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Abstract

This paper introduces a kind of new wavelet radiosity method called multiresolution B-spline radiosity, which
uses B-splines of different scales to represent radiosity distribution functions. A set of techniques and algo-
rithms, such as function extrapolation, adaptive quadrature, scale adjustment and octree, are proposed to im-
plement it. This method sets up hierarchical structures on surfaces, keeps radiosity distribution continuous at
element boundaries, does not need postprocessing, and does not prevent the use of any surface whose parameter
domain is rectilinear.
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1 Introduction

In computer graphics, radiosity computation is a fundamental method to solve the global illumination problem
in environments consisting entirely of Lambertian reflectors and emitters. The result is a radiosity distribution
function over the domain of the surfaces in the scene. Classical radiosity[5](CR),
derived from the radiative heat transfer, approximates the radiosity distribution as piecewise constant. An
energy balance argument gives rise to a linear system. In the rendering phase, these radiosity constants are
interpolated to give a smooth appearance of the radiosity function. Heckbert has demonstrated that the linear
system in radiosity can be derived by projecting the radiosity integral into a finite dimensional function space.
The CR algorithm results from using the space of piecewise constant functions. Zhu and Peng[11] considered
radiosity functions that are piecewise linear. Many researchers have explored the use of higher order bases in
mesh construction and discontinuity meshing[10] as well as finite element methods[13, 14] which has been
adapted to radiosity computation. However, discontinuity meshing needs to be generalized to be applicable in
environments with curved surfaces. In such cases, neither shadow masks[14] nor adaptive meshing techniques
seem accurate and efficient around shadow boundaries.

On the other side, Hanrahan et al.[9] presented a hierarchical radiosity method(HR) to lower the computa-
tional complexity of solving the linear system which arises in CR. Theoretically, it can reduce the O(� �) form
factors to O(�). The mathematical tools of wavelet analysis provide a general framework offering a unified view
of both higher order element approaches, and the hierarchical radiosity methods. Gortler et al.[15] exploited
wavelet techniques developed for the solution of integral equations to solve the radiosity equation. They used
two class of wavelet-like bases to sparsely represent the kernel of the radiosity integral. The supporting sets
of such basis functions on neighboring intervals do not overlap. They do not enforce any kind of continuity at
element boundaries, possibly leading to blocky artifacts. Furthermore, the cost of projecting kernel increases
significantly as the order of the basis increases.

A desirable radiosity method should be accurate, efficient, be able to produce visually acceptable images
and convenient to control. These are our goals. This paper proceeds with a review of projection methods fol-
lowed by a discussion of multiscale B-splines. Then we propose a progressive wavelet radiosity method called
multiresolution B-spline radiosity. Finally, we discuss our implementation and report experimental results.

�This author is currently a graduate student at the Dept. of Computer Science, UCSB, Santa Barbara, CA 93106, USA. E-mail:
yyz@cs.ucsb.edu
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2 The Radiosity Integral Equation

In order to apply the appropriate mathematical tools to the solution of radiosity problems, it is convenient
to express the radiosity equation and surface geometry in parametric form. Parametrically, the key radiosity
variables(radiosity, emittance, reflectivity, etc.) are represented as functions of two variables, (s,t) or (u,v),
over each surface i or j. By abstracting all the complexity of surface interaction into a single kernel function
������ �� �� ��, the radiosity equation can be written as an integral equation

����� �� � 	���� �� �
�
�
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������ �� �� ������� ��
� 
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where

������ �� �� �� � ����� �������� �� �� ��
 ������� �� �� ������� ��� (2)

The form factors ��� and area functions �� can be further expanded in terms of the functions describing
surface geometry ����� �� and normals ����� ��:
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where ���� � ������ ��� ������ ���

3 Mathematical Background

Basis Set Projection

Let ������� be a basis of a certain function space 
 , and ��� ����� be another basis of 
 . �������� is
called the dual basis of ������� in space 
 if it satisfies

� ������ ������ ��

�
�����������
� � Æ�� � ��� � (5)

Orthonormal bases are self-dual bases. The approximation of a function ���� in this function space can be
expressed as a linear combination of the basis functions:

���� � ����� �
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where ���� are scalar coefficients obtained by performing inner products.

