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Multi-Dimensional Visual Data
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Abstract— Visual data comprise of multi-scale and inhomo-
geneous signals. In this paper, we exploit these characteristics
and develop a compact data representation technique based on
a hierarchical tensor-based transformation. In this technique,
an original multi-dimensional dataset is transformed into a
hierarchy of signals to expose its multi-scale structures. The
signal at each level of the hierarchy is further divided into a
number of smaller tensors to expose its spatially inhomogeneous
structures. These smaller tensors are further transformed and
pruned using a tensor approximation technique. Our hierarchical
tensor approximation supports progressive transmission and
partial decompression. Experimental results indicate that our
technique can achieve higher compression ratios and quality than
previous methods, including wavelet transforms, wavelet packet
transforms, and single-level tensor approximation. We have
successfully applied our technique to multiple tasks involving
multi-dimensional visual data, including medical and scientific
data visualization, data-driven rendering and texture synthesis.

Index Terms— Multilinear Models, Multidimensional Image
Compression, Hierarchical Transformation, Tensor Ensemble
Approximation, Progressive Transmission, Texture Synthesis

I. INTRODUCTION

With advances in imaging technologies—-such as CCD,
laser, magnetic resonance, and diffusion tensor—-and phys-
ically based solid and fluid simulation technologies, new
visual data of multiple dimensions have been produced at an
unprecedented rate and scale. These new technologies bring
new challenges to existing visual data modeling and processing
techniques. One of the fundamental and challenging problems
is how to efficiently represent, analyze and visualize such a
vast and ever-growing amount of visual data.

Visual data exhibit two important intertwined characteris-
tics. First, they comprise of signals at many different scales or
frequencies. For example, we can decompose a composite sig-
nal into a series of cosine waves using the Fourier transform.
Such a decomposition in the frequency domain represents
the original signal as a superposition of simpler elementary
components at distinct frequencies. Second, these signals
have spatially inhomogeneous magnitudes. If we adaptively
subdivide the spatial domain, it is possible to approximate
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Fig. 1. Examples of visual data our hierarchical tensor approximation can
be applied to.

the original signal as a piecewise smooth function which has
a more or less uniform magnitude over each local region.
Existing techniques, such as wavelet transforms, have suc-
cessfully exploited both of the aforementioned characteristics
to achieve a transformation that is local in both frequency
and space domains. As a result of such decomposition and
transformation, the inherent structures of the original signal
become better exposed to compression. One important aspect
of such inherent structures is that even though the original
signal appears inhomogeneous, its elementary components at
different frequencies or local regions exhibit correlation [1].
Further operations performed on these components can remove
redundancy and achieve compact representation. There are at
least two possible operations we can perform. First, correlated
components can be grouped together and represented collec-
tively in a lower dimensional space to remove redundancy.
Second, a component can be simply pruned if its magnitude is
negligible. Such processing gives rise to significantly reduced
size and dimensionality of a dataset and overall, reduced
computational and representational complexity.

Multilinear models based on tensor approximation have re-
ceived much attention recently. They are capable of generating
a more compact representation of multi-dimensional data than
traditional dimensionality reduction methods. In this paper,
we exploit the aforementioned characteristics of visual data
and develop an analysis and representation technique based on
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a hierarchical tensor-based transformation. In this technique,
an original multi-dimensional dataset is transformed into a
hierarchy of signals to expose its multi-scale structures. The
signal at each level of the hierarchy is further divided into a
number of tensors with smaller spatial support to expose its
spatially inhomogeneous structures. These smaller tensors are
further transformed and pruned using a tensor approximation
technique to achieve a highly compact representation.

Our hierarchical tensor approximation has two significant
advantages. First, it can achieve far higher quality than wavelet
transforms at large compression ratios. In comparison to
a traditional multiresolution analysis which simply projects
signals at various different resolutions onto a prescribed basis
which was obtained without any specific knowledge of the
data, our hierarchical approximation actually adopts bases
specifically tailored for the characteristics of the data currently
being approximated. Our high-level approach is thus consistent
with a rich line of research on basis pursuit that seeks to find a
dictionary which is adapted to the particular signal at hand [2].
Second, this hierarchical tensor-based representation facilitates
progressive or partial data transmission and visualization. By
transmitting the compressed data level by level, the receiver
can quickly view the low resolution versions first and decide
whether it is worthwhile to wait for higher resolution details. In
addition, if visualization only concerns a portion of the original
dataset, the subdivided tensors at each level support partial
transmission and decompression and hence faster response
time to user requests.

We have successfully applied our new hierarchical tensor
approximation in multiple tasks, including medical and sci-
entific data visualization, data-driven rendering and texture
synthesis.

II. BACKGROUND AND RELATED WORK

A real Nth-order tensor A ∈ �n1×n2×...×nN , can be consid-
ered as an element of a composite vector space, Rn1 ⊗Rn2 ⊗
· · ·⊗RnN , where we call each Rni an elementary vector space,
and ⊗ denotes the Kronecker product of vector spaces. The
dimensionality of the i-th elementary vector space is ni. Let us
first review basic tensor approximation techniques, including
rank-r approximation and rank-(r1, r2, ..., rN ) approximation.

A rank-r approximation of A is formulated as

Â =
r∑

j=1

bj ×1 u(1)
j ×2 u(2)

j × · · · ×N u(N)
j , (1)

where bj is a scalar coefficient, each u(i)
j is simply a column

vector of length ni, and ×k represents k-mode product of a
tensor by a matrix ∗. The column vectors, {u(i)

j }r
j=1, are not

necessarily orthogonal to each other. It is possible to devise
a simple greedy algorithm to suboptimally solve the basis
vectors in a sequential order. A more efficient algorithm for
rank-r approximation can be found in [3]. When r is small,

∗The k-mode product of a tensor A by a matrix U ∈Jk×nk , denoted by
A×kU, is defined as a tensor with entries: (A×kU)i1...ik−1jkik+1...iN

=∑
ik

ai1...iN
ujkik

.

the scalar coefficients along with their associated basis vectors
give rise to a compact representation of the original tensor.

