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Medial Meshes — A Compact and Accurate
Representation of Medial Axis Transform

Feng Sun, Yi-King Choi, Yizhou Yu, Member, IEEE, and Wenping Wang, Member, IEEE

Abstract—The medial axis transform has long been known as an intrinsic shape representation supporting a variety of shape analysis
and synthesis tasks. However, for a given shape, it is hard to obtain its faithful, concise and stable medial axis, which hinders the
application of the medial axis. In this paper, we introduce the medial mesh, a new discrete representation of the medial axis. A medial
mesh is a 2D simplicial complex coupled with a radius function that provides a piecewise linear approximation to the medial axis. We
further present an effective algorithm for computing a concise and stable medial mesh for a given shape. Our algorithm is quantitatively
driven by a shape approximation error metric, and progressively simplifies an initial medial mesh by iteratively contracting edges until
the approximation error reaches a predefined threshold. We further demonstrate the superior efficiency and accuracy of our method

over existing methods for medial axis simplification.

Index Terms—Medial representation, medial axis simplification, enveloping primitives

1 INTRODUCTION

THE medial axis of a solid object in RY, d =2 or 3, is the
set of points having at least two closest points on the
boundary of the object. In other words, it comprises the cen-
ters of the spheres (or circles in 2D) which are contained in
the object and touch the boundary of the object at two or
more points. These spheres are called the medial spheres (or
medial circles in 2D). The medial axis transform (MAT) con-
sists of a medial axis as the locus of the centers of medial
spheres and a radius function encoding the radii of the asso-
ciated medial spheres. As an intrinsic shape representation,
the MAT has proven highly useful for shape analysis and
synthesis, such as the approximation, description, recogni-
tion and retrieval of shapes as well as topology representa-
tion and data reduction of complex models.

Despite its potential utility, the application of the MAT
has been impeded by its instability and redundancy. First,
the MAT is notoriously sensitive to noisy, small perturba-
tions on the shape boundary, meaning that a slightly noisy
shape boundary commonly observed in practice leads to
numerous undesired branches of the medial axis. Second,
the MAT is in general a continuum comprising infinitely
many points without a simple analytical expression. As a
result, a medial axis is often approximated with a dense set
of sample points, resulting in inefficient representation of
the medial axis.

In this work we shall address the following issues:
(1) How to simplify a densely sampled MAT of a given
3D object to produce a compact representation with a
reduced data size? (2) How to ensure that the resulting
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approximation represents the given 3D object accurately? In
addition, we need to address the instability issue in medial
axis computation in the process.

Compared to using the union of many spheres, the MAT
can be approximated more accurately and compactly with a
2D non-manifold simplicial complex embedded in 4D, which
we call a medial mesh, consisting of points, line segments and
triangle faces. The vertices of a medial mesh are sampled
medial spheres of the MAT, and the linear interpolation of
these vertices over line segments or triangles of the medial
mesh defines the convex hulls of two or three medial spheres.

We shall present an effective algorithm for computing a
stable and compact medial mesh. Our algorithm is based on
medial axis simplification with respect to shape approxima-
tion error. Our method not only cleans up the topology of
the medial axis by pruning unstable branches, but also pro-
duces a compact representation by reducing the number of
sample points on the medial axis. Analogous to mesh sim-
plification, our algorithm progressively simplifies an initial
medial mesh of the input shape by iteratively contracting
selected edges until the approximation error reaches a
predefined threshold. Using sphere interpolation over the
medial axis, this algorithm is capable of drastically reducing
the number of vertices and edges in the medial mesh while
faithfully representing the original shape. See Fig. 1 for an
example. Experiments and comparisons indicate that our
simplified medial mesh can achieve the same shape approx-
imation error with orders-of-magnitude fewer primitives
than by existing medial axis pruning techniques.

2 RELATED WORK

Medial axis simplification The medial axis transform was
first proposed by Blum [1] as a tool for biological applica-
tions. It has been proven that the MAT is a complete shape
descriptor. The medial representation captures the shape
intrinsically by encoding the local thickness and symmetry,
and finds applications in shape matching, shape recognition
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# medial spheres (v) = 39,878
Input mesh and medial mesh

v=1,161
£=0.0028
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Fig. 1. A series of four progressively simplified medial meshes computed by our method with controlled approximation error. Each represents a
shape as the union of enveloping primitives of the corresponding simplified medial mesh comprising spheres (in orange), cones and triangles (in
blue). The approximation error (&), normalized by the diagonal length of the bounding box of the input object, is measured by the one-sided Hausdorff
distance from the original shape to the shape represented by the medial axis. The time taken to generate the four medial meshes in this series are

200, 226, 250 and 264 seconds, respectively.

and shape retrieval [2], [3], [4]. However, the medial axis is
inherently unstable, that is, a small perturbation to the
shape boundary may introduce a large change of its medial
axis. In graphics, shapes are often represented by their
boundaries as triangle meshes. Typically, the exact medial
axis of a shape represented by a boundary mesh has many
undesired branches [5], [6], and therefore is not suitable for
further applications. To overcome the instability of the
medial axis, a number of methods have been proposed for
removing the unstable branches, a process often referred to
as medial axis pruning. We review below several prevailing
approaches for medial axis simplification.

Angle-based filtering. Recall that a point on the medial axis
has at least two closest points on the object boundary. Angle-
based methods [7], [8], [9], [10] compute the angle at the
point subtended by its closest points. (For a medial point
with multiple closest points on the boundary, the largest
angle spanned by any two of these closest point is taken.)
Those vertices on the medial axis with their subtended
angles being smaller than a user-specified threshold are
removed and those remaining points are kept to define the
filtered medial axis. Although the angle criterion preserves
local features, angle-based filtering often yields a simplified
medial axis with a different topology from the input one [11].

The X medial axis. The A medial axis is another method for
removing unstable branches. The criterion of the A medial
axis [12], [13] is the circumradius of the closest boundary
points of a medial point. Any medial point is removed if its
circumradius thus defined is smaller than a given threshold
A. However, this circumradius criterion does not work well
on shapes with features at different scales. Small values of A
cannot remove noise near large-scale features while increas-
ing A would eliminate small-scale features, potentially lead-
ing to a different homotopy type, though it is proven that A
medial axis preserves the homotopy for small A [12]. As a
result, there may exist large discrepancies between the orig-
inal shape boundary and the boundary of the shape repre-
sented by the simplified medial axis.

