
Visual Comput (2005) 21: 474–487
DOI 10.1007/s00371-005-0296-0 O R I G I N A L A R T I C L E

Lin Shi
Yizhou Yu
Christopher Wojtan
Stephen Chenney

Controllable motion synthesis in a gaseous
medium

Published online: 19 July 2005
© Springer-Verlag 2005

L. Shi (�) · Y. Yu · C. Wojtan
Department of Computer Science,
University of Illinois at
Urbana-Champaign, 201 N. Goodwin Ave.,
Urbana, IL 61801, USA
linshi@uiuc.edu, yyz@cs.uiuc.edu,
wojtan@cc.gatech.edu

S. Chenney
Department of Computer Science,
University of Wisconsin, 1210 W. Dayton
St., Madison, WI 53706, USA
schenney@cs.wisc.edu

Abstract The generation of real-
istic motion satisfying user-defined
requirements is one of the most im-
portant goals of computer animation.
Our aim in this paper is the synthesis
of realistic, controllable motion
for lightweight natural objects in
a gaseous medium. We formulate this
problem as a large-scale spacetime
optimization with user controls and
fluid motion equations as constraints.
We have devised novel and effective
methods to make this large optimiza-
tion tractable. Initial trajectories are
generated with data-driven synthesis
based on stylistic motion planning.
Smoothed particle hydrodynamics
(SPH) is used during optimization

to produce fluid simulations at
a reasonable computational cost,
while interesting vortex-based fluid
motion is generated by recording
the presence of vortices in the initial
trajectories and maintaining them
through optimization. Object rota-
tions are refined as a postprocess to
enhance the visual quality of the re-
sults. We demonstrate our techniques
on a number of animations involving
single or multiple objects.

Keywords Spacetime con-
straints/optimization · Stylistic
motion planning · Smoothed particle
hydrodynamics · Vortices · Trajectory
library

1 Introduction

The generation of natural motion that satisfies user-
defined requirements is an important goal of computer
animation. This article presents a technique to synthe-
size realistic, controllable motion for lightweight objects,
alone or in a group, being acted on by a gaseous medium.
The techniques we present are applicable in synthetic ani-
mation and video production because lightweight objects,
such as leaves, feathers, and bubbles, are ubiquitous in our
environment, and their motion suggests grace and fluidity.

Real-world moving objects receive influences (exter-
nal forces) from the surrounding air, the most apparent
being air drag. At the same time, air has its own dynam-
ics and receives influences from the objects. We define
“lightweight” objects to be those that do not strongly in-
fluence the large-scale behavior of the air, so that the

motion of one object does not significantly impact the
motion of its neighbors. Furthermore, lightweight objects
largely follow the velocity field of the air, and hence
their motion provides a visualization of most character-
istics of the underlying flow. In particular, most gaseous
phenomena should be almost divergence free, and hence
the lightweight objects should rarely, if ever, collide with
each other as they approximately follow streamlines.

We focus in on the motion of the objects themselves,
because they are directly visible. We are concerned with
the fluid only to the extent that it can be interpreted from
the objects’ motion. Hence we frame the problem as one
of object motion synthesis in the presence of constraints
imposed by the fluid. Inspired by the seminal work on
spacetime constraints [50], we formulate this problem
as a large-scale optimization. Directly solving this large-
scale problem using an off-the-shelf optimization toolbox
would be infeasible since the number of parameters ne-

Controllable motion synthesis in a gaseous medium 475

cessary for realistically describing fluid motion is pro-
hibitively large, especially when the fluid is simulated
using a voxel grid. Therefore, we have devised a num-
ber of novel and effective methods to make this problem
tractable.
• Smoothed particle hydrodynamics (SPH) are used [20,
28, 32] to describe fluid motion and provide optimization
constraints. Although SPH is numerically less accurate
than a grid-based simulation, it can generate reasonable
fluid behavior using a relatively small number of particles,
which significantly reduces the number of constraints re-
quired in the optimization. The reduction in accuracy is
acceptable because we do not directly visualize the fluid,
but rather the objects immersed in the fluid.
• Data-driven synthesis is exploited to generate an initial
trajectory for each object. The trajectory may have certain
desirable features required by the user. The optimization
then makes the initial trajectories more physically plausi-
ble. The user is thus able to guide the optimization toward
a specific local minimum by biasing the starting point.
Such control is necessary because the problem may have
numerous equally plausible local minima, while a user al-
most certainly has a specific one in mind.
• Vortices are important in producing interesting fluid mo-
tion. During optimization, vortices are identified and re-
covered in a separate pass to improve efficiency.
• Rotational components of the objects are largely inde-
pendent of their overall trajectory. We ignore them in the
optimization and refine them in a separate postprocessing
stage to produce visually pleasing results.

1.1 Background and related work

The lightweight objects that we consider are particles for
the purposes of control, with rigid or deformable body
characteristics added as a postprocess. Several techniques
have been proposed for animating lightweight objects in
a wind field, where the objects do not influence the air.
Early work by Wejchert and Haumann [49] modeled the
wind field as a linear combination of basis fields and ad-
vected leaves in the flow. Chenney [7] used a tile-based
approach to define the flow and also advected leaves. Both
of these approaches offer indirect control of the object
motion through control of the flow. Wei et al. [48] simu-
lated the motion and deformation of lightweight objects in
a wind generated by the Lattice–Boltzmann Model but did
not consider control. These algorithms are best suited for
synthesizing and editing velocity fields instead of provid-
ing direct control over individual trajectories traced from
specific locations, and the resulting fields may have visual
artifacts because they are not physically motivated. In this
paper, we adopt the SPH formulation because it is physi-
cally motivated, gases are slightly compressible, and it is
more convenient to incorporate SPH into an optimization
framework.

We now review other related work on solving con-
straint problems in graphics and discuss data-driven mo-
tion synthesis, which is the basis of our method for creat-
ing initial trajectories.