A rank-(r1, r2, ..., rN ) approximation of A is formulated as

Ã = B ×1 U(1) ×2 U(2) × · · · ×N U(N), (2)

where each basis matrix U(i) ∈ �ni×ri , and the core ten-
sor B ∈ �r1×r2×···×rN . The column vectors of each U(i)

are orthonormal to each other. Once the basis matrices are
known, B = A ×1 U(1)T ×2 U(2)T × · · · ×N U(N)T

. When
r1, r2, . . . , rN are sufficiently small, the core tensor and the
basis matrices together give rise to a compact representation.
The Alternative Least Square (ALS) algorithm was used in
[4], [5] to solve the optimal basis matrices given their reduced
ranks. In each iteration, ALS optimizes only one of the basis
matrices, while keeping others fixed. A closely related concept
is N-mode SVD [6] which also decomposes a tensor into a
series of products as shown in (2). However, the resulting
basis matrices in N-mode SVD are not truncated and therefore,
retain their original ranks.

Tensor algebra has received much attention in computer
graphics and computer vision. The principle of rank-r approx-
imation has been applied to image coding and classification
in [7]. Concurrent rank-(r1, r2, ..., rN ) approximation has been
applied to similar problems in [8]. In general, the orthogonality
of the basis matrices enables rank-(r1, r2, · · · , rN ) tensor ap-
proximation to remove redundancy among different modalities
more effectively than rank-r approximation. N-mode SVD and
tensor approximation have been applied to 2D face recogni-
tion [9] and facial expression decomposition [10]. Such an
approach has been further generalized to 3D face modeling
and transfer in [11]. Tensor-based multilinear modeling has
also been applied to bidirectional texture functions in [12],
[13], [14]. Rank-r approximation was used in [12] while rank-
(r1, r2, · · · , rN ) approximation was applied in [13], [14]. It
has been demonstrated in [14] that rank-(r1, r2, · · · , rN ) tensor
approximation can achieve smaller Root Mean Squared Errors
(RMSE) than Principal Component Analysis (PCA) given the
same compression ratios.

It has been recently demonstrated that non-negative tensor
factorization [15] based on rank-r approximation can outper-
form non-negative matrix factorization [16] for sparse image
decomposition. Rank-(r1, r2, ..., rN ) tensor approximation has
also been generalized to multilinear clustering [17]. The
clustering algorithm in [17] first performs rank-(r1, r2, ..., rN )
tensor approximation using a criterion based on pairwise
distance, followed by K-means clustering on the transformed
data. Recently, a related technique called clustered tensor
approximation has been developed and applied to precomputed
radiance transfer in graphics [18]. Note that most previous
applications of tensor approximation consider the input data
as a single-level or single-resolution multi-dimensional array
without exploiting its inhomogeneous multi-scale structures.
The only exception that does multi-scale subdivision is the
sparse matrix approximation method based on H-matrices
[19]. This method has been recently applied to compact visual
data representation and acquisition for computer graphics [20].
We will compare our hierarchical approximation method with
H-matrices [19] in Section VI.
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On the other hand, wavelet analysis is inherently a multi-
scale analysis tool and has been frequently applied to visual
data compression [21], [22], [23], [24]. Such wavelet-based
compression only recursively decomposes the low-frequency
components at each scale onto the coarser levels. Efforts have
been made to recursively decompose both the low-frequency
and high-frequency components at each scale [25], [26].
Such a wavelet packet technique constructs an over-complete
collection of wavelet bases, and then chooses a subset of
the bases that most compactly approximate the input signal.
Even though these bases are adaptively obtained, they are
still convolutions of input signals(coefficients) with prescribed
filters. Therefore, unlike the bases in tensor approximation,
they are only scale-adaptive. When wavelets are applied to
multi-dimensional signals, the bases are typically formed as
tensor products of the one-dimensional bases. As a result,
the multi-dimensional bases are axis-aligned. There has been
much work on developing more powerful oriented wavelet
bases for multi-dimensional spaces [27], [28], [29]. However,
such bases are still prescribed filters that cannot be adapted
to specific data, and the gained compression efficiency over
axis-aligned bases is limited.

III. TENSOR ENSEMBLE APPROXIMATION

In many situations, we need to simultaneously approximate
an ensemble of tensors, and most often, these tensors have
strong correlations. For example, a multi-dimensional array
of color values or velocity vectors gives rise to three scalar
tensors for the three color channels or three components of
the vectors. As we know, color response curves have much
overlap with each other and velocity components need to
satisfy certain physics-based equations. As a result, these
scalar tensors have strong correlations with each other. As will
be discussed in the next section, we also subdivide a large
tensor into smaller ones and approximate them collectively
because these subdivided tensors have local spatial support
and may share similar basis matrices among each other.

Suppose the list of tensors that need to be approximated
are A1,A2, · · · ,Am, where m is the number of tensors and
Ai ∈ �n1×n2×...×nN , and we look for a rank-(r1, r2, ..., rN )
approximation of each Ai, which is denoted as Ãi. Because of
correlations and redundancies among this list of tensors, ap-
proximating each of them separately is suboptimal. We move
one step further and approximate all these tensors collectively.
To achieve this goal, we organize these ml N -th order tensors
into a (N + 1)-th order tensor G ∈ �n1×n2×...×nN×m, and
obtain a rank-(r1, r2, ..., rN , rN+1) tensor G̃ as its approxima-
tion using the ALS algorithm. Note that rN+1 ≤ m. This
approximation is compactly represented using N + 1 basis
matrices, U(1), · · · ,U(N),U(N+1), and a core tensor H. That
is,

G̃ = H×1 U(1)×2 U(2)×· · ·×N U(N)×(N+1) U(N+1), (3)

where U(1) ∈ �n1×r1 , · · ·, U(N) ∈ �nN×rN and U(N+1) ∈
�m×rN+1 and H ∈ �r1×r2×···×rN×rN+1 . When necessary, it is
actually quite convenient to extract the core tensor Bi of each
N -th order subtensor Ãi out of this ensemble representation.

