in-
stead of destination and assume ∆ti > 0 for all i, the STAR
model still has legitimate physical interpretation where Ai

is proportional to the probability of the event that the fluid at
pixel (x + ∆xi, y + ∆yi) actually comes from pixel (x, y).

To estimate the probability distribution function at pixel
(xs, ys), we need to have an estimation of the probability
that the fluid at pixel (xs, ys) goes to pixel (xs + ∆xi, ys +
∆yi) at the next frame, which means ∆ti = 1, for all i. In
Eq. (6), s(x, y, t) can be either state variables or appear-
ance variables. Since we keep the brightness constancy as-
sumption, s(x, y, t) can actually be replaced by image pixel
intensity. Taking the expectation of the both sides of Eq. (6)
and setting ∆ti = 1, we have

I(x, y, t) =
m∑

i=1

AiI(x + ∆xi, y + ∆yi, t + 1) (7)

where Ai becomes exactly the probability that the intensity
at pixel (x + ∆xi, y + ∆yi) in the next frame equals the
intensity at pixel (x, y) in the current frame. Therefore,

φxs,ys,t(xs + ∆xi, ys + ∆yi) ≈ Ai (8)

where (xs + ∆xi, ys + ∆yi) ∈ Ds.
Since what we need to estimate is a distribution function

with multiple parameters, the amount of data available from
a single pixel (xs, ys) is obviously not sufficient. As men-
tioned previously, the same distribution function is used for
describing the statistical behaviour of all pixels in a spatio-
temporal neighborhood N s of (xs, ys, t), which means we
can have an equation similar to Eq. (7) for every pixel in
Ns. This is a linear equation in the set of distribution co-
efficients and we assume a Gaussian noise source at every
pixel. The distribution coefficients can be solved using the
system of normal equations for least-squares when the num-
ber of pixels in N s is larger than the number of pixels in
Ds. Compared with [16] which adopts the STAR model
for synthesizing homogeneous temporal textures, our work
tries to use it for local flow distribution functions which vary
from place to place. Although the STAR model is linear
and inappropriate for global curved flow structures, it can
still effectively model all local flows very well since even
curved flow structures have a first-order local approxima-
tion. The least-squares estimation does not guarantee that∑

i Ai = 1 which is a necessary condition for a distribution
function. Thus, Eq. (8) should be adapted to

φxs,ys,t(xs + ∆xi, ys + ∆yi) ≈ Ai∑
j Aj

(9)

2.1 Pruning
Since fluid motion is largely random and noisy, the flow dis-
tribution function needs to be overdetermined during data

fitting. This is not a severe problem since Ds is two-
dimensional and N s is three-dimensional in general. How-
ever, pruning can definitely further improve the results. For
flow distribution functions, pruning means setting some of
their insignificant coefficients to zero. To efficiently carry
out pruning, we actually use the Schwartz’s Bayesian Cri-
terion (SBC) [18] and a binary search to decide the num-
ber of nonzero coefficients. Insignificant coefficients can be
discarded as long as the SBC decreases. The expression of
SBC is given by

SBC = |Ω| ln σ̂2
a + p ln |Ω|, (10)

where |Ω| is the data set size, p is the number of coefficients,
and σ̂2

a is the estimated innovation variance.
The binary search performs as follows. Given the ini-

tially estimated coefficients and their corresponding SBC
value (sbc0), set half of the coefficients with smallest mag-
nitude to zero and execute least-squares again for the re-
maining coefficients to obtain a new SBC value, sbc1. Com-
paring the two resulting values of SBC, we can decide
which half of the coefficients we need to further work on.
If sbc0 > sbc1, the set of nonzero coefficients may still
be redundent and recursively execute the previous step on
this set; otherwise, restore the original values of the zero
coefficients and recursively execute the previous step on
them. This binary search can efficiently recover the neces-
sary number of nonzero coefficients in the flow distributin
function and reduce the amount of uncertainty in them.

3 Global Optimization
The previous section introduced a method to recover local
flow probability distribution functions. A local distribution
function defines the probability of every potential velocity
vector at a pixel. However, the motion field of a dynamic
fluid actually has a unique velocity vector everywhere. In
this section, we present an optimization-based method to
extract a dense motion field with a unique velocity vector
everywhere from the set of local distribution functions.