Constrained rigid bodies. Several approaches have been
proposed for generating multibody constrained motion.
Each employs a specific optimization technique, includ-
ing genetic algorithms [43], gradient-based methods [8],
plausible simulation with randomness [3], and stochastic
sampling [9]. They all consider full rigid body motion (in-
cluding rotation), but, more importantly, the only noncon-
stant external forces on the bodies arise due to collisions.
On the other hand, we consider the continuous influence
of an external fluid medium, and the larger state space
that results prevents the application of existing rigid body
methods.

Particle-based simulation. When generating trajectories,
we model lightweight objects as particles, and the SPH
fluid model we use is also particle based. The use of
particles to simulate natural phenomena has a long his-
tory in computer graphics. It was the introduction of par-
ticle systems with pairwise interactions that made it pos-
sible to realistically simulate fluids, deformable objects,
and even flocks and herds. Miller and Pierce [31] simu-
late deformable objects with particle interactions based on
the Lennard–Jones potential force. Terzopoulos et al. [44]
paired particles to better simulate deformable objects.
Tonnesen [45] improved particle motion by adding addi-
tional particle interactions based on heat transfer among
particles. Reynolds [39] modeled the group behavior of
birds by considering flocks as particle systems. Particle
systems are typically controlled by modifying the interac-
tion rules. In the work most closely related to ours, An-
derson et al. [1] generated constrained behaviors of flocks
with a two-stage process: in the first pass, path editing is
used to create an initial solution that meets the constraints
but largely ignores the underlying model, while the sec-
ond, stochastic optimization, pass improves the result with
respect to the model. A similar two-stage process is taken
in this paper. However, we deal with a different domain
and underlying physical model and use data-driven syn-
thesis for the first pass and gradient-based optimization for
the second stage.

Lucy [28] and Gingold and Monaghan [20] introduced
a flexible gridless particle method called smoothed par-
ticle hydrodynamics (SPH) to simulate astrophysical prob-
lems. We provide an overview of the method in Ap-
pendix B. SPH has recently been adapted to compressible
and incompressible fluid simulation [32, 33]. For graph-
ics applications, Desbrun and Cani [11] and Müller et
al. [34] improved SPH to compute the dynamics of de-
formable substances and liquids. Hadap and Magnenat–
Thalmann [21] modified the formulation of SPH to simu-
late hair–hair interactions by considering hair as a fluidlike

476 L. Shi et al.

continuum. Recently, another particle method, Moving
Particle Semi-Implicit (MPS), was developed [54] along
with its application to incompressible fluid simulation in
graphics [36].

Grid-based fluid simulation and control. Recent years
have seen rapid progress on 3D grid-based fluid simula-
tion in the graphics community. Foster and Metaxas [17]
were the first to bring grid-based methods to graphics.
Stam [41] introduced a combination of a semi-Lagrangian
advection scheme and implicit solvers to achieve uncon-
ditional stability. Fedkiw et al. [14] introduced vorticity
confinement and a higher-order interpolation technique,
while Foster and Fedkiw [15] described a hybrid liquid
volume model combining implicit surfaces and massless
marker particles. The work was further improved in terms
of accuracy by Enright et al. [12] by using particles on
both sides of the interface between air and water. Yngve et
al. [53] provided one method for simulating compressible
fluids for explosion generation. Several techniques have
been proposed to control the fluid itself, typically the dens-
ity or velocity field. Foster and Metaxas [16] introduced
embedded controllers that allow animators to intuitively
specify and control a 3D fluid animation. Foster and Fed-
kiw [15] suggest animator-designed “fake” space curves
and surfaces to control the motion of liquids. Rasmussen
et al. [38] use dense particles to control not only the vel-
ocity of the fluid in their local neighborhoods but also vis-
cosity, the level set of the liquid surface, and the velocity
divergence. Treuille et al. [46] proposed a gradient-based
method for controlling both smoke and liquid simulations
through user-specified keyframes. This approach dynam-
ically simulates the derivatives of the velocity field in
the same framework for simulating the velocity field it-
self. A novel multiple shooting scheme was designed for
matching multiple keyframes, and the adjoint method was
adopted by McNamara et al. [29] to significantly improve
the efficiency of these derivative evaluations. At the same
time, an efficient and novel technique to match smoke
density against user-specified distributions was reported
by Fattal et al. [13], which involves a custom-designed
driving-forces term and a smoke-gathering term. Mean-
while, another efficient method based on the level sets of
the smoke was introduced by Shi and Yu [40]. It can ef-
fectively control the smoke shape without the forcing and
gathering terms in [13]. While these control schemes are
designed for grid-based fluid simulations themselves, our
particle-based approach is focused on objects immersed in
a fluid and does not attempt to determine forces acting on
the fluid itself.

An alternative to constrained simulation is fluid edit-
ing, or constructive methods for defining flows. Pidgin
et al. [35] extract an Advected Radial Basis Function
(ARBF) model from Eulerian simulations, which a user
can control to a certain extent by editing the path lines of
the particles and maintaining coherence by enforcing spa-

tiotemporal constraints. To simulate and control breaking
waves, Mihalef et al. [30] introduced the Slice Method,
in which a library of 2D breaking waves is used to inte-
grate 3D shapes while controlling the 3D geometry. The
subsequent dynamics is then computed with the aid of a
3D Navier–Stokes solver. Their algorithm is efficient and
physical, but the tradeoff is a lack of precise control over
the final output. However, their approach is similar to ours
in its use of a library of precomputed solutions as the basis
for a final answer.

Data-driven motion editing and synthesis. Data-driven
motion editing and synthesis typically addresses human
motion. Captured motion data usually have a high tem-
poral resolution and can be considered as a temporal
signal. Therefore, warping and signal processing oper-
ations can be applied to modify the motion to achieve
certain goals. Early work should thus be classified as
motion editing rather than synthesis [5, 47, 51]. Recent
work on data-driven motion synthesis breaks long mo-
tion sequences into segments and builds a graph with
connections among the segments where a smooth tran-
sition is possible [2, 4, 23, 25, 26, 37, 42, 52]. Novel se-
quences are generated by random or controlled walk on
the graph. Choi et al. [10] extended motion synthesis
to motion planning using captured data and probabilis-
tic roadmaps. Arikan et al. [2] presented a technique for
satisfying both annotation and position constraints in
an open field, but the ability to avoid obstacles is not
demonstrated. James and Fatahalian [22] applied data-
driven synthesis to real-time deformation and rendering
by precomputing a motion database and then synthesiz-
ing impulse-driven novel motion on the fly. We build upon
these techniques in creating initial trajectories for our ob-
jects.