Scale axis transformation. Miklos et al. [11] propose a
method based on the scale axis transformation (SAT). For a
given medial axis, all medial spheres are first scaled by a fac-
tor s larger than 1. A scaled medial sphere is removed if it is

contained in another scaled medial sphere. Then, the union
of all remaining medial spheres generates a new shape,
whose medial axis is further subject to homotopy-preserving
angle filtering. The final result is obtained by shrinking all
medial spheres of the simplified medial axis by the factor
1/s. This SAT method often generates results better than pre-
vious techniques. However, it does not preserve shape
homotopy as it may fill in narrow gaps or small holes by the
first dilating step and therefore change the homotopy of the
medial axis. A variant with accelerated computation and
improved homotopy preservation is proposed in [14].

Feature-based simplification. Another approach to medial
axis simplification is taken by Tam and Heidrich [15] to
achieve high-level feature-based shape simplification. The
medial axis is decomposed into manifold sheets as parts,
each of which corresponds to a feature of the input shape.
The parts are then pruned based on significance measures
using triangle count and the volume of each part. While the
method removes insignificant shape features and manifold
sheets with volumes smaller than a specified volume
threshold, it does not reduce the number of medial points
on the remaining manifold sheets; that is, the geometric
complexity of these parts remains high. In contrast, our sim-
plification method yields a medial axis that is both stable
and compact, since we reduce the number of sample points
on the medial axis as much as possible while maintaining
the required approximation accuracy.

All the above methods do not use the geometric approxi-
mation error to control the simplification process. As a con-
sequence, a simplified medial axis produced by these
methods often fails to represent the original shape faith-
fully. In contrast, our method maintains explicitly the geo-
metric approximation error of each vertex of the simplified
mesh and therefore ensures the approximation quality as
specified by the user.

Sphere interpolation Note that all previous pruning
methods approximate an input shape using a discrete set of
individual spheres. Such a discretization simplifies algo-
rithm design but gives rise to artifacts or large shape
approximation errors. Previous works propose to approxi-
mate the medial axis as a Voronoi sub-complex [9], [16]
by including both Voronoi edges and Voronoi faces.
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Fig. 2. Left: The enveloping primitive of a medial edge. Right: The
enveloping primitive of a medial face.

Meanwhile, linear interpolation of spheres has been used
[17], [18], [19], [20], [21] to obtain a swept sphere volume for
different applications. The medial mesh we proposed uses
linear interpolations of spheres to approximate an input
shape to achieve both visual and numerical fidelity.

M-rep A closely related work of MAT is M-rep by Pizer
et al. [22], which proposes the compact spline approxima-
tion to the medial axis of 3D objects for shape analysis in
medical imaging. However, M-rep considers only the spe-
cial case that the 3D object is simple enough to allow its
medial axis to be approximated by a single patch of tensor
product B-spline surface. Furthermore, it assumes that this
tensor product B-spline surface patches is manually speci-
fied and does not consider how to extract such a spline
representation automatically for a given object. The idea of
the medial mesh is inspired by the M-rep, but our goal is to
compute an accurate and compact medial axis approxima-
tion of any 3D object based on piecewise linear interpolation
of medial spheres.

Straight skeletons The straight skeleton [23] is also
related to the medial axis, since both provide an
(n — 1)-dimensional representation of an n-dimensional
shape. However, straight skeletons are defined only for poly-
gons, rather than general domains with curved boundaries.
The straight skeleton of a polygon is the trace of vertices
when all edges are moved inwards parallel to themselves
with the same speed; it comprises only line segments, thus
finding applications in domain decomposition [24], paper
origami [25] and shape morphing [26]. In contrast with
medial axes, straight skeletons have branches corresponding
to both convex bumps and concave dents of the polygons.
While branches due to convex bumps provide meaningful
and intuitive representation of object parts, branches
induced by dents are often hard to work with. The medial
axis is therefore considered more suitable for shape repre-
sentation in most applications. The medial mesh proposed in
this paper, though also a linear structure as the straight skele-
ton, is an approximation to the medial axis for compact and
accurate shape representation.

Manifold/Skeleton approximation of medial axes To
accommodate for applications in shape approximation and
deformation, Yoshizawa et al. [27] approximate the medial
axis of an object by a manifold mesh. They iteratively con-
tract the input boundary mesh towards the medial axis by
applying a bi-Laplacian flow to the mesh. A manifold mesh
is finally obtained to approximate the medial axis. Note that
a medial sheet of the medial axis is approximated by two
close sheets of triangles on each side of the mesh. This
method is further generalized by Au et al. [28] to generate a
curved skeleton of the input shape as an approximate
medial axis. Liu et al. [29] generate a stable skeleton of an
object through thinning the noisy skeleton by measuring its
distance to the boundary in a discrete manner.
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Fig. 3. From left to right: A medial mesh of a bird shape with 400 medial
vertices. The shape represented by the union of the 400 sample medial
spheres. The shape represented by the union of the enveloping
primitives of the medial mesh.

Recently Thiery et al. [30] propose a volume simplifica-
tion method. They define a zero-radius sphere on vertices of
the input mesh and then iteratively contract the mesh edges
and modify the sphere radius on the vertices to approxi-
mate the input mesh by the envelope of the spheres. The
sphere mesh thus obtained is often far away from the
medial axis. Although the envelope of the sphere mesh may
approximate the input mesh to some extent, it does not fall
in the category of medial axis simplification which is the
main focus of this paper. Similar to the simplification meth-
ods, the above methods do not enforce an explicit approxi-
mation error control, and their results are only good for
shape abstraction but not for accurate shape representation
in general.