Multiresolution B-spline

Mallat[2] established multiresolution analysis based on wavelet bases. Let � be a wavelet function and �� ����
be a Riesz basis of �����. For each � 	  , let !� be the closure of the subspace spanned by ����� � " 	  �,
that is

!� �� #�$������ � ���� � " 	  � (7)

Then ����� can be decomposed to be the direct sum of subspaces ! � � � 	  
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Let us consider the following closed subspaces of �����
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These subspaces have the following properties: 1)
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Let a function & 	 �����, and


� � #�$������ � &��� � " 	  �� � 	  � (10)

where &��� � ����&���� � "�. Then & produces a multiresolution analysis(MRA), if the nested series of
subspaces �
�� satisfy 1), 2), 3), 5), and �&��� � " 	  � is a Riesz basis of 
�. & is called a scaling function if
& produces a MRA.

Let %	 	 
	 , %	 has the unique decomposition,

%	 � %	�� � '	�� (11)

where %	�� 	 
	��� '	�� 	!	��� Repeating this process, we have

%	 � '	�� � '	�� � 
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where %� 	 
� � '� 	!� . More and more details of %	 are peeled off when this process goes on.
For each positive integer (, let � �� be the function space of mth order B-splines with node sequence

��� � � 	  , that is,

��� �� �% 
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������	 	 ����� �
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and 
 �
� denotes the closure of � ��

�
����� in �����. It has been demonstrated[1] that mth order B-spline

basis �*��� � "� � " 	  � is a Riesz basis of 
 �
� for ( � �. Checking �
 �

� � with 1), 2), 3), 5), we find it
is a MRA and its scaling function is *����. Make orthogonal decomposition 
 �

��� � 
 �
�

�
!�

� � � 	  . It
has been showed that there exists compactly supported semiorthonormal wavelet �� which produces subspaces
�!��. The dual scaling function(�*����) of*���� corresponding to�� produces the same MRA �
 �

� �. So
��*���� "� � " 	  � is the dual basis of �*���� "� � " 	  � in 
 �

� . Because both �*���� "� � " 	  �
and ��*��� � "� � " 	  � are Riesz bases of 
 �

� , we can reconstruct a function % 	 
 �
� exactly by its

projection coefficients in 
 �
� , that is

% � �% �
�
�
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�
�

� %�*������ "� � �*������ "� (13)

The computation of �*���� is outlined in appendix. The graphs of �*
��� and �*���� are sketched in
Figure 1.

(a) (b)

Figure 1. (a)the graph of �*
���, (b)the graph of�*����.

The two-scale relation of mth order B-spline basis is

*���� �
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+���*����� "� (14)
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Consider the B-spline function

%����� �
�
�

0
����
� *������� �� (15)

Its expression in 
 �
���� can be written as
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�

0
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At � � "1����" 	  � �� � ���, we have

%���"1�
��� �

�
�

2�����0
����
� (18)

where 2��� �� *��"�� " 	  , and �0����� � can be obtained by applying (17) recursively.
In two dimensional function space ������,we use tensor product B-spline basis and its dual ��*��� �

"��*��3 � �� � "� � 	  �. They can also produce a MRA in ������. A relation similar to (13) also holds in
this case. It plays an important role in our radiosity algorithm.