2 Overview

A dataflow diagram of our system is given in Fig. 1.
The input to our problem includes a set of lightweight
rigid objects with six DOFs, their initial configurations
(mass, positions, velocities, etc.), a set of user-specified
constraints (positions, velocities, and even accelerations
of certain objects at specific times), and the environmen-
tal configuration including a set of obstacles. The output
includes the complete specifications of the DOFs of the
objects at every frame of an animation. In addition, the ob-
jects should have plausible motion in a gaseous medium,
reflecting characteristics of the underlying fluid motion.
In particular, the object motion should appear to be di-
vergence free and continuous. The user controls the final
result via the set of constraints. There are two convenient
ways to specify the constraints, keyframes and partial tra-
jectories. A keyframe specifies the positions of all the ob-

Controllable motion synthesis in a gaseous medium 477

Fig. 1. System overview

jects at a particular time simultaneously, while a partial
trajectory specifies a subsequence of the positions of a sin-
gle object.

In this problem, the objects have passive motion
largely controlled by the gas. To reflect interesting mo-
tion of the fluid, we need a reasonably accurate CFD
algorithm, while the objects can be modeled in a sim-
ple manner. We use particles as the dynamic model for
both the gaseous medium and the objects. The gas con-
sists of a number of particles coupled together using SPH
(Appendix B). Each object is approximated with a small
number of particles whose relative positions are fixed
throughout the animation. Gas particles and object par-
ticles are labeled differently and have different masses.
Gas particles also interact with object particles following
SPH, while different objects do not directly interact with
each other.

We cast this problem as a spacetime constrained opti-
mization, which is the last stage in Fig. 1. Since the gas
and object particles have interactions, the unknowns in-
clude the positions and velocities of all the particles at
all frames. The SPH equations of motion as well as user-
specified controls are set up as optimization constraints.
Directly optimizing such a large-scale problem without
a reasonable initialization would be infeasible. We actu-
ally devise a data-driven motion synthesis algorithm to
generate initial trajectories of the objects before nonlin-
ear optimization. The initial trajectories are synthesized
using a method similar to those in Lee et al. [25], Ko-
var et al. [23], and Arikan et al. [2]. However, our syn-
thesis method is based on robotic motion planning [6,
24] and therefore can avoid obstacles as well as sat-
isfy position constraints. Since such a synthesis requires
a large motion database to start with, we synthetically
run gaseous simulations using the method of Fedkiw et
al. [14] with a number of combinations of force fields
and obtain a spacetime dataset from each simulation. We
trace motion trajectories from all simulations to form the
database. This database is precomputed only once and
used to generate initial trajectories for all examples in this
paper.

We also model forces explicitly since they are re-
sponsible for interesting motion. All the forces together
are modeled as a force field that is further decomposed

into two components: a vortex force field with zero diver-
gence but nonzero curl and a laminar field with smooth
force vectors. Every trajectory from the motion database
is annotated with the type of force field that generated
it during gas simulations. During optimization, if a seg-
ment of an initial trajectory is annotated with a vortex
field, a parametric vortex model is fit to the forces along
the trajectory first. We carry out vortex fitting and the
aforementioned spacetime optimization in two alternating
passes.

3 Precomputing the trajectory database

In this section, we discuss the steps in building the motion
database for subsequent motion planning. Since this part
is not the focus of this paper, we only present the outline
of the steps and refer the reader to the relevant papers for
further details.

3.1 Fluid simulation

Building the database requires a large number of sam-
ple trajectories. Since capturing trajectories from the real
world seems infeasible and fluid simulation has become
quite mature recently, we collect the sample trajectories
from grid-based gaseous simulations using the algorithm
of Fedkiw et al. [14], which can produce high-quality re-
sults. This overall approach is similar to the precomputa-
tion stage in James and Fatahalian [22], which focuses on
deformable objects.

We use a 64×64×64 grid with the Neumann bound-
ary condition. We run a number of simulations each of
which has a distinct force field and an optional set of sim-
ple obstacles, such as boxes and cylinders. Each force
field is superposed from multiple vortex fields and wind
fields. The vortex fields are defined parametrically as in
Appendix C, and the wind fields have parallel force vec-
tors with a deteriorating strength in both space and time.
We start tracing a trajectory from the center of a voxel
in the first frame of a simulation and keep tracking the
trajectory from frame to frame by following the vel-
ocity vectors until the last frame or the boundary of the
work space has been reached. Each point on the trajec-
tory is annotated with the type of force field present in
its neighborhood. Since the simulation grid has an un-
necessarily large number of voxels, we only trace a tra-
jectory from a subset of the voxels uniformly distributed
in the simulation grid. According to our experiments,
the degree of freedom in the shape of the trajectories
is not overly large. We stop observing new trajectory
shapes once the number of simulations exceeds a certain
threshold or the length of the simulations exceeds a cer-
tain duration. Thus, we empirically decide the number
of simulations we need and the duration of the simula-
tions.

478 L. Shi et al.

3.2 Compression and clustering

The amount of raw trajectory data is too large to be con-
veniently used for any subsequent steps. Thus we need to
perform segmentation, compression, and clustering. Seg-
mentation partitions each complete trajectory into shorter
segments, which are considered as motion units that can
be rejoined during motion synthesis. We compute a curva-
ture at every point on the trajectory and classify high cur-
vature portions of the trajectory as features. We maintain
the integrity of the features by partitioning the trajectory at
points with locally minimal curvature. The segments thus
obtained have various lengths. Segments with approxi-
mately the same length are grouped together and truncated
to have exactly the same length. Further compression and
clustering are performed separately on each group. We
use singular value decomposition (SVD) to compress the
segments as in James and Fatahalian [22]. Note that SVD
reduces not the number of segments but the dimensional-
ity required to represent each segment.