3 MEeDIAL MESH REPRESENTATION

The MAT of a shape in R? is in general a two-dimensional
CW-complex embedded in R*, since each point of the
medial axis consists of the coordinates of its 3D position
plus the radius of its associated medial sphere. We approxi-
mate the medial axis surface with a 2D simplicial complex,
which we call the medial mesh. A vertex of a medial mesh is
called a medial vertex and is a point v = (p,r) € R?, where
p € R® is the position of the vertex and r its associated
radius value. An edge e = {vy, vy} of the medial mesh is
called a medial edge, represented by (1 — t)vy + tvy, ¢ € [0, 1],
a convex interpolation of its end points v; and v». Likewise,
a medial face is given by f = {vi,vs,Vv3}, the convex combi-
nation of three medial points, i.e., a1V, + apvs + azvs, with
ai,as,a3 > 0and a; + as +az = 1.

Each discrete element of the medial mesh corresponds to
an enveloping primitive in R?: a medial vertex being a medial
sphere with center p and radius 7, and a medial edge or face
being the convex hull of the medial spheres at their respec-
tive vertices (Fig. 2). A 3D object is then represented by the
enveloping volume of the medial mesh, i.e., the union of all
the enveloping primitives (Fig. 3). The boundary surface
of the enveloping volume is then called the enveloping sur-
face. The analogue of the medial mesh for 2D shapes is a
graph (V, £) consisting of a set V of medial vertices and a set
& of medial edges connecting medial vertices. Here the
interpolation of medial spheres for a medial mesh in 3D is
replaced by the interpolation of medial circles in 2D.

4 MeDIAL MESH COMPUTATION

We now present an effective algorithm for computing a
compact medial mesh that accurately approximates a given
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3D shape, satisfying a user-specified error threshold. We
shall first discuss how the approximation error is defined
and evaluated, and then introduce the steps of our algo-
rithm in detail and discuss how the issues of medial axis sta-
bility and homotopy preservation are addressed.

4.1 Approximation Error

In order to gauge approximation error during medial axis
simplification, we need to evaluate the approximation
error at each step of simplification. While it is natural of
think of using the Hausdorff distance between the origi-
nal shape and the shape represented by a medial mesh as
a faithful measure of the approximation error, evaluating
the Hausdorff distance is prohibitively costly, which
would make the method too inefficient to be practical.
Hence, we instead evaluate the one-sided Hausdorff dis-
tance from the boundary surface of the input shape to the
boundary surface of the shape represented by the simpli-
fied medial mesh. We argue that this suffices because:
(1) We start with a medial mesh that well approximates
an object and our simplification preserves homotopy of
the medial mesh at each step (Section 4.2.2); (2) The
enveloping surface of the medial mesh is in general sim-
pler than the original surface and the one-sided Haus-
dorff distance provides a good approximation to the true
Hausdorff distance. Note that, while the one-sided Haus-
dorff distance is used during simplification, for validation
purposes the true Hausdorff errors are computed and
reported as the approximation error for all the final sim-
plified results presented in this paper. A detailed discus-
sion on MAT simplification and the Hausdorff distance
measure can be found in [31].

Let M = {m;} be a medial mesh approximating an
object S C R3, where m; denotes a medial vertex, edge or
face, in M. Let E(m;) be the enveloping primitive given by
m; and E(M) = UE(m;) be the enveloping volume repre-
sented by M. The approximation error of M to S is then
defined as:

§(M, 8) = sup{d(q, IE(M)) | q € 85}, ey

with d(q, dE(M)) being the distance of a point q € 3S to the
enveloping surface dE(M) given by

d(q,dE(M)) = miin{d(q, dE(m;)) |m; € M},

where d(q, dE(m;)) is the distance of a point q to the surface
of an enveloping primitive FE(m;). The computation of
d(q,0E(m;)) in given in the Appendix.

We also define the set of governing primitives of a point
q€dSas

Gova(q) = {mi € M|d(q,0E(m;)) = d(q,dE(M))},

that is, Gov(q) contains the simplices of the medial mesh
that are closest to a point q on the boundary of the input
object. The set of affiliates of a simplex m; of M is defined to
comprise those surface points governed by m;:

Affp(m;) ={q|q € 35, m; € Gova(q)}.
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4.2 The Algorithm

Our method performs medial axis simplification with
explicit maintenance and control of the shape approxima-
tion error. It has two main stages: (1) initialization, which
aims to obtain a medial mesh of an input shape to start
with; and (2) simplification, which progressively simplifies
the initial medial mesh by iterative edge contraction until
the approximation error reaches a predefined threshold.

4.2.1 Initialization

Our algorithm first computes an initial medial mesh for an
input shape S C R? using the Voronoi-based approach [32].
We first obtain an e-sample P on the boundary of S, in
which each point « € P is of a distance less than € f(z) from
another point in P, where f(z) is the distance of z € 3S to
its medial axis (i.e., the local feature size of S [32]). We adopt
¢ < 0.4 as suggested by Dey and Zhao [9]. We then compute
the Voronoi diagram of P, which is a discrete counterpart of
the medial axis, since any point on a Voronoi cell also has at
least two closest points among the boundary samples. The
set of Voronoi vertices lying inside S, denoted V, are then
chosen to approximate the medial axis. The connectivity
among the vertices in V as a subset of the Voronoi vertices
of P is inherited to form a 2D non-manifold mesh. This is
taken as the initial medial mesh, which is typically a noisy
and dense representation of the medial axis of the input
3D shape.

Now, since dS is well sampled by P, the approximation
error of a medial mesh M to Sin Eq. (1) becomes

£(M,S) = max{d(p,0E(M)) |p € P}.

Although for a 2D shape the Voronoi vertices of its bound-
ary sample points converges to the medial axis of the shape
as the sampling density of P approaches infinity [33], the
same does not extend to the 3D case, due to the existence of
slivers close to the shape boundary in the Delaunay triangu-
lation, which is dual to the Voronoi diagram. It has been
shown that a subset of Voronoi vertices, called poles, con-
verge to the medial axis [8]. Although our method starts
with all interior Voronoi vertices, we will show in Section 4.3
that it can effectively remove those Voronoi vertices corre-
sponding to the circumcenters of the slivers which are far
from the medial axis, as well as noisy “spikes” of the medial
axis that contribute little to the definition of the input shape.