4 Sampling and Reconstruction

From section 3, we know there are two steps to compute the projection( �%) of function % in function space 
 .
First,

%� �� %���� �� � 	  (19)

Second,

�% �
�
�

%��� (20)

In radiosity computation, the function to be projected is a radiosity distribution ���� �� on a certain surface.
The right side of (19) is an integral. But the radiosity distribution���� �� is an unknown function at first. We can
compute values of���� �� at some sample points, and perform the above inner product by some quadrature rule.
Again, we can not directly obtain the balanced sample values of ���� ��. We can only compute the increments
in an iteration. Progressive refinement is adopted here. In each iteration, one shooting surface is selected and
all others are receiving surfaces. On each receiving surface, the sample values of received energy times albedo
are increments of radiosity at sample points. The projection coefficients in (19) are evaluated by quadrature and
the increment of radiosity function is reconstructed by equation (20). Let � � be the shooting surface, ������ ��
be the shot energy distribution, �� be the receiving surface, (��� ��) be the parameters of a sample point. The
increment at this point is

������� ��� �

� �
������� ��� �� �� ������ ��
� 
� (21)

which is a double integral and can be evaluated by quadrature again.
The whole process of our algorithm is outlined as follows, where ������ �� is the total accumulated radios-

ity, � ������ �� is the accumulated unshot radiosity and 
 ������ �� is the reconstructed distribution of radiosity
increment in an iteration.
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for each emitting surface ��

compute the projection of its emittance distribution ������ ��;
������ �� � ������ ��;
� ������ �� � ������ ��;

while(!converged)
pick out the surface ��� which has the largest value of

� �
��

� ���

for each receiving surface ��

for each sample point ������ ��� on ��

compute ������� ���;
compute projection coefficients by quadrature and obtain 	������ �� from them;
������ �� � ������ �� � 	 ������ ��;
� ������ �� � � ������ �� � 	 ������ ��;

� ���� � �;

In fact, only projection coefficients are stored, the reconstruction formula (20) is only applied in the rendering
phase. The addition of two distribution functions is actually carried out by performing addition of the coef-
ficients corresponding to the same basis function. So it is convenient to perform superposition by basis set
projection. In our algorithm, the shooting face can be a whole large surface, not a small patch in classical
progressive refinement. So the influence of one shooting to the environment might be quite obvious.

5 Radiosity with Multiresolution B-splines

As we know, both tensor product B-spline basis and its dual can produce a MRA in � �����. They can be
substituted into (20) and (19). The overlapping support of these basis functions makes it infeasible to project the
kernel. Therefore, we use progressive refinement and project the radiosity distribution function on each surface.
Because the variation of radosity is different on different surfaces. It is more efficient to perform projection on
different scale corresponding to different receiving surfaces or different areas on the same surface.

Energy Transfer between a Pair of Surfaces

We define the symmetric center of a B-spline basis function or a dual basis function to be its fulcrum. A two
dimensional fulcrum can be defined likewise.

In the following, we will discuss one dimensional reconstruction first. Let % be a segment of polynomial of
order m-1 on interval [t,t+1]. It can be represented accurately on this interval by a linear combination of m basis
functions in terms of mth order B-spline basis. The fulcrums of these basis functions are �� �

� � 
� �� �
� �

�� ���� �� �
� . If we want to reconstruct this segment of polynomial by sampling, we must perform projection on

m dual basis functions which have the same sequence of fulcrums. But the integral intervals of these projection
are greater than [t,t+1]. So some sample values of % outside [t,t+1] should be known.

As shown in Figure 1 and the appendix, the dual basis of B-spline has exponential decay. The integral
intervals can be made finite by truncation within a certain error tolerance. If the function % has no definition
outside [t,t+1], it should be extended to cover all necessary integral intervals as well as satisfy a certain degree
of continuity.

In radiosity computation, let the shooting surface be �
, the receiving surface be ��, its parametric domain
be a square R[a,b;c,d]. The procedure of computing the increment of radiosity distribution, 
 ������ ��, on ��

could be divided into the following stages.