In the next step, tree-structured vector quantization
(hierarchical k-means clustering) [19] is performed to or-
ganize the segments from each group into tree structures,
which are very efficient for nearest neighbor search. Each
group starts from a small number of clusters obtained from
an initial k-means clustering. Each of the initial clusters
is recursively split into smaller ones that have correspond-
ing nodes in an accompanying tree structure (Fig. 2). An
internal node of the tree contains a representative of the
segments in its subtree.

Fig. 2. a An initial cluster of trajectory segments is recursively split
into smaller ones until they only have one segment each. b There
is a tree structure corresponding to this recursive splitting process.
Each node in the tree contains a representative of the segments
in its subtree. The segments in the original cluster are distributed
among the leaf nodes

4 Stylistic motion planning

One of the goals of robotic motion planning is to search
for a path between a source and a destination while avoid-
ing obstacles. By stylistic motion planning we mean that
in addition to path searching, the trajectory and the veloci-
ties along the trajectory should mimic the motion style of

a class of natural objects. For example, suppose we would
like to move a synthetic feather from a source to a des-
tination in the air. Stylistic motion planning should find
a motion that not only satisfies the position constraints but
also makes the fake feather float and tumble like a real
one.

We designed a technique to achieve stylistic motion
planning by generalizing a probabilistic robotic motion
planning algorithm called Rapidly-Exploring Random
Trees (RRTs) [6, 24]. The idea is to adapt this algorithm to
assemble a path only using trajectory segments from the
precomputed motion database. The trajectory segments
represent motion units with a certain desired style.

Motion planning based on RRTs does bidirectional
path planning by extending two random trees from the
source and destination. During the planning, new path seg-
ments avoiding obstacles are appended to the leaves or
internal nodes of the two trees in a probabilistic manner
so that both trees keep growing until a segment from one
tree comes into contact with a segment from the other,
which indicates a path has been found. This technique can
achieve better performance than other existing path find-
ing algorithms, including probabilistic roadmaps used by
Choi et al. [10]. In the original RRTs, all the path segments
have the same shape, such as a line segment or a circu-
lar arc, and there are no continuity requirements between
consecutive segments in a path.

In our stylistic planning, every branch on the two trees
has to be a segment sampled from the motion database.
Adjacent segments in the trees are likely to be different. In
addition, consecutive branches should maintain a certain
degree of continuity to make the final motion look natu-
ral. In order to be able to evaluate the smoothness of the
connection between two consecutive segments as well as
facilitate smooth blending between them, we enforce an
overlapping portion between them.

To extend a new segment from one tree, we randomly
generate a seed point in the search space and identify the
closest node from the tree as the seed node (Fig. 3). We
search the database to sample a segment that satisfies two
conditions. (1) the segment can be smoothly connected
to the parent branch at the seed node after a rigid body
transformation. (Note that the path may become unphys-
ical once a rigid body transformation has been applied.
However, the subsequent optimization introduced in the
next section can remove the artifacts.) (2) Once one end-
point of the segment is attached to the seed node, the
other endpoint is closest to the seed point (Fig. 3a). If
the sampled segment hits any obstacle (collision detec-
tion) once in position, we simply discard the segment and
regenerate a seed point. Otherwise, we compute the min-
imum connection cost between the new branch and any
branch in the other tree and update the minimum con-
nection cost between the two trees. The connection cost
between two branches measures the total amount of trans-
lation and rotation necessary for a smooth connection and

Controllable motion synthesis in a gaseous medium 479

Fig. 3. Path planning by growing two probabilistic trees from the
source and destination, respectively. Top: A new segment (dashed
branch) is inserted into the source tree given a seed point. Bottom:
a path (dashed) is found when two branches from the two trees
become connected

will be formally defined in Eq. 1. The planning process
stops whenever the minimum connection cost drops below
a threshold or a maximum number of tree branches have
been grown.

In the next stage, we form a path between the source
and destination by joining the two tree branches (one from
each tree) that actually achieve the minimum connection
cost between the two trees (Fig. 3b). Obviously, this last
connection introduces the worst continuity in the whole
path. Therefore, we uniformly redistribute the discontinu-
ity to all connections in the path. For efficiency, so far
we have been using the representative segments at the top
level of the tree-structured clusters in the database. Next,
we refine the continuity at all connections by descending
into lower levels of the clusters. Since every segment si in
the path except the first and the last has two connections
with its preceding and following segments, we traverse the

subtree rooted at si in the database to potentially find an-
other segment that gives the optimal continuity at these
two connections. Finally, we blend every two consecutive
segments in their overlapping portion.

To significantly improve performance, we precompute
a lookup table that records the connection cost between
any pair of representative segments at the top level of the
tree-structured clusters. This computation only considers
the overlapping portion of the segments (the tail window
of the first segment and the head window of the second
segment) and finds a translation/rotation matrix M such
that those two windows will have best matching. This is
equivalent to the following minimization:

argminM

∑

j

‖x j
1 − Mx j

2‖2 , (1)

where x j
i s represent the points in the two windows. Note

that the L2 norm can be replaced by other measures.
An approximate solution for the matrix M can be found
by solving the principal axes of the two windows using
principal component analysis (PCA) and aligning the two
local frames defined by the two sets of principal axes.
At a smaller computational cost, this approximate solution
provides very good results in practice compared to true
optimization. If the connection cost estimated using the
matrix M is larger than a threshold, we mark the corres-
ponding entry of the lookup table as “not connectible”;
otherwise we record the matrix in the table.

5 Optimization

We resort to a large-scale spacetime optimization at the
end to improve the initial dynamic appearance produced
by motion planning as well as better enforce additional
constraints other than position constraints. The motiva-
tion is twofold. Certain transitions in motion planning may
not be physically realizable since the segments were sim-
ply concatenated and blended together. Furthermore, spa-
tial coherence due to fluid motion was not enforced since
the trajectories for multiple objects were planned inde-
pendently. Although we follow SPH (Appendix B) in this
section, the basic ideas of optimization can be presented
relatively independently of the details in the SPH formu-
lations. In the remainder of this section, we will focus on
these basic ideas.