4.2.2 Simplification

Next we shall apply an edge-contraction scheme to simplify
the initial medial mesh. Our aim is to remove redundant
geometries to achieve compactness, and to remove spikes to
achieve stability of the medial mesh. The basic idea is
simple—like other previous mesh simplification schemes
based on edge contraction, we iteratively contract selected
edges of the medial mesh M to simplify it progressively
until the approximation error of the medial mesh to the
given shape S reaches a user-specified threshold. However,
because of the unique properties of the medial mesh, we
need to address some new issues that are not encountered
in conventional mesh simplification methods developed for
2D mesh surfaces in 3D space.



Fig. 4. A 2D illustration for the post-contraction error. The post-contrac-
tion error, e,(e*), of merging vertex x to vertex y of the edge e in the
medial mesh M in (a) that results in a new medial mesh M in (b). The
orange sample points on the shape boundary are affiliated to the 1-ring
neighboring edges of x in M and the maximum shape approximation
error among these points is taken as ex(e¥) (in red). If the merge is
realized, the post-contraction errors of the blue medial edges need to be
re-evaluated, as they are within the 2-ring neighborhood of x.

Edge post-contraction error We first define the edge
post-contraction errors which govern the order in which the
edge are contracted. An edge contraction generally leads to
a larger approximation error and there is only a local region
on dS near the contracted edge that contributes to this
increased error. Given a medial mesh M, we maintain for
every possible edge contraction a post-contraction error,
which measures the local shape approximation error caused
by the contraction of an edge. An edge is contracted by
merging either one of its vertices to another, and there are
therefore two possible ways of merging, each entailing its
own contraction error. Let ¢* denote an edge contraction by
merging vertex x to vertex y for an edge e = (x,y), which
results in a new medial mesh M. Then the post-
contraction error is defined as:

€M (ei) = max{d(p, BE(MZ})) | p S AffM (mq), (2)
m; is an edge or a face in M incident to x}.

In other words, those points in P which are the affiliates of

the medial faces incident to x contribute to the contraction

error. Fig. 4 explains how the post-contraction error of an

edge is evaluated in a 2D setting. The contraction from y to

x induces a post-contraction error €, (e¥) similarly.

Edge contraction Algorithm 1 details the simplification
steps. The post-contraction error for every possible edge
contraction in the initial medial mesh M is first computed
using Eq. (2) and is maintained by a priority queue Q. The
function ValidEdge(My, Qp,¢) on line 3 then iteratively
retrieves an edge contraction ¢* with the smallest contrac-
tion error from Qy, which is only returned if it also: (1) satis-
fies that the contraction error ex(e¥) is no greater than the
error threshold ¢; and (2) satisfies the two topological condi-
tions for (i) preserving the medial mesh manifold, and
(ii) avoiding self-intersection in the enveloping surface. The
topological conditions will be discussed later in this section.

Once a valid edge contraction e* is identified, Edge-
Contract( My, e) on line 4 realizes the contraction by merg-
ing the vertices of the edge e, and collapsing the medial
faces incident to e. This results in a new medial mesh M.;.
Since the change is local to the 1-ring neighborhood of ver-
tex x in M, the governing primitives of all surface sample
points in P that are the affiliates of this 1-ring neighborhood
need to be updated (lines 5-7). Now, the post-contraction
error in the 2-ring neighborhood is affected (as the error is
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Fig. 5. Manifold preservation. (a) The red polygon on the left is the open
boundary of a disk region formed by the medial faces. Contracting the
edge e by merging v to x results in a non-manifold edge (top) and a
pseudo nonmanifold structure (bottom). Note the sharp change in the
normal direction for the face uvw. (b) Non-manifold vertex x; can only
merge to the neighboring non-manifold vertices x, and x, but not the
other manifold vertices to retain seams. Merging from a manifold vertex
(v1) to a non-manifold vertex (x;) is however allowed. Left: Before con-
tracting edge e = x;x,, by merging x; to x,. Right: After edge contraction.

defined over the 1-ring neighborhood of an edge) and hence
is updated (Fig. 4). (The functions 1-ring,,(x) and
2-ring((x) stand for the 1-ring and 2-ring neighborhood of
a vertex x in M, respectively.) When there is no more valid
edge to contract (i.e., ValidEdge in line 3 returns nil), the
algorithm terminates and outputs the final simplified
medial mesh M. Due to the error control by the function
ValidEdge, the approximation error of M/ to dS sampled by
P is guaranteed to be no greater than the user threshold e.

Algorithm 1. Medial Mesh Simplification

Input: Surface samples P of a shape S, initial medial mesh M,,
error threshold e R .
Output: Final medial mesh M with (M, S) < ¢
1: k<0
2: Initialize priority queue Q). to store all possible edge con-
tractions e* ordered by post-contraction errors ey, (€¥)

3: while ((¢*, Qx11) < ValidEdge(M;, Oy, €)) # nil do
4: My < EdgeContract( M, e*)
5:  forall p € Affy(1-ringy(x)) do
6: Update Govu, ., (p), Affaq,,, (Govay,,, (p)) and Affy, |
(Gov, (p))
7:  end for
8: foralledges e’ = (s,t) € 2-ring ), (x) do
9: Re-evaluate ey, (¢®) and e, ,, (")
10: Update Qj. 11
11:  end for

12 k—k+1
13: epd while
14: M — My

Preserving medial mesh homotopy When removing
unstable spikes and simplifying the geometries of the
medial mesh, it is important that the topology of the medial
mesh at each edge contraction step be preserved (e.g., a disk
region is simplified into a disk region). We employ the link
conditions [34] for ensuring topology-preserving edge con-
traction, so that the function ValidEdge will help invalidate
an edge contraction that violates the link conditions. Fur-
thermore, an edge contraction may lead to an abrupt geo-
metric change (although the topology remains the same)
and thus a pseudo nonmanifold structure (Fig. 5a). We check
the normals of the involving medial faces before and after
an edge contraction, and invalidate an edge contraction if
there is any sharp change in the normal directions.
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(a) Original
v=5531¢=00

(b) A\ medial axis
v =294, ¢ = 3.0e—1
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(c) Angle-based
v=1,429, ¢ = 3.9¢—2

i

(d) Medial mesh
v=194, ¢ = 1.6e—3

Fig. 6. A comparison of medial axis simplification methods. The original medial axis or the filtered medial axis (red), the medial circles (blue) and the
shapes (green) represented by medial axes of different methods are shown. The medial mesh achieves an accurate approximation with very few

medial primitives. (v: number of medial points, e: approximation error)

Now we consider another type of important medial
features, called seams. Seams are where large medial sheets
meet and are hence made up of non-manifold vertices of the
medial mesh. To preserve seams and protect important
medial features, we impose a necessary topological condi-
tion to validate an edge contraction. Specifically, we do not
allow a non-manifold vertex to merge to a neighboring
manifold vertex. Furthermore, we do not allow an endpoint
of a seam to merge to an interior point of the seam, accord-
ing to [34]. However, a manifold vertex is allowed to merge
to an adjacent non-manifold vertex. To enable edge simplifi-
cation along seams, adjacent non-manifold vertices are
permitted to merge (Fig. 5b). Note that a non-manifold
edge may become a manifold edge if some of its adjacent
manifold sheets are pruned.