Adaptive Subdivision of the Parametric Domain This is a kind of predictive top down subdivision. After each
subdivision, the smoothness of the increment radiosity distribution —-shadow is not taken into account—-on
each subdomain is predicted. If it can be approximated by a double (m-1)th order tensor product polynomial,
the subdivision is considered nearly sufficient in terms of (15) and will be stopped after once more. Otherwise,
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the subdivision continues. In each subdivision, a subdomain is divided into four smaller subdomains of the
same size. This is required by discrete wavelet analysis.

Adjustment of the Scale of Adjacent Subdomains and Computation of Sample Values If the scale of one sub-
domain is not smaller than or equal to twice the scale of one of its neighboring subdomains, it is recursively
subdivided until the above condition is satisfied. This is to reduce the error incurred by reconstruction. After
scale adjustment, the increment of radiosity at each sample point on each subdomain is computed.

Computation of Radiosity Increment and Its Partial Derivatives at Boundaries of the Parametric Domain Let
������� #� and ������� # � ��� be computed by (21). At boundary point P(� �,c), the partial derivative of
������� #� with respect to parameter t could be evaluated by the following divided-difference:

�������� #� �
������� #������������ #�

��
(22)

where 0 � �� � 4.
At boundary ��� #��0 � � � 4�, the radiosity increment and its partial derivative at each sample point could

be evaluated as follows:

compute ����
� ��������
� ��������� ���������� ��;
call function edgefill(a,b),

where the recursive function edgefill(��� ��) could be written as
Begin

�� �
�����

�
;

compute ������� ����������� ��;
if �������� ���������� ��� and ��������� ����������� ��� are small enough

compute the radiosity increment and its partial derivative with respect to t
at boundary segment ��� ���� � ���� ��	� by linear interpolation;

else edgefill(��� ��);
if �������� ���������� ��� and ��������� ����������� ��� are small enough

compute the radiosity increment and its partial derivative with respect to t
at boundary segment ��� ���� � ���� ��	� by linear interpolation;

else edgefill(��� ��);
End.

The radiosity increment and its partial derivatives at boundaries ��� 
�� �0� ��� �4� ���0 � � � 4� # � � � 
� could
be computed likewise.

Adaptive Subdivision and Sampling on Expanded Domain The scope of the expanded domain is determined
according to scales of subdomains at the lowest level, which are produced in the first and second stages. The
four boundaries of domain R[a,b;c,d] partition the expanded region into eight subregions. They are adaptively
subdiveded as we have done in the first stage. The scales of subdomains at boundaries of R[a,b;c,d] and their
neighboring expanded subdomains should also be adjusted. The value of radiosity on the expanded domain is
determined by extrapolating the radiosity distribution on R[a,b;c,d].

Selection of Dual Basis Functions In order to perform projection, a set of dual basis functions and their scales
should be determined. On R[a,b;c,d], when m is an odd integer, we determine the centre of each subdomain at
the lowest level is the fulcrum of a selected dual basis function, and the scale of a selected basis function is the
scale of the corresponding subdomain; when m is even, all corners of lowest-level subdomains are the fulcrums
of selected dual basis functions(solid circles in Figure 2), and there may be two selected basis functions whose
fulcrums coincide at one location, which happens when the location is the corner of two subdomains of different
scale. On the expanded domain, fulcrums, that are necessary in reconstruction, should be selected. When m=3
or 4, they are the centres or corners of those expanded subdomains adjoining R[a,b;c,d]. This is shown in Figure
2, where square ABCD represents R[a,b;c,d]. As m increases, the number of required fulcrums also increases
and they spread outward from the neighborhood of R[a,b;c,d].
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Figure 2. Selection of fulcrums Figure 3. Shape of parameter region after truncation

Projection Similar to one dimensional situation, the dual of tensor product B-spline basis has no compact
support, but has exponential decay. So its support needs truncation before projection. According to the result of
calculation, when a small 5(5 � 
) is given, the parameter region, where the absolute value of a basis function
is greater than 5, is approximately a rhombus (Figure 3). That is, the value of the basis function has the same
order of magnitude on the four edges of the rhombus. This result can also be obtained from the property of
exponential decay.