(a) Original (b) Noncollective (c) Collective
PSNR 20.13 PSNR 26.17

Fig. 2. A comparison of a reconstructed SPONGE texture from both collective
and non-collective tensor approximations. (a) Original image, (b) a recon-
structed image from the non-collective approximation, (c) a reconstructed
image from our collective approximation. (b)&(c) share the same compression
rate which is 87.5%.

Let u(N+1)
i be the vector representing the transposed i-th row

of U(N+1). Then,

Bi = H×(N+1) u(N+1)T

i . (4)

We have compared our tensor ensemble approximation
against individual tensor approximation. Fig. 2 shows one
of such comparisons on texture images. In this example, the
original image is partitioned into 16 blocks each of which has
three color channels. Our ensemble approximation models the
data as a list of 48 subtensors, approximates them collectively,
and achieves a peak signal-to-noise ratio (PSNR) † of 26.17
at 87.5% compression rate. On the other hand, individual
approximation needs to store a distinct set of basis matrices for
each color channel and each subtensor even when these bases
are similar, and can only achieve a PSNR of 20.13 at the same
compression rate. Such a difference is primarily caused by the
excessive basis overhead in individual approximation.

IV. HIERARCHICAL TENSOR APPROXIMATION

Given a collection of multi-dimensional datasets with the
same size and dimensionality, our multilevel approximation al-
gorithm produces a compact hierarchical representation based
on tensor approximation by removing the redundancies among
different datasets as well as within each dataset. In this section,
we first introduce a lossless hierarchical transformation of
multi-dimensional matrices, or tensors. This transformation
decomposes the original data into multiple levels and removes
the redundancy at each level by exploiting the correlation
among different spatial regions. To exploit spatial inhomo-
geneity of the original data, further lossy approximation (quan-
tization and pruning) is performed on the resulting multilevel
data. These two steps together give rise to a very compact
representation.

A. Hierarchical Transformation of Tensors

The basic idea of hierarchical transformation is to first
recursively partition the entire domain into smaller blocks and
define a truncated tensor-product basis for each block. Every
point in the domain is then covered by a series of blocks

†PSNR = 20 log10
Range of Signal

RMSE , where RMSE stands for Root Mean
Squared Errors.
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Fig. 3. In our hierarchical tensor transformation, an original tensor is represented as the summation of incomplete tensor approximations at multiple levels.
The tensors at each level are subdivided residual tensors passed from the higher level.

with increasingly larger scales. The basis over each of these
blocks can provide a partial approximation of the data item
at that point. The summation of these partial approximations
is the actual approximation of the data item. Let the input
dataset be a multidimensional array defined by the tensor,
A ∈ �n1×n2×...×nN , where we assume ni = 2ki . Let the
set of indices for the i-th mode be Ii = [0, 1, . . . , ni −1]. The
domain of the input dataset is then defined as the Cartesian
product of these sets of indices, D = I0 × I1 × · · · × IN .
We perform recursive binary partition over each index set so
that the original dataset is at level 0, and at level l, each
index set has been partitioned into 2l subsets. For example,
I l
i,j = [j2ki−l, . . . , (j +1)2ki−l −1] represents the j-th subset

of the i-th mode at level l. As a result, at level l, the original
domain is subdivided into 2Nl blocks. The block Dl

[j1,j2,...,jN ]

represents I l
1,j1

× I l
2,j2

× . . . × I l
N,jN

.

We define a common set of truncated basis matrices for
the blocks at each level. The basis matrices for the blocks
at level l are denoted as Ul,(1),Ul,(2), . . . ,Ul,(N), where
Ul,(i) ∈ �2ki−l×rl

i with rl
i ≤ 2ki−l. We further define a

tensor P l
[jl

1,jl
2,...,jl

N
]
∈ �2k1−l×2k2−l×...×2kN −l

over the block

Dl
[jl

1,jl
2,...,jl

N
]

at level l. There is a core tensor Ql
[jl

1,jl
2,...,jl

N
]
∈

�rl
1×rl

2×...×rl
N so that

P l
[jl

1,jl
2,...,jl

N
] = Ql

[jl
1,jl

2,...,jl
N

]×1Ul,(1)×2Ul,(2)×· · ·×NUl,(N).

(5)

Let A(a1, a2, . . . , aN ) be an element of the original tensor
A defined by the indices a1, a2, . . . , aN with 0 ≤ ai < ni, 1 ≤
i ≤ N . We can form an approximation of this element using
the aforementioned core tensors and basis matrices at different
levels. There is only one core tensor from each level in this
approximation. The approximated element can be expressed

as

Ã(a1, a2, . . . , aN ) =
L∑

l=0

P l
[bl

1,bl
2,...,bl

N
](c

l
1, c

l
2, . . . , c

l
N ), (6)

where bl
i = �ai/2ki−l� and cl

i = ai mod 2ki−l for 1 ≤ i ≤ N .
If the ranks of the basis matrices at all levels, {rl

i}L,N
l=0,i=1,

are given, the basis matrices and core tensors at all levels can
be potentially solved by minimizing the following summed
squared errors

∑

a1,a2,...,aN

‖Ã(a1, a2, . . . , aN ) −A(a1, a2, . . . , aN )‖2. (7)

However, data compression is in general a more complicated
problem than approximation because compression needs to
deal with two conflicting goals, reducing approximation er-
rors while achieving higher compression ratios. Furthermore,
relative importance of these two goals changes for different
applications, and thus different objective functions can be
formulated. For example, one objective could be minimizing
the approximation errors when the compression ratio has a
lower bound; or achieving the highest compression ratio when
the PSNR has a lower bound. Since the ranks of the basis
matrices are directly related to the compression ratio, they
need to be adjusted as well.