Handling enveloping surface self-intersection Without
proper measures, the medial mesh simplification algorithm
may create enveloping primitives that encompass some vol-
ume outside of the original shape S, which may cause self-
intersection of the shape represented by the medial mesh.
We therefore would like to detect and avoid such edge con-
tractions. To this end, we maintain for each surface sample
point p € P a local outgrow bound, lob(p), which is defined as
the distance of p to the external medial axis of P. It is analo-
gous to the local feature size [32] which is defined with
respect to the internal medial axis instead. Let d* (p, 0E(M))
be the signed distance from p to the enveloping surface of a
medial mesh M, with a negative value for points inside
dE(M). The lob can then be used to dictate the maximal out-
ward extension at a point: if a potential edge contraction
results in d* (p,dE(M)) < lob(p) for some p € P, the edge
contraction would be considered invalid. This checking is
local for those sample points affiliated to the affected envel-
oping primitives in the 1-ring neighborhood of the edge.
While we do not observe any local self-intersection in our
experiments, it must be noted that the above treatment does
not guarantee a self-intersection free enveloping surface,
due to the discretization of lob and the one-sided Hausdorff
distance evaluation of d*.

These two measures on preserving medial mesh homo-
topy and avoiding enveloping surface self-intersection serve
to preserve the input shape homotopy in practice.

4.3 Stability
The intrinsic instability of MAT refers to the phenomenon
that a small perturbation of the boundary of an object may

result in a long spike of the medial axis. For a medial mesh,
the removal of a medial vertex corresponding to such small
perturbation on the boundary does not lead to much change
in the shape boundary, therefore yielding only quite small
approximation error. As a result, these medial vertices will
be merged to their adjacent medial vertices. The same is
true of those Voronoi vertices that are the circumcenters of
the slivers in the dual Delaunay triangulation. These Voro-
noi vertices are generally close to the boundary surface, and
that the radii of the corresponding medial spheres are small.
Again, the removal of these medial spheres would not incur
much approximation error. Indeed, we observe experimen-
tally that these medial spheres and the noisy spikes on the
medial mesh are removed at early iterations. See Fig. 1 for
an example.

5 EXPERIMENTAL RESULTS

In this section, we present the results of our method and its
comparison with several existing methods on 3D models of a
wide variety of shapes, complexities and topologies. All
experiments are performed on a Windows 7 workstation
with an Intel i7 CPU and 12 GB main memory. In order to
demonstrate the superior simplification ability of our
method, we opt to use the Voronoi diagram of sample points
on the input boundary surface as the initial medial axis
which is typically highly unstable, although our algorithm
can take as input the filtered medial axis computed by meth-
ods such as the power crust [8]. We compute the Voronoi dia-
gram by using the CGAL package 3D Triangulations [35] to
compute the Delaunay triangulation and then taking its
dual. The conversion from a medial mesh to a triangle mesh
as a boundary representation of the shape represented by the
medial mesh is carried out using the CGAL package 3D Skin
Surface Meshing [36]. Our algorithm is fast and has small
memory footprint. For a typical 3D model with 4K vertices,
our algorithm generates a simplified medial mesh of 2K
medial vertices with approximation error 0.001 (relative to
the normalized diagonal of the bounding box of the input
shape) using around 20 seconds with 130 MB memory usage.

Comparison with criterion based methods We first com-
pare our method to two existing medial axis pruning meth-
ods, the A medial axis [12] and the angle-based [10]
methods, using a 2D seahorse shape shown in Fig. 6. The A
medial axis method performs filtering using the circumra-
dius criterion and completely removes the head and tail of
the seahorse while the noise on the trunk still remains,
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Fig. 7. Comparisons of 3D medial axis simplification methods. The first column (a and b) shows the original seahorse model and the initial Voronoi-
based medial axis. The first row (c- /) shows the medial axes computed by the different methods. The second row (g-j) shows the boundary surfaces
represented by the respective medial axes in the first row. (k) and (/) show the color-coded approximations of the surfaces in (g) and (h), respectively.
(m) and (n) are the dense and unstable medial axes generated by the A medial axis method and the angle-based method, respectively. (p: number of
enveloping primitives, v: number of medial spheres, ¢: approximation error.)

largely due to the different feature scales of the input shape
(Fig. 6b). The angle-based method, on the other hand, does
not preserve input topology and the resulting medial axis
simply becomes disconnected (Fig. 6¢). In addition, a main
branch on the left has been incorrectly removed, therefore
compromising significantly the approximation accuracy of
the pruned medial axis. The medial mesh computed by our
method, in contrast, uses much fewer sample circles while
achieving the smallest approximation error among all. Visu-
ally, the union of envelopes of adjacent medial circles in the
medial mesh yields a more accurate shape approximation,
as shown in Fig. 6d. In comparison, gaps between the union
of medial circles and the original shape boundary by the
other methods are clearly visible. We also tested a variant of
the angle-based method by enforcing topology preservation
during filtering. It uses 2,978 medial points to achieve an
approximation error of 0.01, while a medial mesh uses only
79 primitives for the same error level.