When projection is being performed, a rhombus region is determined according to a given error tolerance,
the scale and location of the basis function. Only when a parametric subdomain completely or partially overlaps
the rhombus, should quadrature be performed on this subdomain. Finally, all these quadratures on different
subdomains are accumulated to obtain the result of projection.

Adaptive Subdivision in Shadow Computation In this stage,we determine the fraction of unoccluded energy
from �
 to all points on �� corresponding to those selected fulcrums. If the fraction corresponding to two
adjacent fulcrums differs significantly, the corresponding subdomains are subdivided. This subdivision contin-
ues if the above condition is satisfied. Here, the scale of adjacent subdomains is also adjusted. And shadowed
radiosity distribution will be computed after this subdivision.

Scale Unification and Superposition The parametric subdomains of the final partition generated from previous
stages have different scale. Therefore, the dual basis functions corresponding to these subdomains and the pro-
jection coefficients stored at fulcrums also have different scales. In order to facilitate storage and superposition,
we unify their scales to be ��� by equation (17). The resulting radiosity increment 
 ������ �� on surface ��

belongs to the two dimensional counterpart of 
 �
� . Here, ��� is the smallest scale of those selected dual basis

functions.
When unifying their scale, we investigate all fulcrums of dual basis functions of scale ��� in and around

the domain R[a,b;c,d]. If there is no projection coefficient of scale ��� at some fulcrum, it is obtained by
applying (17) to those coefficients stored around the fulcrum whose scale is �������. If some of these required
coefficients are still unknown, (17) is applied recursively to obtain them.

When performing superposition, we again apply (17) to unify the scales of 
 ������ �� and � ������ �� to be
the smaller one.

Iteration

In the algorithm introduced in section 4, if the radiance on light source � � is a constant, the projection coeffi-
cients of 	���� �� must be the same constant. Otherwise, it should be projected to obtain �	���� ��.

In each iteration, the shooting surface is the one which has the largest value of the integral
� �

��
� ��� .

Although it is difficult to compute this integral accurately, it could be evaluated approximately.
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6 Implementation

Adaptive Quadrature

If we want to integrate %��� on interval [a,b] and the absolute error should be less than 5, the rule of adaptive
quadrature is as follows: choose a specific quadrature rule Q and the number of sample points �; apply Q on
[a,b] with � and ��
 sample points and obtain two results �� and ��, if 
�����
 � 5, stop; otherwise, divide
[a,b] into �0� ���� � and � ���� � 4�; repeat the above process on these two intervals recursively with error tolerance
�
� . In this way, the final accumulated error will not exceed 5.

In this paper, two dimensional adaptive Gauss-Legendre quadrature is used because Gauss-Legendre quadra-
ture rule has high algebraic accuracy. So the previously mentioned sample points on surfaces correspond to
those sample points in Gauss-Legendre quadrature. Two dimensional Gauss-Legendre rule can be written as
follows

��
���

��
���

2�2�%���� ����

where 2�� 2�� 
 
 
� 2� and ��� ��� 
 
 
� �� are the weights and sample points in one dimensional case.
Adaptive quadrature is used to evaluate (21) at each sample point on the receiving surface � �. It needs

adaptive subdivision of the shooting surface �
. In order to accelerate convergence, the radiosity distribution
� ��
��� �� on �
 is replaced with a lower resolution version by applying the decomposition relation in wavelet
analysis to remove higher resolution details. In the quadrature, one reparameterization factor should be included.
It consists of two parts. One is the area����� �� in the kernel. The other is the reparameterization factor between
parametric domains of the shooting surface and Gauss-Legendre quadrature.