Directly minimizing (7) with respect to the ranks and basis
matrices of the subdivided tensors at all levels would be ex-
tremely computationally expensive if possible at all. Therefore,
we take a greedy approach and construct the basis matrices of
the subdivided tensors level by level from top to bottom. The
original input tensors are placed at the top level, which is
also the first level. At each level l, there is an initial list of
N -th order tensors, Al

1,Al
2, · · · ,Al

ml
. We exploit correlation

among these tensors and remove redundancy by performing
tensor ensemble approximation as discussed in the previous
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Fig. 4. The dependency of PSNR on the common ratio among ranks at
different levels. Experimental results for two datasets are shown here. A
fixed compression ratio is used for each dataset. These results confirm that a
common ratio of 0.5 is (near) optimal.

section. We only perform an incomplete approximation in
the sense that the ranks of the truncated basis matrices are
set to be smaller than necessary and the residual error is
not necessarily reduced to the desired level ‡ . From this
incomplete approximation, we can obtain an approximated
version, Ãl

i, of each tensor Al
i. A residual tensor, E l

i =
Al

i−Ãl
i, is subsequently defined for each tensor. Each residual

tensor is then subdivided into up to 2N smaller tensors by
dividing the index set of each mode in half unless an index
set has only one element. These subdivided residual tensors
are passed to the next lower level in the hierarchy for further
approximation. Such tensor subdivision and approximation can
be repeated until all index sets have only one element. It can
be easily verified that the original tensors at the top level can
be faithfully reconstructed by first reconstructing the (residual)
tensors at each level from their corresponding core tensors and
basis matrices, and then accumulating the tensors at all levels
together (Fig. 3).

Meanwhile, in our hierarchical transformation, we need to
determine the ranks of the basis matrices at each level. One
potential solution would be a global nonlinear optimization
with the ranks at all levels as unknowns. Such a large-scale
nonlinear optimization is extremely expensive. Since there are
many unknowns, the optimization is also very likely to be
trapped in local minima. Inspired by the fact that the size
of the residual tensors at different levels follows a geometric
progression, we have designed a relatively efficient scheme
that achieves a suboptimal solution. At the first level, this
scheme chooses the set of desired ranks, r1

1, r
1
2, ..., r

1
N , for

the basis matrices either automatically or under user guidance.
At subsequent levels, each of the ranks follows a geometric
progression. Though not optimal, this scheme significantly
reduces the number of adjustable parameters and has been
very effective in our experiments. The common ratio we used

‡A possibly large local error at one hierarchy level is likely to be well
captured and compensated at the next finer level since the magnitude of the
residual will influence the choice of the best basis on the finer level

for the geometric progression was always set to 0.5. This is
because with this common ratio, the size of the core tensors at
different levels follows the same geometric progression as the
size of the original residual tensors and, thus, the compression
ratio achieved at each individual level remains approximately
the same, which further makes it possible to automatically
provide a rough estimation of the ranks at the top level once a
desired compression ratio is given. Experimental results shown
in Fig. 4 confirm that a common ratio of 0.5 is at least near
optimal.

B. Nonlinear Approximation

To achieve a more compact representation, we need to
perform further lossy approximation of the original data
from the above hierarchical transformation. We achieve this
goal by performing uniform quantization on the core tensor
coefficients followed by a tensor pruning step. Coefficients
with a magnitude smaller than the quantization step are set to
zero. The elements of the basis matrices are also uniformly
quantized. In our experiments, we always use 8 bits per
element for the basis matrices, and 8-20 bits per coefficient
for the core tensors. After quantization, we further perform a
pruning step on core tensors by introducing a separate pruning
threshold which can simply be zero. For each core tensor Bl

i

defined in (4), we compute the square of each coefficient
and obtain the summation of these squared coefficients. If
the summation is less than the pruning threshold, the entire
core tensor is eliminated. If the pruning threshold is set
to zero, a core tensor is eliminated only when all of its
coefficients have been quantized to zero. Note that the number
of residual tensors increases when we descend to lower levels
of the hierarchy. Therefore, effectively eliminating entire core
tensors at lower levels plays a crucial role in achieving high
compression ratios using our hierarchical transformation. This
tensor pruning step bears resemblance to coefficient pruning in
wavelet-based image compression [21], [22]. Since the input
data has spatially varying details, the coefficients of the core
tensors corresponding to smooth regions of the data are likely
to be small. Thus, these core tensors are more likely to be
pruned. The tradeoff between the compression ratio and the
peak signal-to-noise ratio (PSNR) is achieved by adjusting the
tensor pruning threshold. Given a PSNR and a quantization
step, we perform a search for the tensor pruning threshold
that can achieve the desired PSNR. We currently do not
further encode the coefficients of the remaining core tensors
because the focus of this paper is on the effectiveness of
hierarchical transformation and approximation in compact data
representation. More importantly, applications, such as real-
time rendering, only require data reduction, but not coding. In
fact, coding may complicate matters in such applications since
decoding consumes extra computing resources. When coding
is really necessary, there are many existing techniques, such as
arithmetic coding, entropy coding and zero-tree coding [22],
from which one can choose.

V. APPLICATIONS AND EXPERIMENTS

In this section, we discuss the potential applications of
our hierarchical tensor approximation in multi-dimensional
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(a) Original (b) Wavelet (c) Single-level (d) Multilevel
PSNR 35.12 PSNR 43.56 PSNR 45.41

(e) Wavelet Packet (f) Residual of (c) (g) Residual of (d)
PSNR 39.48

Fig. 5. A comparison of the scalar density field of a time-varying volume dataset reconstructed from a bi-orthogonal wavelet transform, a corresponding
wavelet packet transform, the single-level tensor approximation from [14] and our hierarchical tensor approximation. The resolution of the original time-varying
volume data is 128x128x128. (a) A visualization of a cross section of an original volume. (b)-(e) Visualizations of three reconstructed volumes at the same
cross section. The volumes in (b)-(e) were reconstructed from the wavelet transform, the single-level tensor approximation, our multilevel tensor approximation,
and the wavelet packet transform, respectively. They share the same compression ratio which is 1200. The same color transfer function is applied to all four
volumes in (a)-(e). Our result in (d) agrees with the original data very well. The result from the wavelet transform deviates most significantly from the original,
which indicates a large RMSE. (f)&(g) show the magnified (x10) residual images of (c) and (d), respectively.

data visualization, data-driven graphics rendering and texture
synthesis. We further conduct experiments and comparisons to
demonstrate that our technique exhibits advantages in all these
areas.