We next use a 3D shape to compare our method with the
SAT method [11], in addition to the A medial axis method
and the angle-based method, as shown in Fig. 7. This 3D
seahorse model has 27K vertices and its initial medial axis
has many unstable branches (Fig. 7b). Our method signifi-
cantly simplifies the medial axis to reduce the number of
primitives to ~3K; still this highly simplified medial mesh

achieves an accurate shape reconstruction with an approxi-
mation error smaller than 0.004 only (Figs. 7c, 7g, and 7k).
In contrast, the shape approximation error of the filtered
medial axis from SAT is 0.037 even with ~30K spheres,
about an order of magnitude more primitives than our
method. Moreover, the topology of the medial axis has not
been preserved (e.g., the holes created at the lower back-
bone of the seahorse in Figs. 7d, 7h, and 71). Clearly,
medial axis filtering with both A medial axis and angle-
based methods led to an unacceptable shape representa-
tion or topological change (Figs. 7e, 7i, 7f, and 7j). Mean-
while, the number of spheres used by either method is at
least an order of magnitude larger than that in our
method. To attain the same shape approximation errors as
our result, a huge number of spheres would be necessary
with both methods, with the corresponding medial axes
being highly unstable (Figs. 7m and 7n).

Admittedly, these three methods (SAT, A medial axis
and angle-based methods) are mainly designed for
removing medial axis instability, rather than specifically
for accurate shape approximation. Nevertheless, our sim-
plification method based on the medial mesh achieves
both accurate shape approximation and a stable medial
axis representation simultaneously. This is due to the
fact that medial axis instabilities correspond to small
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TABLE 1
Number of Primitives Used for Representing the 3D Seahorse
Model, with All Four Methods Using the Enveloping
Representation Like a Medial Mesh

# medial vertices # primitives error
Medjial mesh 352 2,586 0.02219
SAT 8,131 50,161 0.02316
A medial axis 58,221 355,672 0.02293
angle-based 48,158 300,632 0.02453

perturbations on the shape boundary, the removal of
which would not incur a significant shape approximation
error and, therefore, they can be effectively eliminated
with our error-driven simplification.

We also examine the simplification power of our method
irrespective to the use of an enveloping representation. To
this end, we compute simplified medial axes using the other
three methods, and build the same enveloping representa-
tion from their resulting medial vertices just like the medial
mesh. Table 1 shows that the medial mesh still uses the few-
est number of primitives to attain the same approximation
error among all four methods.

Although SAT may often result in topologically incorrect
shape representation, an issue acknowledged in [11], it gen-
erally produces good shape approximation, though with a
large number of vertices. In comparison, our method
achieves the same approximation accuracy using far fewer
primitives than SAT and preserves shape topology. This is
important for many applications such as shadow computa-
tion and shape deformation where the computational com-
plexity depends on the number of primitives. Table 2 shows
a comparison of our method against SAT on several 3D
models in terms of the number of primitives used against
the approximation accuracy that can be achieved. It can be
seen that for highly accurate approximation (e =0.001),
SAT requires at least two orders of magnitude more primi-
tives than a simplified medial mesh. Even for the less accu-
rate approximation (¢ = 0.032), the number of primitives
needed by SAT is still more than one order of magnitude
larger than the simplified medial mesh.

Comparison with feature-based methods We now
compare our method with the feature-based medial axis
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N=397,v=40914  N=50,v=139,665
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Fig. 8. (a) The feature-based method, Tam and Heidrich [2002], progres-
sively reduces the number of medial sheets (V) to achieve shape simpli-
fication, taking a noisy Voronoi diagram of the shape as the initial input.
The instability of the medial axis and the number of vertices (v) are not
reduced significantly as the medial sheets are gradually removed. The
non-manifold edges are marked in red. (b) Top: With a clean medial axis
as the input, this method removes small features without reducing the
number of medial vertices much. Bottom: An output achieving the same
approximation error by our method is shown as a comparison.

simplification method by Tam and Heidrich [37] which
prunes insignificant shape features based on a volume
threshold. With a small volume threshold, the method is
able to remove insignificant features while keeping rela-
tively large sheets of medial axis representing important
parts of the original shape. If the volume error threshold
increases, significant pieces of the shape will begin to be
trimmed off. It is worth noting that the method of Tam
and Heidrich does not prune the unstable spikes and thus
needs a relatively clean medial axis to start with [37]. Oth-
erwise, if initialized with a highly unstable unfiltered
medial axis such as that from the Voronoi diagram, this
method is often unable to prune unstable branches that are
not separate sheets. In any case, the remaining sheets are
still a dense representation containing a large number of
triangles (Fig. 8). Therefore, this method is not effective for

TABLE 2
Comparisons of the Approximation Error against the Number of Primitives in the Simplified Medial Axis
for the SAT and Our Methods on Five 3D Models

Approximation error
0.032 0.016 0.008 0.004 0.002 0.001

retinal SAT 8,075 27,251 89,378 277,990 827,632 1,928,799

Medial mesh 178 294 498 855 1,625 3,035
bird SAT 6,785 25,365 98,771 383,880 1,392,083 5,086,712

Medial mesh 265 478 839 1,479 2,296 5,503
table SAT 12,833 52,463 202,814 773,646 2,971,080 11,542,309

Medial mesh 116 327 886 2,378 5,645 10,759
girl SAT 11625 37701 127557 430056 1276757 3245069

Medial mesh 506 776 1476 2652 3913 7128
fandisk SAT 19,344 71,818 273,847 1,047,419 3,875,252 13,130,365

Medial mesh 242 398 587 904 1,742 3,059
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Fig. 9. Medial meshes for a noisy model on different levels of noise. The
topology of the medial meshes is resistant to noisy input. Noises are
removed effectively from the accurate shape representation. (¢ is the
Hausdorff distance between the surface represented by the simplified
medial axis and the noise-free input.)

the purpose of geometric simplification; rather, it is pri-
marily for simplifying the structure of a medial axis by
removing those parts that are insignificant for representing
the boundary. Our method, on the other hand, computes
an accurate yet compact simplified representation.