Oracle

It is required that at the end of subdivision, the increment radiosity distribution on each subdomain of the receiv-
ing surface can be approximated by a double (m-1)th order tensor product polynomial. During the subdivision,
this is predicted by twice Gauss-Legendre quadrature with

�
�
�

�
�
�
�
�

�
and(�( sample points on current sub-

domain respectively. If the difference between them is below a threshold, the above requirement is considered
to be satisfied and subdivision is stopped on current subdomain.
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Scale Adjustment

As shown in Figure 4, there are three other subdomains adjoining each corner of a subdomain(D). So there
are totally twelve such neighboring subdomains(� �� � � 
� 
� 
 
 
� 

). We implemented a recursive procedure
NeighAdjust() to carry out scale adjustment. This procedure makes the requirement in section 5 satisfied by
checking these twelve neighboring subdomains only. The details of this procedure are left out in this paper.
When subdividing the expanded domain, we require the scale of boundary subdomains in R[a,b;c,d] be equal
to that of its neighboring expanded subdomains.

Figure 4. Scale adjustment Figure 5. Eight patches of the expanded domain

Extrapolation of Radiosity Distribution

There are two ways of extrapolation to obtain sample values of radiosity on the expanded domain. One is linear
extrapolation. The other is higher order extrapolation. In Figure 5, R[a,b;c,d] is denoted by the square ABCD.
There are eight patches(
� 
� 
 
 
� �) of the expanded domain around it. The linear extrapolation on patch 1 is
implemented as follows:

������� ��� � ������� #� � ��� � #��������� #�� 0 � �� � 4� �� � # (23)

The linear extrapolation on patch 3,5 or 7 is implemented likewise. The linear extrapolation on patch 2 is
implemented as follows:

������� #� � ����4� #� � ��� � 4������4� #�� �� � 4 (24)

������� ��� � ������� #� � ��� � #������4� #�� �� � # (25)

The linear extrapolation on patch 0,4 or 6 is implemented likewise. If �� ����� �� or ������� �� in the above
equations is too large, the error incurred by truncation may increase significantly. So when this does happen,
the value of ������� �� or ������� �� is reduced into a predetermined range.

The second order extrapolation has the following restrictions on patch 1:

������� #�� � ������� #��
�������� #�� � �������� #��
������� �#� 
��� � ������� �#� 
����
�������� �#� 
��� � �������� �#� 
����
������� �� � �������� �� � 
� � � #� ��

(26)

We can also impose the following restrictions on the third order extrapolation on patch 1:

������� #�� � ������� #��
�������� #�� � �������� #��
������� �� � �������� �� � 
� � � #� 
�

(27)
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Higher order extrapolation on patch 1,3,5 or 7 is a piecewise polynomial satisfying restrictions similar to (26)
or (27). And on patch 2,4,6 or 8, it is a tensor product polynomial. Higher order extrapolation should be more
efficient than linear extrapolation because its value and derivative equal zero beyond a certain neighborhood of
R[a,b;c,d].

Projection

Upon the domain R[a,b;c,d] and each patch of the expanded domain, there is a hierarchical structure constructed
during subdivision. When performing projection, we start from the roots of these structures and test whether
the rhombus overlaps the current subdomain. If they do overlap, we continue checking the four sons of the
current subdomain; otherwise, the current subdomain is given up. When the current subdomain is a leaf, 2D
( � ( point Gauss-Legendre quadrature is performed because the product of the dual basis function and
radiosity distribution on the current subdomain can be approximated by a tensor product polynomial of order
at most double 2m-2. The sample values of the dual basis function are approximated by precalculated discrete
values. The sample values of radiosity are those ( �( samples calculated in section 6.2. If the scale of the
current subdomain is larger than that of the dual basis function, we fit a double (m-1)th order polynomial to
those (�( samples, subdivide the current subdomain to the desired scale and resample the fitted polynomial
on each resulting leaf subdomain. In the quadrature, we should include the reparameterization factor between
parametric domains of the receiving surface and Gauss-Legendre quadrature, but not the area � ���� ��.