A. Multi-Dimensional Data Visualization

There has been an increasing amount of multi-dimensional
medical and scientific data that need to be visualized and
analyzed. Such data include 3D or 4D medical images and 4D
time-varying, multivariate volume data from scientific com-
puting. Effective data compression possibly with progressive
transmission would be desired when visual data needs to be
communicated between two remote hosts over a link with
limited bandwidth. When the amount of original data used
by an interactive application exceeds the memory capacity,
it would be desired to perform computation directly using a
compressed form to reduce data accessing cost. Compression
based on our hierarchical tensor approximation is suited for
such purposes because it can achieve high compression ratios,
support progressive transmission and allow partial decompres-
sion.

To measure and compare compression performance, we
conducted experiments on a 4D time-varying scientific dataset
and the Visible Human dataset. The 4D time-varying dataset is
a simulated volume sequence of five jets. Every frame in the
sequence is a multivariate 3D volume with a scalar density

and energy value, and a velocity vector at each voxel. The
resolution of the volume is 128x128x128. The color cryosec-
tion images of the Visible Human dataset consists of 1871
scans of the entire body taken at 1mm intervals and amounts
to 15 Gbytes. We have compared our hierarchical tensor
approximation against wavelets, wavelet packet analysis, and
the single-level tensor approximation technique from [14] on
the velocity field of the time-varying volume dataset and a
subset of the color cryosection images of the Visible Human
dataset. We construct multi-dimensional wavelet bases using
one-dimensional biorthogonal wavelet bases from JPEG 2000
[30]. More specifically, given a pair of one-dimensional scaling
function and wavelet function, we form all possible tensor
products between these two 1D functions to obtain a complete
set of separable multi-dimensional wavelet basis functions.
The wavelet packet algorithm we use follows [26]. In our
experiments, each dataset is initially constructed as three third
or fourth order tensors with one tensor for each color channel
or velocity component. In our hierarchical approximation,
these three tensors are placed at the top level and approximated
collectively. There are typically 4-5 levels in the hierarchy.
We did not perform any optimization over the parameters.
The reduced ranks were chosen in a straightforward way. We
ran five tests with different reduced ranks for each dataset.
The reduced ranks used for the top-level approximation are
respectively 1/2, 1/4, 1/8, 1/16, and 1/32 of the original rank.
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Fig. 6. Our hierarchical tensor approximation supports progressive transmis-
sion and decompression. Shown here are four images of a cross section in a
3D medical dataset. They have progressively more details. These four images
correspond to the decompressed data at four different levels of a hierarchical
approximation.

(a) Original (b) Single-level (c) Multilevel
PSNR 29.89 PSNR 31.05

Fig. 7. A comparison of the Visible Human dataset reconstructed from
the single-level tensor approximation in [14] and our hierarchical tensor
approximation. (a) A magnified view of a cross section of the nose region.
(b) A reconstructed image from the single-level tensor approximation. (c) A
reconstructed image from our multilevel tensor approximation. (b)&(c) share
the same compression ratio which is 15.7.

The common ratio between the ranks at two adjacent levels is
always 0.5.

Fig. 8(a)-(b) show comparisons of compression ratios that
can be achieved by each of the aforementioned four techniques
over a wide range of PSNR values. Fig. 8(a) has the results
for a subset of the Visible Human dataset, and Fig. 8(b) has
the results for the velocity field of the time-varying volume
dataset. Except for very few large PSNR values, our hierar-
chical tensor approximation achieved the highest compression
ratios. And in most cases, the compression ratio it can achieve
is at least one order of magnitude larger than that achieved by
the wavelet transform. Meanwhile, our multilevel technique
also maintains a fairly constant improvement over single-level
tensor approximation. The curves in Fig. 8 indicate how the
compression ratio and PSNR depend on the reduced ranks of
the basis matrices. In general, both the approximation error
and the compression ratio increase when the ranks decrease.

Fig. 5 shows visualization results for a cross section of the
original time-varying volume dataset and four reconstructed
ones. The original dataset is a four dimensional array of scalar

density values. We apply the same color transfer function to
the four cross sections. If a reconstructed result is similar to
the original data, their visualizations should be very close to
each other. Otherwise, significant deviation in color will occur.
In Fig. 5, the result from our hierarchical approximation only
has very minor color deviations while achieving a very high
compression ratio. The result from wavelet transform has most
obvious color deviations. Fig. 7 shows a visual comparison
between the single-level and multi-level schemes on a local
region from the Visible Human dataset. The original data
has an extruding feature which the single-level method has
failed to approximate well while the reconstruction from our
multilevel method still preserves the important details.

Despite the existence of advanced visualization techniques
such as direct volume rendering and isosurface rendering,
in medical imaging and applications, a popular method for
visualizing multi-dimensional medical images is still based
on 2D cross sections since all the necessary details are
displayed clearly and can be interpreted in a straightforward
way. Our hierarchical tensor approximation offers better per-
formance over single-level approximation in terms of ex-
tracting 2D cross sections from compressed data. Suppose
we have a single-level rank-(r1, r2, ..., rN ) approximation of
A ∈ �n1×n2×...×nN . The time complexity for decompressing
this tensor is O(min(r1, r2, ..., rN )Πini). To achieve a rea-
sonable RMSE, min(r1, r2, ..., rN ) needs to be proportional
to min(n1, n2, ..., nN ). On the other hand, our hierarchical
technique only needs to decompress the subdivided tensors
that intersect with the intended cross section at each level.
Since the subdivided tensors become smaller when we de-
scend in the hierarchy, the decompressed data points become
more and more concentrated around the cross section and
the decompression cost drops significantly. Therefore, the
total decompression cost is dominated by the first level. Our
experiments indicate that the minimum rank at the first level
of a hierarchical approximation can be one order of magnitude
smaller than the minimum rank of an equivalent single-level
approximation. Thus, our hierarchical method can achieve
significant speedup in decompression.