Noisy models As MAT is in general sensitive to shapes
with noisy boundaries, we next investigate how the medial
mesh simplification is affected by noisy models. We apply
different levels of noise relative to the average edge length
of an input model (measured by 5 € [0, 1]) and compute the
corresponding simplified medial mesh. The result is shown
in Fig. 9. The medial mesh simplification is capable of
obtaining a stable medial representation and at the same
time removing noise effectively as much as to a noise level
of n=0.2. The medial mesh retains very similar shape
despite the increasing noise level. Also, it faithfully repro-
duces the original unnoisy input as indicated by the small
distance error between the original shape and the shape
represented by the simplified medial axis. With very noisy
input, however, the simplified medial mesh is not a stable
representation any more, as can be seen from the framed
example in Fig 9. Our method fails in such case because the
Hausdorff distance between the enveloping surface of the
medial mesh and the highly unsmooth surface is no longer
a reliable measure of the approximation error which is cen-
tral to our simplification algorithm. Furthermore, since our
algorithm preserves medial mesh homotopy, topological
noise (for example, a small hole in a thin planar region)
inherited by the initial medial mesh would persist and
could not be removed.

More simplification results Fig. 1 shows that our
method is capable of generating a series of simplified
medial mesh at progressive levels of simplification with
controlled approximation error. Note that the basic shape of
an object is still preserved even when only a small number
of medial spheres are kept. Fig. 10 shows more examples
computed by our method. It can be seen that our simplifica-
tion method can effectively generate compact and stable
medial meshes that approximate shapes accurately within a
user-specified error threshold.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.22, NO.3, MARCH 2016

6 APPLICATIONS

We shall demonstrate the relevance of medial meshes in
two shape modelling tasks. In shape approximation, the
medial mesh is able to achieve much smaller approximation
errors with the same number of primitives in comparison to
state-of-the-art methods based on spherical approximation.
In free-form shape deformation, the medial mesh can serve
as a compact embedded structure of an object for direct
manipulation to easily achieve thickness-preserving shape
deformation.

6.1 Shape Approximation

The medial mesh proposed in this paper provides an effec-
tive alternative to shape approximation, compared to the
conventional spheres representations [38], [39]. The key dif-
ference from the previous methods is that we use the inter-
polation of the medial spheres to approximate a given
shape; in other words, the given shape is approximated
with the union of the enveloping primitives defined by the
medial mesh. Specifically, given any 3D shape to be approx-
imated and an error tolerance provided by the user, we run
our method for computing and simplifying the medial
mesh. Once the simplified medial mesh is obtained, we col-
lect all the enveloping primitives defined by the triangle
faces of the mesh as well as those primitives defined by
medial edges if the edges are not contained in any face.
Then the union of these primitives is used as an approxima-
tion of the given shape, meeting the specified error
tolerance.

Due to the use of simple sphere interpolation, the new
approximation enabled by the simplified medial mesh we
compute is much more efficient than the previous methods
based on the union of spheres, as shown by the comparisons
in Table 3 and Fig. 11. Typically, using the same number of
primitives, the approximation error of the medial mesh is
one order of magnitude smaller than those of the sphere-
tree [39] and the medial spheres [38] methods, as shown in
Table 3.

The enveloping primitives used in medial meshes are a
new type of simple primitives capable of efficient and com-
pact shape approximation, and have the potential to benefit
important applications in graphics and geometry process-
ing, such as fast shadow computation [40], [41]. While
spheres are by themselves very simple primitives, further
research would be needed of fast geometric computation
involving the enveloping primitives used by the medial
mesh.

6.2 Medial-Based Shape Deformation

The medial axis has been broadly adopted to provide a
shape skeletal structure for shape deformation. While most
methods use curve-based skeletons as the control structure
(e.g., [28], [42]), others exploit the more general sheet-based
medial representation (e.g. [27], [43]). Thanks to its explicit
radius function, manipulation of medial axis can naturally
give rise to a thickness preserving shape deformation,
which is difficult to achieve under other free-form shape
deformation paradigms. However, direct and coherent
manipulation is non-trivial for complex medial structures.
Special handling are needed for those two-sided medial
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Fig. 10. Medial meshes computed by our simplification algorithm. The initial medial mesh and two levels of simplification with their corresponding
number of medial spheres (v) and approximation error ¢ are shown for each shape.

axes computed by volume-collapsed methods [27], [30]). For
instance, an additional stick-figure skeleton is required for
consistent deformation of the two-sided skeleton medial
mesh in [27].

Here, we use our medial mesh as an embedded graph
that defines a subspace for a shape for embedded deforma-
tion proposed by Sumner et al. [44]. Changes to handles on
a shape induces a deformation of the subspace, which
results in the deformation of the shape itself. An advantage
of this approach is that it provides intuitive direct control of
the shape while leaving the embedded structure completely
transparent to the users. Given a shape S as a mesh of verti-
ces {v;} and let M be its simplified medial mesh, whose
vertices and edges constitute an embedded graph G of S.
Each medial vertex (or node) is associated with a local affine

transformation. Similar to skeletal-subspace deformation
(SSD), a vertex v; on S is under the influence of the nodes
in Gov(v;) as well as their 1-ring neighboring nodes.

TABLE 3
Volume Difference with Respect to the Original Shape
sphere-tree  medial spheres =~ Medial mesh
Duck > 0.050 =0.029 =0.004
Venus > 0.054 =0.033 =0.004
Bunny > 0.091 =0.062 =0.007

There are 500 primitives used for all three methods and all three models.
Data for the sphere-tree and medial spheres methods are taken from
[38, Table 1]. The volume difference of our method is obtained by
approximating each volume primitive with densely sampled spheres
and computing the volumetric error to the original surface.
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(b) # primitives = 489
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Fig. 11. Two models, (a) Venus, and (b) Duck, used for comparison of
shape approximation in Table 3. The same number of primitives are
used for both methods in each case.

The deformed position of v; is a weighted average of the
positions predicted by the transformations associated with
these nodes, where the weights are assigned by considering
the distances from v; to the nodes. Following [44], we aug-
ment the edge set of G with edges connecting nodes associ-
ated with a common mesh vertex. Since the medial vertices
are only sparsely connected, we also include additional
edges connecting the 2-ring neighboring vertices in the
medial mesh in order to improve transformation consis-
tency among nearby nodes.

The deformation of the embedded graph is done via a
minimization framework that considers as-rigid-as possible
local transform (E,y), regularization for consistency
between neighboring transforms (E..,), and the positional
constraints imposed by the handles (E.,,) [44]. We intro-
duce an extra energy term (Ei;) for regularizing twisting
along dangling edges representing tubular regions of S,
which requires that the difference between the end rotations
of a dangling edge be minimal. This is necessary since the
local transform along a dangling edge is ambiguous as the
rotation around the edge is unspecified.