The underlying idea for this two-stage approach is that
the pixelwise velocity vectors should be determined simul-
taneously in a global framework which exploits the local
information from all pixels. A local probability distribution
function has this kind of required information available. A
local approach could determine the velocity vector at every
pixel only from its own distribution function. For instance,
it could just pick the vector with the largest probability from
each distribution function separately.

The upcoming sections are going to be focused on the
global optimization. Our global method formulates the
problem as an unconstrained minimization problem with a
cost function. It follows the Bayesian framework to max-
imize a posterior distribution for the global motion field.
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The posterior distribution is obtained from a prior distribu-
tion and an observation model.

3.1 Cost Related to Smoothness
One of the most important features of a fluid flow field is
that it should be smooth. Smoothness is enforced on the
flow field as a prior distribution in the Bayesian frame-
work. If the spatial derivatives of the global flow field
{u} are implemented using the following finite differences:
ux(xs, ys) = u(xs + 1, ys) − u(xs, ys) and uy(xs, ys) =
u(xs, ys + 1) − u(xs, ys), then the prior distribution of
the flow field may be described by a Gibbs distribution
p({u}) = (1/Zprior) exp(−λU), where Zprior is a nor-
malization constant and the energy term is given by

U =
∑

s

‖ux(xs, ys)‖2 +
∑

s

‖uy(xs, ys)‖2. (11)

This probability distribution assigns high probability to
fields that exhibit small derivatives and low probability to
fields with high spatial derivatives.

3.2 Cost Related to Probability Distribution
Functions

Note that the observations we have made here are not the
original input image sequence, but the set of local flow
probability distribution functions derived from the images.
The observation model relates the set of observed local dis-
tribution functions to any particular realization of the global
flow field. It models the joint conditional probability of the
observed distribution functions given the actual realization
of the underlying global flow field, and can be expressed as

P ({φ}|{u}) = (1/Zobs)
∏

s

φxs,ys,t(xs + ∆xs, ys + ∆ys)

(12)
where Zobs is a normalization constant, u(xs, ys) =
(∆xs, ∆ys) defines a flow vector at pixel (xs, ys), and
should be maximized over.

Usually a differentiable cost function is required for
gradient-based optimization techniques. But the flow prob-
ability distribution functions recovered in the previous sec-
tion are only discrete functions defined over integer vectors
(∆xi, ∆yi). To convert Eq. (12) into a differentiable func-
tion, we decide to apply a locally supported basis function,
h(x, y), at each integer vector location. Thus, P ({φ}|{u})
in Eq. (12) becomes

(1/Z̃obs)
∏

s φ̃xs,ys,t(xs + ∆xs, ys + ∆ys)
= (1/Z̃obs)

∏
s {

∑
i [φxs,ys,t(xs + ∆xi, ys + ∆yi)

h(∆xs − ∆xi, ∆ys − ∆yi)]}
(13)

where (xs + ∆xi, ys + ∆yi) ∈ Ds, and h(x, y) is a dif-
ferentiable function satisfying the following conditions: i)

h(0, 0) = 1; ii) h(x, y) = 0, |x| ≥ 1 or |y| ≥ 1; iii)
hx(0, 0) = 0 and hy(0, 0) = 0; iii) hx(x, y) = 0 if |x| = 1
or |y| = 1, and hy(x, y) = 0 if |x| = 1 or |y| = 1. Ob-
viously, Eq. (12) and Eq. (13) become equivalent when
(∆xs, ∆ys) happens to be an integer vector.

3.3 The Complete Cost Function
The final posterior distribution for a global flow field can be
formulated as being proportional to

exp(−λU)
∏

s

φ̃xs,ys,t(xs + ∆xs, ys + ∆ys) (14)

Maximizing the above posterior distribution is equivalent to
minimizing the following cost function.

− ∑
s log(φ̃xs,ys,t(xs + ∆xs, ys + ∆ys))

+ λ
∑

s(‖ux(xs, ys)‖2 + ‖uy(xs, ys)‖2)
(15)

The above complete cost function may have many local
minima especially because of the first term. Usually expen-
sive simulated annealing is adopted to optimize such a cost
function. We designed an alternative heuristic optimization
procedure which couples the fast conjugate gradient algo-
rithm with a changing support region for the basis function
h(x, y). The conjugate gradient algorithm is executed on
the cost function multiple times. Every time, it takes the fi-
nal solution from the previous step as the initial solution in
the current step. Set to a value larger than the size of D s

at the beginning, the support region for the basis function is
shrunk by a fixed scaling factor every step until it reaches 1.
In practice, we find out this scheme works well and always
finds a vector field close to the optimal solution.