The optimization searches for a plausible fluid dy-
namic simulation that satisfies all user-defined require-
ments. Since the objects and gas are coupled together with
interactions, we need to define a work space filled with gas
particles in addition to the object particles, even though
the final solution we seek only concerns the objects. We
choose to consider the state variables (positions) of all
the particles and their derivatives as the set of unknowns.

480 L. Shi et al.

Thus, the actual SPH formulations are enforced as addi-
tional optimization constraints. The initial trajectories of
the object particles are obtained from path planning, while
the gas particles are initially positioned on a regular grid
with zero velocities.

In addition to the state variables of the particles and
their derivatives, the force field also needs optimization.
We employ a hybrid representation of the force field,
parametric vortex fields plus a nonparametric wind field,
which is required to have smooth direction and magni-
tude throughout the 4D spacetime. A vortex is basically
a rotational vector field with a field strength deteriorat-
ing with distance and time. A parametric vortex model
(Appendix C) is a 4D function of space and time and is
denoted as fvtx(x, t).

Let us denote the state of all the particles as q =
{xi}n−1

i=0 and its derivative as q̇ = {vi}n−1
i=0 . For the jth

frame, we denote the state variables and their derivatives
as qj = {x j

i }n−1
i=0 and q̇j = {v j

i }n−1
i=0 , respectively, where x j

i
and v

j
i indicate the position and velocity, respectively,

of the ith particle in the jth frame. Thus, the complete
set of variables that need optimization is represented as
S = {qj, q̇j, {F j

i }n−1
i=0 |0 ≤ j < f }, where F j

i represents the
force vector at x j

i . Note that F j
i = Fvtx4d(x j

i , j)+h j
i +

mi g, where Fvtx4d(x j
i , j) represents the accumulated vor-

tex force at x j
i , h j

i represents the wind force at x j
i , and mi g

is the gravity. In what follows, we actually only consider
the vortex component of F j

i as a free variable while the
wind component is implicitly constrained.

Our spacetime optimization is a constrained optimiza-
tion with a cost function and a set of hard constraints.
The user-defined requirements are treated as hard con-
straints. The complete set of such constraints is denoted as
C(S) = {C j

k |0 ≤ k < mj, 0 ≤ j < f }, where mj is the num-
ber of constraints at the jth frame and C j

k is a constraint
on either x j

i or v
j
i . For example, a constraint C j

k on x j
i has

the form ‖x j
i −ok‖ ≤ bk. A strict positional constraint is

imposed when bk is set to zero. A constraint on v
j
i can be

defined similarly.
The cost function for the optimization consists of three

terms:

E(S) = c1 Ex(S)+ c2Ev(S)+ c3Ec(S) , (2)

where cis are coefficients indicating the importance of
each term, Ex and Ev represent the penalty terms to en-
force the SPH formulation, and Ec represents the spa-
tiotemporal smoothness of the velocity field. To explain
the details in these terms, let us consider the jth frame.
Given the particle positions and velocities associated with
the (j −1)th frame, we should be able to run SPH simu-
lation for one frame and predict these quantities for the
jth frame. Let us denote the predicted quantities as x̃ and
ṽ. If the SPH formulation is strictly observed, x j

i = x̃ j
i

and v
j
i = ṽ

j
i . Otherwise, we penalize the discrepancies be-

tween them.

Ex(S) =
∑

ij

‖x̃ j
i − x j

i ‖2 ,

Ev(S) =
∑

ij

‖ṽ j
i −v

j
i ‖2 . (3)

Note that the SPH formulation is not enforced as hard
constraints in the optimization simply to make it tractable
because a large number of hard constraints are much more
expensive to maintain than soft penalty terms.

To enforce the spatiotemporal smoothness of the vel-
ocity field, we require the velocity at x j

i to be close to the
average velocity of nearby particles in the same frame as
well as average velocity of the same particle in the previ-
ous and subsequent frames; thus Ec has the form:

Ec(S) = c3,1

⎛

⎝v
j
i −

∑
k∈N j

i
v

j
k

|N j
i |

⎞

⎠
2

+ c3,2

⎛

⎝v
j
i −

∑ j+w
k= j−w vk

i

2w

⎞

⎠
2

, (4)

where coefficients c3,1 +c3,2 = 1, N j
i represents the index

set of the neighboring particles of x j
i in the jth frame, and

w represents the size of the temporal window.
Compared to traditional spacetime constraints [50],

our formulation introduces particle velocities as additional
variables in the optimization while not directly optimiz-
ing the wind forces. This is because the SPH equations do
not allow the velocities to be easily expressed as finite dif-
ferences of positions. Therefore, they cannot be treated as
derived variables. On the other hand, it is no longer neces-
sary to optimize the wind forces because the smoothness
of the velocity field implicitly constrains the wind forces.

We optimize the cost E(S) and vortex force fields in
two alternating stages, giving vortex fields higher prior-
ity because they introduce interesting fluid motion. Given
an estimate of the x j

i and v
j
i , we can estimate F j

i from
Eq. 9. Meanwhile, we also inherit the annotations on the
object trajectories obtained from motion planning. When
a segment of the trajectories is annotated with a vortex
field, we fit the parametric spatiotemporal vortex model to
the estimated forces at the points along that segment. The
parameters of a vortex model include the spatiotemporal
center, orientation, strength, and duration. After the vor-
tex fitting stage, we fix the vortex fields and optimize E(S)
subject to constraints to update all the state variables ex-
cept the user-defined ones. We alternate these two stages
a few times to obtain the final solution. The optimization is
carried out using sequential quadratic programming [18].

Controllable motion synthesis in a gaseous medium 481

There are two additional details regarding this large-
scale optimization. First, to make the initial trajectories
from path planning have sufficient influence on the fi-
nal solution, we allow gradually larger deviations from
the initial trajectories as the optimization progresses.
At the beginning, every point on the trajectories is en-
forced as a position constraint with gradually increasing
radius. When the radius has become sufficiently large,
we then remove the position constraint. Without this
strategy, the initial trajectories may be destroyed fairly
early in the optimization process without much influ-
ence on the final solution. Second, it may not be feasible
to optimize all the variables simultaneously on a ma-
chine with a limited amount of memory. We only opti-
mize a subset of the variables at a time with the rest of
the variables fixed. The optimization is performed re-
peatedly on disjoint subsets of variables but does not
wait until convergence on each subset to avoid local
minima.