Although visualization is not the focus of this paper, we
have built a simple visualization system based on viewing 2D
cross sections of a multi-dimensional dataset. We have con-
ducted experiments on direct visualization from compressed
data using this system. To achieve faster decompression, we
initially subdivide an original dataset into smaller blocks with
a dimensionality of 64 for each elementary vector space. These
blocks form the list of tensors at the top level of our hierar-
chy. They are approximated and further subdivided at lower
levels. During each step of visualization, only those blocks
intersecting with the intended cross section are decompressed.
Visualization speed is dependent on the number of levels we
need to decompress. Given a dataset with 80 blocks on the top
level, our system can decompress all levels and continuously
display cross sections at 5 frames per second on a 3.0GHz
Pentium processor. An example of progressive decompression
of a subset of the Visible Human dataset is shown in Fig. 6.
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Fig. 8. Comparisons of data compression ratios achieved on four datasets by a bi-orthogonal wavelet transform (dotted), a corresponding wavelet packet
transform (dash-dotted), the single-level rank-(r1, r2, ..., rN ) tensor approximation (dashed), and our multilevel tensor approximation (solid). The datasets
include (a) a subset of the Visible Human dataset, (b) the velocity field of the 4D time-varying volume dataset, (c) a SPONGE BTF, and (d) a LICHEN BTF.
Overall, our hierarchical tensor approximation can achieve the highest compression ratios over a wide range of PSNR values. The wavelet transform exhibits
the worst performance. The adaptive wavelet packet transform is in general better than the original wavelet transform and can occasionally achieve the highest
compression ratios on high-end PSNR values. In many cases, the compression ratio achieved by our technique is at least one order of magnitude larger
than that achieved by the wavelet transform. Meanwhile, our multilevel technique also outperforms single-level tensor approximation in all scenarios. Since
we use logarithmic scales for compression ratios, a small difference actually represents a significant improvement. In fact, on the four datasets in (a)-(d),
the compression ratios achieved by our technique are respectively 41.0%, 52.9%, 93.9% and 121.8% higher than those achieved by the single-level tensor
approximation.

B. Data-Driven Rendering

Data-driven approaches have been a popular choice in
rendering recently, including image-based rendering [31], [32],
bidirectional texture functions (BTFs) [33], [34] and precom-
puted radiance transfer [35], [18]. These approaches typically
involve large amount of acquired or precomputed data and
rely on compact representation of visual data or their transfer
operators to achieve efficient rendering of final images. Our
hierarchical tensor approximation has the potential to improve
the efficiency in data representation for all these approaches.
We choose to measure the performance of our technique on
BTFs because there has been extensive research on represent-

ing BTFs using tensor approximation [12], [13], [14], and
these previous results can serve as a base for comparison.

Since it has been demonstrated in [14] that their single-level
tensor approximation can outperform PCA and TensorTexture
[13], we only compare our hierarchical tensor approximation
against the wavelet bases used in JPEG 2000[30], a wavelet
packet algorithm [26], and the single-level tensor approx-
imation scheme from [14] on the BTF datasets presented
in [36]. In our experiments, the parameter settings we use
for compressing BTFs are the same as those we use for
compressing the Visible Human dataset and the 4D time-
varying scientific dataset. According to the results shown
in Fig. 8(c)-(d), our hierarchical approximation achieves the
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(a) Original (b) Wavelet (c) Single-Level (d) Multi-Level
98.2% Compression 98.2% Compression 98.2% Compression

PSNR 16.77 PSNR 24.05 PSNR 25.21

(e) Wavelet Packet (f) Single-Level (g) Multi-Level
98.2% Compression 99.975% Compression 99.975% Compression

PSNR 20.54 PSNR 20.11 PSNR 21.01

Fig. 9. A comparison of reconstructed BTF images from a bi-orthogonal wavelet transform, a corresponding adaptive wavelet packet transform, the single-
level tensor approximation from [14] and our hierarchical tensor-based representation. The original SPONGE BTF has 45 views and 60 illumination directions,
and the image resolution is 128x128. (a) An original BTF image. (b) A reconstructed image from the wavelet transform. (c)&(f) Reconstructed images from
the single-level tensor approximation. (d)&(g) Reconstructed images from our multilevel tensor approximation. (e) A reconstructed image from the wavelet
packet transform. The compression ratio for (b)-(e) is 55 while the compression ratio used for (f)-(g) is 3922. Overall, our results exhibit the best visual
quality under the same compression ratio.

Fig. 10. Synthesis results for dynamic textures. Left: sample frames from the input sequences. Right: sample frames from the synthesized sequences.

highest compression ratio for almost all PSNR values we have
tested. It maintains a significant improvement over single-level
tensor approximation. Wavelet transform has the worst overall
performance. Given the reconstructed images shown in Fig.
9, we can also conclude that our technique can effectively
preserve the fine details of the BTF and achieve the best visual
quality among the four.

In all experiments, the compression ratios for the wavelet
transform are optimistically estimated according to the number
of nonzero coefficients after quantization without considering

the cost in coding their positions. We compute the compression
ratios for the single-level tensor approximation according to
the size of its basis matrices and core tensor. For our multilevel
tensor approximation, we estimate the compression ratios
according to the amount of storage required by all remaining
tensors and basis matrices in the hierarchy after pruning.