4 Experimental Results
We have conducted experiments on multiple fluid sequences
and compared the results from our algorithm with those ob-
tained from two of the previous optical flow algorithms,
including Lucas and Kanade’s multi-scale algorithm [11]
and an improved version of Quenot et.al.’s algorithm [13]
whose original version works very well for fluids with ar-
tificial particles. Their results are shown side-by-side with
our results in the Figs. 1-3. Most previous optical flow
algorithms estimate flow fields using only two consecutive
frames while ours estimates the local flow distribution func-
tions from multiple frames, so direct comparison between
them is not entirely appropriate. Nevertheless, it does in-
dicate that our algorithm provides a working technique for
dynamic fluids. The test image sequences themselves pro-
vide strong visual cues about the flow directions, therefore,
we can evaluate the correctness of the results.

Smoke Sequence: The first experiment illustrates the re-
sults on a smoke sequence. Two consecutive images from
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(a) (b)

(c) (d)

(e) (f)

Figure 1. (a)-(b) Two consecutive frames from
a smoke sequence; (c) flow field from Lucas
and Kanade’s algorithm; (d) flow field from
Quenot et.al.’s algorithm; (e) flow field from
our algorithm without global optimization; (f)
flow field from our algorithm with global opti-
mization;

the sequence are shown in Fig. 1(a)-(b). They indicate there
is a wind from left to right. The estimated flow fields for the
bottom part of the images are shown in Fig. 1(c)-(f). Fig.
1(c) shows the results from Lucas and Kanade’s algorithm.
Fig. 1d shows the results from Quenot et.al.’s algorithm.
Fig. 1(e) shows our results without global optimization by
choosing the locally optimal vectors from the flow distri-
bution functions. Fig. 1(f) shows our results with global
optimization. The recovered flow fields from our approach
agree well with visual observation.

Spiraling Water Sequence: The second experiment was
perfomed on the spiraling water sequence originally from
[16]. The counterclockwise flow directions are visually
noticeable in the example images shown in Fig. 2(a)-
(b). Compared with smoke, water sequences have more
sparkling highlights that interfere more severely with flow

(a) (b)

(c) (d)

(e) (f)

Figure 2. (a)-(b) Two consecutive frames from
a spiraling water sequence; (c) flow field from
Lucas and Kanade’s algorithm; (d) flow field
from Quenot et.al.’s algorithm; (e) flow field
from our algorithm without global optimiza-
tion; (f) flow field from our algorithm with
global optimization;

estimation. The estimated flow fields are shown in Fig.
2(c)-(f). Our algorithm does not perform as well on this
sequence partially due to the low quality of the images. But
it still produces reasonable results with the correct swirling
direction.

Ocean Wave Sequence: The third sequence that has been
tried is the ocean wave sequence with a huge tidal wave
falling from the top. We can also approximately tell the
flow directions from the images in Fig. 3(a)-(b). The esti-
mated flow fields are shown in Fig. 3(c)-(f). Our algorithm
performed very well on this sequence.

From the above results, we can see that overall our algo-
rithm performs much better than Lucas and Kanade’s and
Quenot et.al.’s. The version with global optimization also
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(a) (b)

(c) (d)

(e) (f)

Figure 3. (a)-(b) Two consecutive frames from
an ocean wave sequence; (c) flow field from
Lucas and Kanade’s algorithm; (d) flow field
from Quenot et.al.’s algorithm; (e) flow field
from our algorithm without global optimiza-
tion; (f) flow field from our algorithm with
global optimization;

performs better than the one with local decision by effec-
tively suppressing noisy vectors. In all of the above experi-
ments, we use a 11 by 11 spatial neighborhood for the set of
destination pixels Ds used in flow distribtion functions, and
a 17x17x8 spatio-temporal neighborhhod N s for the least-
squares estimation of the coefficients in those flow distribu-
tion functions. The basis function h(x, y) was set to a tensor
product of cosine functions, 0.25(cosπx + 1)(cosπy + 1).
The parameter λ was set to a number larger than 10 to en-
force smoothness.
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