6 Rotation refinement

Since we only use a small number of particles to repre-
sent each object during the spacetime optimization using
SPH, we do not expect the rotational components to be
very accurate. Therefore, we only obtain the translational
component at the center of mass of each object by averag-
ing the translations of all the particles of that object. More
accurate rotational components with better visual effects
are estimated in a postprocessing step where a polygonal
model is used for each object.

The rotation of the objects in an animation is based
on a simulated torque from air resistance. The force that
creates the torque is a drag force that acts in the opposite
direction of the velocity of the moving object. The formula
for the magnitude of this drag force is

Fd = 0.5 cd ρ v2 A , (5)

where cd is the drag constant specific to the object, ρ is
the density of the gaseous medium, v is the velocity of the
center of mass of the object, and A is the foreshortened
area over which the force acts.

In order to approximate the torque efficiently, the shape
of the object is projected onto a plane perpendicular to the
direction of the drag force acting on the object. A new
coordinate system within this plane is centered on the ob-
ject’s center of mass. The object is then rasterized, and
the torque on the object is compiled by iterating across
all the pixels covered by this projected object. The ori-
ginal torque equation simplifies to two separate ones (one
for each dimension within the plane in this new coordi-
nate system). After calculating and summing the torques
contributed by individual pixels, the resulting accumu-

lated torque is still specified in this new coordinate sys-
tem. A simple transformation from this local frame to
the global coordinate system gives the torque in terms of
the global coordinates. The torque and angular velocity
of the object can then be integrated in order to animate
the object. In addition, damping based on the object’s
angular velocity can be used to simulate rotational drag
forces.

7 Results

To create the models used in the animations, digital pho-
tographs of leaves and feathers are used. The shapes are
outlined and then triangulated, and these resulting meshes
are texture-mapped with the original images. The vertices
of the models are displaced in order to curve the leaves and
feathers. The models are aligned with one particular axis
and centered such that any rotation is about this center of
mass.

Multiple examples are shown in Figs. 4–9. These ex-
amples either involve a single object or multiple objects.
Figures 4 and 5 use one single feather to demonstrate our
stylistic path planning technique. In such an example, we
always specify a source, where the feather should take off,
and a destination, where it is supposed to land. In add-
ition, constraints or obstacles are also placed in the middle
of the trajectory. Figure 4 shows two examples with in-
termediate position constraints and another two examples
with partially constrained trajectories. In these examples,
the whole trajectory is actually divided into a few nonover-
lapping portions each of which has its own starting and
ending points, and each nonconstrained portion of the tra-
jectory is planned separately using our algorithm while
a desired level of continuity between consecutive portions
is maintained. Figure 5 shows obstacle avoidance by plac-
ing a maze between the source and destination. Note that
we still perform optimization on the planned trajectories
along with additional fluid particles, even though there is
only one trajectory in each example. For a 300-frame tra-
jectory, the path planning stage took less than 15 min on an
AMD 2100+ processor. The optimization stage took ap-
proximately 2 h.

Figures 6–9 demonstrate fluidlike group behaviors by
using multiple objects such as leaves and feathers. Typ-
ically, there is one or more keyframes in each of these
examples. Each keyframe specifies the positions of all
the objects. The velocities at a keyframe can also be con-
strained as an option. The objects must satisfy these con-
straints simultaneously. The examples show two types of
keyframes. The first type specifies a static configuration
that should be satisfied when the objects fall to the ground,
while the second type is inserted in the middle of an an-
imation when the objects are still moving. Because mul-

482 L. Shi et al.

Fig. 4. Top row: Two examples of single object motion that satis-
fies two intermediate position constraints (red and green spheres).
Bottom row: Two examples of single object motion with a par-
tially constrained trajectory (blue spirals). The white sphere is the
source and the cylinder on the dart board is the destination. All
trajectories are generated with path planning and optimization

Fig. 5. An example of stylistic path planning with obstacle (maze)
avoidance. The white sphere is the source and the cylinder on the
dart board is the destination

Fig. 6. Leaves fall onto the ground, forming letters

tiple objects indirectly interact with each other, the opti-
mization stage becomes slower to converge and, therefore,
more expensive. For a 300-frame animation, it took ap-
proximately 5 h for the optimization to converge, while the
motion planning stage typically took less than 2 h.

Note that the motion database is precomputed and the
same database is used for all the examples. In all the ex-
amples, the total number of gas particles is 2500 and the
number of object particles is 125. The actual number of
variables in the optimization is approximately six times as
many as the number of particles since each particle needs
six variables to describe its position and velocity. A small
number of extra variables are necessary for the parameters
in the vortex model.

After optimization, the strength of the vortices and
the strength of the wind fields are typically comparable
with the same order of magnitude. The wind fields change
smoothly with time and location. The average duration of
a vortex is about 7 s. The average diameter of a vortex is
around one third of the width of the simulation volume.

8 Conclusions and discussions

In this paper, we developed a method to realistically
synthesize controllable motion for a single or a group
of lightweight rigid objects in a gaseous medium. We
adopted an interesting formulation that considers this
problem as a large-scale spacetime optimization with user
requirements and fluid motion equations as constraints. To
make this problem tractable, we designed a novel tech-
nique to solve the optimization by taking results from
a data-driven motion synthesis approach as initial so-
lutions and extracting vortex fields in a separate stage
using both annotations and parametric model fitting. Ex-
periments indicate our method can effectively generate
desirable results.

In our experiments the user can usually obtain a sat-
isfactory profile of the trajectories from the motion plan-
ning stage. The motion synthesis algorithm is fast (one
set of results typically takes about 10 min), so animators
can redo the motion planning and/or impose more require-

Controllable motion synthesis in a gaseous medium 483

Fig. 7. Leaves form different shapes in the air

Fig. 8. Leaves form shapes on the ground after being disturbed by external forces

ments upon the system if they are not satisfied with the
results. Once acceptable initial trajectories are obtained,
optimization makes them more coherent and fluidlike. At
this stage, usually only relatively small changes will be
made to the motion.