C. Texture Synthesis

Template matching is the most frequent and costly step in
most contemporary texture synthesis algorithms, especially in
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Fig. 11. Synthesis results for 2D textures. Small: sample textures. Large: synthesized textures. The resolution of the synthesized textures is 256x256.

neighborhood-based texture synthesis [37], [38], [39], [40],
[41]. It can be formulated either as a convolution or a nearest
neighbor search, which lead to different acceleration schemes
such as FFT, kd-trees or tree-structured vector quantiza-
tion. Although such schemes produce acceptable performance
for 2D texture synthesis, they are inadequate for higher-
dimensional textures, such as 3D dynamic textures where
every patch is a 3D block with a much larger number of pixels
than in the 2D case. Tensor approximation proves to be useful
here because each 3D texture block can be considered as a
small third-order tensor itself.

Suppose two 3D texture blocks are represented as two
tensors, P1 and P2. Given three basis matrices with or-
thogonal columns and reduced ranks (r1, r2, and r3), the
rank-(r1, r2, r3) approximation of Pi (i = 1, 2) is given as
P̃i = Qi ×1 U(1) ×2 U(2) ×3 U(3), where Qi is the core
tensor of P̃i. It can be easily shown that

‖P̃1 − P̃2‖2 = ‖Q1 −Q2‖2. (8)

Since ‖P1 −P2‖2 ≈ ‖P̃1 −P̃2‖2, the summed squared differ-
ences (SSD) between two tensors can be well approximated
by the SSD between their core tensors which may have a
much smaller size and require much less computation. We use
such tensor approximation to accelerate template matching in
texture synthesis.

In practice, we generalize the multilevel 2D synthesis al-
gorithm in [42] to 3D dynamic texture synthesis, and use
tensor approximation together with kd-trees to perform nearest
block search. The original synthesis algorithm refines the
synthesis result using multiple levels of block size and texture
resolution. Therefore, in a precomputing stage of our revised
algorithm, all sample texture blocks for the same level are first
collectively approximated using tensors with reduced ranks as
in Section III. The resulting smaller core tensors are inserted
into a kd-tree. We precompute such a kd-tree for each synthesis
level. During the actual synthesis stage, given a query texture
block, we first compute the core tensor of that query block
and then search the corresponding kd-tree for the nearest core
tensors, which further point to their corresponding original
texture blocks from the sample texture.

We have tested our tensor-based block search technique on
both 2D textures (Fig. 11) and dynamic textures (Fig. 10 and

the accompanying video). A typical size of the original 3D
texture blocks is 32x32x32 and we use 5x5x5 core tensors to
approximate them. Although the number of vectors in a kd-tree
is still the same, the dimensionality of each vector has been
reduced from 32768 to 125. In our experiments, this reduction
in dimensionality makes each nearest neighbor search in the
kd-tree more than 200 times faster. In comparison to template
matching using 3D FFT, our accelerated kd-tree search is also
at least 5 times faster, which makes block-based dynamic
texture synthesis more computationally tractable. Surprisingly,
our technique can achieve the same speedup over FFT even
in 2D texture synthesis. Note that tensor approximation gives
rise to a small amount of error in the texture data. Therefore,
the compression ratio of the tensor approximation should be
chosen carefully.

VI. DISCUSSIONS AND ANALYSIS

Resembling a multiresolution analysis such as wavelet trans-
form, our approximation represents significant and typically
low frequency components at higher levels of the hierarchy
and less important (high frequency) components at lower lev-
els. Because high frequency components have smaller spatial
support, they can be approximated using shorter basis vectors.
That is one of the reasons we keep subdividing the residual
tensors from level to level and use increasingly shorter basis
matrices to approximate them. Shorter basis matrices impose
less overhead on storage.

More importantly, traditional multiresolution analysis sim-
ply applies scaled versions of a prescribed basis to signals at
various different resolutions while our hierarchical approxima-
tion extracts basis matrices specifically tailored for the data
being approximated. Therefore, our method is much better
at removing redundancies in a specific dataset. In practice,
we have found that the gained efficiency of our method in
representing three or higher dimensional data surpasses the
storage overhead for the adaptively extracted basis matrices.
Note that we count these basis matrices when computing
compression ratios.

As mentioned in Section II, neither rank-(r1, r2, ..., rN ) ap-
proximation nor rank-r approximation performs a hierarchical
transformation of the original data. Instead of reducing the



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.14, NO.1, 2008, PP.186-199 11

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

percentage of singular values preserved

pe
rc

en
ta

ge
 o

f e
ne

rg
y 

pr
es

er
ve

d
5Jets

2nd level
3rd level
4th level

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

percentage of singular values preserved

pe
rc

en
ta

ge
 o

f e
ne

rg
y 

pr
es

er
ve

d

Sponge

2nd level
3rd level
4th level

(a) (b)

Fig. 12. Correlation among residual tensors. (a) The 4D time-varying dataset. (b) The SPONGE BTF. The horizontal axis in these diagrams indicates the
percentage of singular values while the vertical axis indicates the percentage of total energy. Stronger correlation needs fewer number of singular values to
capture the same percentage of energy. Three curves for three different levels are shown for each dataset.

ranks of the basis matrices as in single-level tensor approxi-
mations, our hierarchical approach relies on eliminating small
insignificant core tensors at lower levels of the hierarchy
to achieve compact representations. Because our technique
integrates the incomplete approximations at multiple levels
to produce the final approximation, for the same level of
accuracy, the minimum rank of the core tensor at the first
level can be much smaller than the minimum rank of an
equivalent single-level tensor approximation. Although block-
wise partitioning of the original tensor was performed in [14],
it was only for the purpose of out-of-core computing. Our
hierarchical tensor subdivision, on the other hand, is designed
to exploit the inherent multi-scale structures of the data, and is
performed on the residual tensors passed from higher levels.