Shadow

Corresponding to each selected fulcrum on the domain of the receiving surface, there is a partition of the
shooting surface formed during the evaluation of sample values by (21) and by adaptive quadrature. In order
to evaluate the fraction of the unoccluded energy, test rays are cast from the fulcrum being considered to each
patch of the partition. Each patch is hit by a constant number of random rays regardless of its size. Let - � be the
energy shot by patch � toward the fulcrum, . � be the fraction of the unoccluded rays among those hitting patch
�. Then the fraction of total energy received by the receiving surface is approximated by�

.�-��
-�

(28)

The subdivision in shadow computation is based on this fraction. During subdivision, (17) is applied to those
projection coefficients computed in the previous section to obtain projection coefficients at a smaller scale. After
subdivision, each resulting coefficient is multiplied by its corresponding fraction to obtain projection coefficients
of the shadowed radiosity distribution.

Octree

An octree is built before radiosity computation to accelerate the test of ray-object intersection during shadow
computation. It is not a linear octree and similar to those introduced in [16], stored as a tree structure with its
nodes linked by pointers.

Each node in the octree represents a cube in the object space. If the surfaces of objects are composed of
polygons, we use the following algorithm to test node-polygon intersection when the octree is being built.

1)If the node intersects the bounding box of the polygon, go to step 2); otherwise, there is no intersection.
2)From the coordinate components of the vertices of the polygon, obtain three projections of the polygon on the planes


�� �� and �
, respectively; obtain the same three projections(three squares) of the node.
If one of the projections of the polygon is surrounded by its corresponding projection of the node, the node and the

polygon surely intersect;
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if one of the projections of the polygon is seperate from its corresponding projection of the node, the node and the
polygon are also seperate;

otherwise, go to step 3).
3)If the eight vertices of the node are located at the same side of the plane where the polygon resides, they are seperate;

otherwise, they intersect.
In this algorithm,a 3D test is converted to three 2D tests. Such 2D tests could be carried out by the method

used in Warnock’s hidden surface removal algorithm. We also propose a new method to perform the test of
ray-polygon intersection.

1)Through each edge of each polygon, build a bounding plane with its normal pointing outward(Figure 6).This step can
be carried out on the fly or before radiosity computation.

2)Locate the intersect between the ray and the plane where the polygon resides. Substitute the coordinates of the
intersect into the equation of each bounding plane. If all the results are negative, the intersect is inside the polygon.

This approach is more reliable, and maybe more efficient.
The ways of rendering and back face removal are trivial and are left out in this paper.

Figure 6. Bounding planes and their normals Figure 9. The configuration of Figure 8

7 Experimental Results

In order to obtain good visual effects, we should use third or even higher order B-spline basis,which has con-
tinuous first order derivative, to approximate radiosity distribution. [15] only gives some images using first and
second order wavelet bases. On the other hand, wavelet radiosity adopts hierarchical subdivision. Each basis
function only covers a local area. So low order basis is able to achieve good approximation. We feel 3rd or 4th
order basis is enough. In the following, we give some experimental results using 4th order B-spline basis and
linear extrapolation. 3rd order B-spline basis can produce similar results.

Error computations for a single energy transfer between parallel and perpendicular squares is used to indicate
the accuracy of the method of this paper. All comparisons are made against an analytic formula advocated in
[7]. The relative error metric used is

.-0 �

�

���������� ������������ ��


��������� ��

�
���

(29)

where the error is evaluated on a 256 by 256 grid of sample points on the receiving surface. Shooting and
receiving squares are the same size. Let the edgelength of these squares be 1.0, h be the distance between two
parallel squares, and d be the number of hierarchies on receiving squares. The following two tables exhibit the
computed errors.