Vertex positions of the deformed mesh are obtained by
vertex blending as in SSD, which in general does not respect
the radius function of M. A simple treatment is applied to
achieve thickness preservation of the deformed shape. An
offset distance to dE(M), the enveloping surface of M, is
kept for each vertex. Deformed vertices are projected on the
deformed enveloping surface and the offset distance is
restored.

We compare our method with the embedded deforma-
tion originally suggested in [44] which uses evenly distrib-
uted samples drawn on S to form an embedded graph
(which we named surface graph). Each mesh vertex is

Original shape Medial mesh
(@) (b)
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associated with its four-nearest nodes in the graph, and
edges of the graph connect every two nodes that have a
common association with a mesh vertex. We also compare
against the CGAL implementation of the as-rigid-as possi-
ble method by Sorkine and Alexa [45] which aims to pre-
serve local shape by minimizing the deviation from rigid
transformation defined at each mesh vertices over its adja-
cent triangles. Fig. 12 shows the deformation results. Our
method using medial mesh as an embedded graph leads to
deformation that generally preserves thickness of the
objects. By fixing the base of the model and moving only the
handle at the top of the fertility model sideways, a nice
bending effect can be obtained naturally. For surface graph
embedded deformation, since graph nodes at the back and
on the tummy of the dolphin are not connected, the surface
at these two regions is easily pulled apart and the body is
enlarged. An undesirable global shear in the fertility model
is also observed and more sophisticated handle manipula-
tion is needed to alleviate the effect. The surface graph also
preserves well the thickness of the bird wing since the
embedded graph nodes on the two sheets of the wings are
closely connected. While the as-rigid-as-possible method
can preserve local rigidity as much as possible, there is obvi-
ous change in the thickness, a non-local property, in the dol-
phin example, and it also results in the intersection of the
two sheets of the wing in the bird example as well.

We note here that the deformation results of these meth-
ods depend also on the handle control. The surface graph
embedded deformation and the as-rigid-as-possible method
undoubtedly have their own merits in achieving high qual-
ity free-form deformation. By these examples we aim to
demonstrate the effective use of the medial mesh as a
medial structure for thickness-preserving deformation.
However, many application-specific deformation require-
ments such as surface details preservation, etc., are yet to be
fulfilled.

As a final remark, an unoptimized implementation of our
method takes about 1 second for the bird deformation (with
20K mesh vertices, 220 medial vertices, 427 medial edges
plus 294 augmented edges in the embedded graph), in
which about 60 percent of the time is used in optimizing the
embedded graph, and the remaining 40 percent is for
obtaining deformed mesh vertex positions. This is largely
due to the dense graph connection among the medial verti-
ces, as well as the heavy node association for each mesh ver-
tex. More investigation is also needed to further improve
the time performance.

Surface graph

As-rigid-as-possible method
(© )

Fig. 12. Result of different deformation methods. (a) Point handles (red) define the user-specified constraints with the intended deformed positions
(orange). Embedded deformation using (b) medial mesh and (c) surface graph as embedded graph; and (d) as-rigid-as-possible shape deformation.
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7 CONCLUSION

We have proposed the medial mesh as a new discrete
approximation of the medial axis. The medial mesh defines
a compact representation of a 3D shape as the union of sim-
ple enveloping primitives generated by swept spheres. We
have also presented an efficient algorithm for computing a
simplified and stable medial mesh of a given 3D shape.
Experiments show that our method is efficient and robust.
The medial meshes computed by our methods are much
simpler and offer more accurate shape approximation than
the results by previous methods. We have presented appli-
cations of the medial mesh to shape approximation and
shape deformation. For shape approximation, the medial
mesh is shown to provide a much better approximation
than the existing methods using the union of spheres. For
shape deformation, due to its simplicity and intrinsic
nature, the medial mesh demonstrates better performance
in shape thickness preservation.

In summary, the medial mesh is a compact and stable
representation of the medial axis, and thus has overcome
the two notorious drawbacks of the medial axis, namely,
instability and redundancy. Given the importance of the
medial axis as a powerful intrinsic shape descriptor, we
believe that the medial mesh will find more applications in
shape modelling and analysis.

Further improvement of the medial mesh is possible. The
enveloping surface of the medial mesh is only G continu-
ous. Therefore, one future problem is to use piecewise
smooth surface (such as subdivision surfaces) to approxi-
mate the medial axis to achieve higher order and smoother
shape approximation. Another potential improvement of
the medial mesh is its mesh connectivity. Our method for
simplifying a medial mesh resembles the paradigm of mesh
simplification based on edge merging. The resulting medial
mesh, while stable and simple, may be further improved by
optimizing its mesh connectivity or mesh vertex distribu-
tion, similar to the effect of surface remeshing.

APPENDIX

POINT TO ENVELOPING PRIMITIVE DISTANCE
COMPUTATION

Let M = {m,} be a medial mesh approximating a shape
S € R?, where m; denote a simplex in M. We now consider
the distance of a point q € dS to an enveloping primitive
E(m;). Let us assume that m; = (v, vs,Vs3) is a medial face,
the most general element in M; the cases of m; being a
medial vertex or edge then follow similarly. The surface
dE(m;) consists of patches from three spheres, three trun-
cated cones and two triangle faces, one for the hull on each
side of m; (Fig. 2 right). The equations of the truncated
cones and triangles can be derived and the signed distance
to them can be computed. We therefore have:
1) three signed distances d*(q,v;) to the spheres at v;,
i=1,2,3;
2) three signed distances d*(q,v;v;) to the truncated
cones defined by edge {v;,v;}, j. k € {1,2,3};
3) one signed distance d*(q, v1vyv3) to the triangle face
on the hull lying in the same halfspace of the medial
face {vy,vo,v3}asq.
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Note that in cases (2) and (3), if the footpoint of q does
not lie within the extent of the truncated cone or the trian-
gle, the signed distance will be equal to occ.

The distance of q to E(m;) is then given by

d(q, 9E(mi)) = [min{d"(q, v;),d"(q, v;vi),
d*(% V1V2V3) | ja k € {17 27 3}}‘
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