Performance of the optimization system is not easy to
predict given a set of trajectories and constraints. How-

ever, the cost function never increases on an iteration,
so the “goodness” of the result is always improving.
Animators can stop once acceptable results are gener-
ated.

We use incompressible SPH formulas to simulate air
because only the objects inside are of interest, not the
whole particle set. But this fluid model is only enforced

484 L. Shi et al.

Fig. 9. Feathers fall onto the ground, forming a pattern similar to a painting (rightmost)

through soft constraints, so a little compressibility is al-
lowed to make the system less stiff.

A Notation

m Mass t Time
ρ Density x Position
P Pressure v Velocity
τ Thermal energy q State
E Cost function �v XSPH variant

F Force

B Smoothed particle hydrodynamics

Smoothed particle hydrodynamics represents a fluid as
a collection of moving elements, particles, with local fluid
characteristics. Each particle has a mass, position, and vel-
ocity and is influenced by forces such as gravity. In add-
ition, an SPH particle also has local fluid characteristics
such as density and pressure. The idea behind SPH is the
determination of characteristics of fluid by interpolating
from the set of unorganized particles. The interpolation is
performed as a weighted sum over particles within a local
region defined by a smoothing length h. The weighting
scheme is defined by a smoothing kernel w(r, h), which
can be a Gaussian or a polynomial with a finite support.
The smoothing length defines the scale of the support.
As an example, the smoothed estimate of the density

at particle i can be formulated as ρi = ∑
j mjwij , where

wij = w(‖xi − xj‖, h).
Computing the gradient of an interpolated property is

done using the gradient of the smoothing kernel, giving
a smoothed estimate of the gradient of the property. Thus,
the SPH versions of the Lagrangian equations of motion,

dρ

dt
= −ρ∇ ·v (6)

dv

dt
= −1

ρ
∇ P (7)

dτ

dt
= − P

ρ
∇ ·v , (8)

can be written as:
dρi

dt
=

∑

j

mjvi j ·∇iwij ,

dvi

dt
= −

∑

j

mj

(
Pi

ρ2
i

+ Pj

ρ2
j

+Πij

)
∇iwij + Fi , (9)

dτi

dt
= 1

2

∑

j

mj

(
Pi

ρ2
i

+ Pj

ρ2
j

+Πij

)
vi j ·∇iwij ,

where vi j = vj −vi , Πij is an artificial viscosity added
to handle shocks, and Fi is the external force on par-
ticle i . The interpretation of other notations is given in
Appendix A. These three equations maintain the conser-
vation of mass, momentum, and thermal energy, respec-
tively. Particle interactions are implicitly handled by the
smoothing kernel.

Controllable motion synthesis in a gaseous medium 485

In addition to these equations, an equation of state
must be used to fully describe the behavior of fluid. This
equation defines a functional relationship between tem-
perature, density, and pressure. An example of the equa-
tion for an ideal gas is P = (γ −1)ρτ , where γ is a param-
eter that depends on the gas being simulated.

To put these equations in perspective, we summarize
the steps a typical SPH simulation goes through. Particles
are initialized to have an initial position, velocity, mass,
and energy, and the system is evolved as follows:

Update particle densities
Update particle pressures using

the equation of state
while (time < end_of_time)
for all particles
Calculate acceleration due to pressure

gradient
Calculate rate of change of thermal

energy
for all particles
Update position
Update velocity
Update thermal energy

Update particle densities
Update particle pressures
Calculate new time step
time += new_timestep

Appropriate numerical schemes for SPH include the
leapfrog algorithm and Runge–Kutta methods. Because of
the finite smoothing length, the number of pairwise inter-
actions is actually proportional to the number of particles,
making SPH simulations efficient if a spatial data structure
is used.

In order to simulate incompressible or nearly incom-
pressible (such as a stiff gas) fluids, Monaghan [32, 33]
adapted the original SPH. To prevent interpenetrations,
a velocity correction, called the XSPH variant, is added
when the particle positions are updated. XSPH variant is
defined to be

�vi = ε
∑

j

mjvji

ρ̄ij
wij , (10)

where ρ̄ij = (ρi +ρj)/2. A particle position is updated as
follows:

x′
i = xi +�t(vi +�vi) . (11)

In addition, a different equation of state, which keeps com-
pressibility below a few percent, is also adopted:

Pi = P0

[(
ρi

ρ0

)γ

−1

]
, (12)

where P0 is the reference pressure.

C A parametric vortex model

A vortex in 3D can be defined parametrically using a pair
of poles p1 and p2 as follows [27]:

fvtx3d(x) = ω
(r0 · r1/‖r1‖− r0 · r2/‖r2‖)

4π‖r1 × r2‖2 r1 × r2 , (13)

where r0 = p2 − p1, r1 = x − p1, r2 = x − p2, and ω is
the strength of the vortex. We define a spacetime vortex as
fvtx(x, t) = G(t) fvtx3d(x), where G(t) is a Gaussian in the
temporal space.

References
1. Anderson M, McDaniel E, Chenney S

(2003) Constrained animation of flocks. In:
SCA ’03: Proceedings of the 2003 ACM
SIGGRAPH/Eurographics symposium on
computer animation, pp 286–297.
Eurographics Association, Aire-la-Ville,
Switzerland

2. Arikan O, Forsyth DA, O’Brien JF (2003)
Motion synthesis from annotations. ACM
Trans Graph 22(3):402–408

3. Barzel R, Hughes JF, Wood DN (1996)
Plausible motion simulation for computer
graphics animation. In: Proceedings of the
Eurographics workshop on computer
animation and simulation ’96. Springer,
Berlin Heidelberg New York, pp 183–197

4. Brand M, Hertzmann A (2000) Style
machines. In: SIGGRAPH ’00: Proceedings
of the 27th annual conference on computer
graphics and interactive techniques. ACM

Press/Addison-Wesley, New York,
pp 183–192

5. Bruderlin A, Williams L (1995) Motion
signal processing. In: SIGGRAPH ’95:
Proceedings of the 22nd annual conference
on computer graphics and interactive
techniques. ACM Press, New York,
pp 97–104