Figure 7(a) and (b) give pictures of errors in the above two cases. In Figure 7(a), h=0.5 and d=4. In Figure
7(b), d=3. In each picture, the upper left corner gives the accurate result; the upper right gives the approximated
result; the lower right gives magnified relative errors at sample points; the lower left is the scale of error.

The lower blue receiving surface in Figure 8 is actually composed of three narrow coplanar rectangles, as
shown in Figure 9. The radiosity distribution on these rectangles are computed seperately. But we can not
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Table 1: Relative error between parallel squares
h d rea(percent)

1.0 2 0.880
1.0 3 0.126
0.5 2 2.020
0.5 3 0.402
0.1 3 1.700
0.1 4 0.534

Table 2: Relative error between perpendicular squares
d rea(percent)
2 4.670
3 0.676

see any discontinuity of radiosity at boundaries between adjacent rectangles. It indicates that the technique of
function extrapolation in this paper can keep a certain degee of continuity between coplanar surfaces.

Figure 10 is an image of a room with a table and a stool.
All these pictures are rendered without any postprocessing.

(a) (b)

Figure 7. Relative error of single energy transfer between (a)parallel and (b)perpendicular squares

8 Conclusion and Future Work

In this paper we have presented a new wavelet radiosity method called multiresolution B-spline radiosity which
is basically different from that introduced in [15]. We also proposed a set of new techniques and algorithms to
implement it.

Our method is essentially hierarchical. Theoretically, it has linear time complexity. It has overcome the
problem of blocky artifacts at element boundaries[15] and keeps radiosity distribution continuous at these loca-
tions. It uses progressive refinement. On different surfaces in an environment, different B-spline bases can be
used. Our algorithm does not require albedo to be constant over a surface. It also does not prevent the use of
any surface whose parameter domain is rectilinear. And superposition can be easily performed.
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However, better methods are needed to handle intersections between curved surfaces, accelerate conver-
gence of quadrature at these intersections and improve shadow computation. To environments made up of planar
objects, the preprocessing introduced in [17] can be used to accelerate testing ray-object intersection. Topolog-
ical ralations of surfaces could be set up[18] to improve efficiency of computation at surface boundaries. They
also may be helpful to keep radiosity distribution continuous at boundaries between coplanar surfaces.
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[18] M.Mäntylä, An Introduction to Solid Modeling, Computer Sci. Press, 1988.

A Numerical Method of
Computing Dual Basis of B-spline

Consider ”matrix operator”

�� �� �6������� (� "� � 	  �( � � (30)

where 6����� �� *��� � "�� *��� � �� �. �� is a positive definite matrix. Its inverse is denoted by

���
� �� �7������� (� "� � 	  �( � �

Because�
�

7�����6����� � Æ���� "� � 	  � (31)

�*��� � "� �
�
�

7�����*���� ��� (32)

�� has the property: 6����� � 6���������. So 7����� � 7��������� and only �7������ needs to be evaluated.
Given a positive integer * and an error tolerance 5, we use numerical method to invert a series of matrices and
evaluate the values �7����� � 
�
 � *�. Consider matrix

���	 � �6������� �* � "� � � *�

Its inverse is denoted by���
��	 � �7	��������* � "� � � * . A series of matrices, ���

��	 ��
��
��	���

���
��	��� 
 
 
, are computed until 
7	����

����� �7	��
�����
 � 5� 
�
 � * . The following table lists some approximate

values in �7
�����, which were obtained in this way.

Table 3:Some values in �7
���� � � 	  �
l 7
���� l 7
���� l 7
���� l 7
����
0 2.842171 5 -0.045804 10 0.000678 15 -0.000010
1 -1.321729 6 0.019722 11 -0.000292 16 0.000004
2 0.573326 7 -0.008492 12 0.000126 17 -0.000002
3 -0.247042 8 0.003656 13 -0.000054 18 0.000001
4 0.106378 9 -0.001574 14 0.000023
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