Our hierarchical approximation shares common intuitions
with H-matrices proposed in [19]. Nonetheless, there exist
important distinctions between the two. First, in a H-matrix,
only the diagonal subblocks and those subblocks adjacent to
them are recursively subdivided. This restriction has recently
been lifted for compressing reflectance fields [20] which
nonetheless only adopts a rank-1 tensor to approximate every
subblock. Our method, on the other hand, is designed for
compressing generic multidimensional visual data. It subdi-
vides any subblocks when necessary and approximates every
subblock using a more powerful rank-(r1, r2, ..., rN ) tensor.
Second, H-matrices only approximate every subblock at the
bottom level of the subdivision tree using a single tensor
approximation while our method does multilevel approxima-
tion with a finer level approximating the residual errors from
the coarser level. As discussed in Section I, visual data are
superposition of signals at multiple frequencies or scales. It is
more effective to decompose the original data into components
with different scales and then compress these components
separately. Further discussion and comparisons regarding this
can be found by the end of Section VI-A. Third, our method
performs ensemble approximation at each level to further

improve the compression ratio while H-matrices generate a
distinct set of basis vectors for each subblock. Ensemble
approximation makes use of a common set of basis matrices
for multiple subblocks to much reduce the basis overhead.

One limitation of our method is that it is computationally
more expensive than both wavelets and single-level tensor
approximation even though we have taken a relatively fast
greedy approach. On average, our hierarchical method is three
times as slow as single-level tensor approximation and fifteen
times as slow as wavelets.

A. Covariance Analysis

At each level of the hierarchical transformation, we perform
tensor ensemble approximation, which can achieve a more
compact representation than individual tensor approximation
when the collection of tensors at each level exhibit a certain
degree of correlation. In the following, we give both mathe-
matical justification and experimental evidence to demonstrate
such correlation does exist.

Suppose the list of tensors at level l is Al
1,Al

2, · · · ,Al
ml

,
where ml is the number of tensors and Al

i ∈ �nl
1×nl

2×...×nl
N .

We unfold each tensor, Al
i, into a vector, Xi. Denote the mean

of all these vectors as X̄. We further arrange mean-subtracted
vectors, X̂i = Xi−X̄ as columns of a matrix, S, which has a
singular value decomposition (SVD), S = UΣVT , where U
and V are basis matrices with orthonormal columns and Σ is
a diagonal matrix. As we know, the covariance matrix of S is
SST, which is equivalent to UΣ2UT .

With modest assumptions, there exists correlation among
different local tensors at the same level of the hierarchy. First,
a common assumption in image compression is correlation
among spatially close pixels [1]. Second, we assume {Xi}ml

i=1

are different realizations (observations) of the same underlying
statistical process, X, which means different regions from the
same dataset have shared frequency-domain characteristics.
The second assumption is supported by the evidences and
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experimental results from [1], [43]. This assumption gives rise
to correlation among the basis vectors used for representing
each local region rather than direct correlation among the data
in different regions. Such correlation among the basis vectors
exists when a small subset of the singular values of S are
more important than the rest and the column vectors of S
can be reasonably approximated by linear combinations of a
corresponding subset of basis vectors in U. In our hierarchical
approximation, since higher levels already approximate the
large-scale low-frequency components, the residual tensors at
a certain level largely represent components at a scale equal
to or smaller than the scale of that level. Nevertheless, the
second assumption implies correlation at all scales.

We have performed experiments to verify the existence
of strong correlation among subdivided residual tensors at
each level. In all our experiments, the singular values from
the aforementioned SVD are highly nonuniform and typically
30% of the singular values can capture more than 90% of
the total residual energy. This means most of the singular
values are close to zero, and the residuals at each level can
be well approximated using a subset of principal components
whose size is less than one third of the number of residual
tensors. Fig. 12 show correlation results for two of the datasets.
Correlation results for three different levels are shown for these
datasets. As we can see, there exists strong correlation at all
three levels, and the degree of correlation varies slightly from
level to level. In the 4D time-varying dataset, the third level
clearly exhibits the strongest correlation while in the SPONGE

dataset, the degree of correlation is comparable at all levels.

We have further compared the degree of correlation with and
without the approximations at higher levels. It turned out that
the correlation among the residual tensors is slightly weaker
than the correlation without higher-level approximations. Nev-
ertheless, it should be clarified that these two correlations
should not be directly compared, nor should they be used for
predicting the performance of a compression algorithm. The
degree of correlation of the residual tensors at a specific level
is only indicative of the degree of compression achievable
on that level but not the overall compression of the entire
dataset. A more accurate prediction of the overall compression
performance should be based on the total number of tensors
surviving pruning because we need to store a core tensor for
each of the remaining tensors. Our multilevel approximation
can achieve better performance because the residual tensors
at the lower levels tend to have smaller magnitudes than
those tensors without higher-level approximation and, thus,
are more likely to be pruned. Pruning lower-level tensors is
advantageous because the number of tensors at each level is
exponentially increasing from top to bottom. This prediction
has been confirmed by a large number of comparisons we
have performed between these two schemes. Take the SPONGE

dataset as an example. If we set PSNR=24.97, the compression
ratio achieved by our multilevel approximation is 44.35 while
the compression ratio achieved with multilevel subdivision but
without higher-level approximation is only 31.70.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we developed a compact data representation
technique based on a hierarchical tensor-based transformation.
Experimental results indicate that our technique can achieve
higher compression ratios and quality than previous methods,
including wavelet transforms, wavelet packet transforms and
single-level tensor approximation on three or higher dimen-
sional visual data. We have successfully applied our technique
to multiple tasks involving multi-dimensional visual data,
including medical and scientific data visualization, data-driven
rendering and texture synthesis.

There exist a few directions for future work. First, on
2D images, our current method does not perform as well
as wavelets and wavelet packets because our adaptive bases
require a more significant storage overhead in 2D than in
higher dimensions. We would like to investigate adaptive
methods with less basis overhead for the 2D domain. Second,
it is possible to extend tensor ensemble approximation to
tensors across multiple scales and, thus, achieve even higher
compression ratios. However, such a method would be more
computationally expensive since basis matrices across multiple
scales would need to be optimized simultaneously.
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