6. Cheng P, Shen Z, LaValle SM (2001)
Rrt-based trajectory design for autonomous
automobiles and spacecraft. Arch Control
Sci 11(3–4):167–194

7. Chenney S (2004) Flow tiles. In: SCA ’04:
Proceedings of the 2004 ACM
SIGGRAPH/Eurographics symposium on
computer animation. ACM Press, New
York, pp 233–242

8. Chenney S, Forsyth DA (2000) Sampling
plausible solutions to multi-body constraint
problems. In: SIGGRAPH ’00: Proceedings

of the 27th annual conference on computer
graphics and interactive techniques. ACM
Press/Addison-Wesley, New York,
pp 219–228

9. Chenney S, Forsyth DA (2000) Sampling
plausible solutions to multi-body constraint
problems. In: SIGGRAPH ’00: Proceedings
of the 27th annual conference on computer
graphics and interactive techniques. ACM
Press/Addison-Wesley, New York,
pp 219–228

10. Choi MG, Lee J, Shin SY (2003) Planning
biped locomotion using motion capture
data and probabilistic roadmaps. ACM
Trans Graph 22(2):182–203

11. Desbrun M, Cani MP (1999) Space-time
adaptive simulation of highly deformable
substances. Technical report, INRIA

12. Enright D, Marschner S, Fedkiw R (2002)
Animation and rendering of complex water

486 L. Shi et al.

surfaces. In: SIGGRAPH ’02: Proceedings
of the 29th annual conference on computer
graphics and interactive techniques. ACM
Press, New York, pp 736–744

13. Fattal R, Lischinski D (2004) Target-driven
smoke animation. ACM Trans Graph
23(3):441–448

14. Fedkiw R, Stam J, Jensen HW (2001)
Visual simulation of smoke. In:
SIGGRAPH ’01: Proceedings of the 28th
annual conference on computer graphics
and interactive techniques. ACM Press,
New York, pp 15–22

15. Foster N, Fedkiw R (2001) Practical
animation of liquids. In: SIGGRAPH ’01:
Proceedings of the 28th annual conference
on computer graphics and interactive
techniques. ACM Press, New York,
pp 23–30

16. Foster N, Metaxas D (1997) Controlling
fluid animation. In: CGI ’97: Proceedings
of the 1997 international conference on
computer graphics. IEEE Press,
Washington, DC, pp 178–188

17. Foster N, Metaxas D (1997) Modeling the
motion of a hot, turbulent gas. In:
SIGGRAPH ’97: Proceedings of the 24th
annual conference on computer graphics
and interactive techniques. ACM
Press/Addison-Wesley, New York,
pp 181–188

18. Fsqp software.
http://gachinese.com/aemdesign
/FSQPframe.htm. Originally developed at
the Institute for Systems Research,
University of Maryland

19. Gersho A, Gray RM (1992) Vector
quantization and signal compression.
Kluwer, Norwell, MA

20. Gingold R, Monaghan J (1977) Smoothed
particle hydrodynamics: theory and
application to non-spherical stars.
Monthly Notices R Astron Soc
181(2):375–389

21. Hadap S, Magnenat–Thalmann N (2001)
Modeling dynamic hair as continuum.
Eurographics Proceedings. Comput Graph
Forum 20(3):329–338

22. James DL, Fatahalian K (2003)
Precomputing interactive dynamic
deformable scenes. ACM Trans Graph
22(3):879–887

23. Kovar L, Gleicher M, Pighin F (2002)
Motion graphs. In: SIGGRAPH ’02:
Proceedings of the 29th annual conference
on computer graphics and interactive
techniques. ACM Press, New York,
pp 473–482

24. Kuffner J, LaValle S (2000) Rrt-connect: an
efficient approach to single-query path
planning. In: Proceedings of the IEEE
international conference on robotics and
automation, pp 995–1001

25. Lee J, Chai J, Reitsma PSA, Hodgins JK,
Pollard NS (2002) Interactive control of
avatars animated with human motion data.
In: SIGGRAPH ’02: Proceedings of the
29th annual conference on computer
graphics and interactive techniques. ACM
Press, New York, pp 491–500

26. Li Y, Wang T, Shum HY (2002) Motion
texture: a two-level statistical model for
character motion synthesis. In: SIGGRAPH
’02: Proceedings of the 29th annual
conference on computer graphics and
interactive techniques. ACM Press, New
York, pp 465–472

27. Ling L, Damodaran M, Gay R (1996)
Aerodynamic force models for animating
cloth motion in air flow. Visual Comput
12(2):84–104

28. Lucy L (1977) A numerical approach to the
testing of the fission hypothesis. Astron J
82(12):1013–1024

29. McNamara A, Treuille A, Popović Z,
Stam J (2004) Fluid control using the
adjoint method. ACM Trans Graph
23(3):449–456

30. Mihalef V, Metaxas D, Sussman M (2004)
Animation and control of breaking waves.
In: SCA ’04: Proceedings of the 2004
ACM SIGGRAPH/Eurographics
symposium on computer animation. ACM
Press, New York, pp 315–324

31. Miller G, Pearce A (1989) Globular
dynamics: a connected particle system for
animating viscous fluids. Comput Graph
13(3):305–309

32. Monaghan J (1992) Smoothed particle
hydrodynamics. Annu Rev Astron
Astrophys 30:543–574

33. Monaghan J (1994) Simulating free surface
flows with sph. J Comput Phys
110:399–406

34. Müller M, Charypar D, Gross M (2003)
Particle-based fluid simulation for
interactive applications. In: SCA ’03:
Proceedings of the 2003 ACM
SIGGRAPH/Eurographics symposium on
computer animation. Eurographics
Association, Aire-la-Ville, Switzerland,
pp 154–159

35. Pighin F, Cohen JM, Shah M (2004)
Modeling and editing flows using advected
radial basis functions. In: SCA ’04:
Proceedings of the 2004 ACM
SIGGRAPH/Eurographics symposium on
computer animation. ACM Press, New
York, pp 223–232

36. Premože S, Tasdizen T, Bigler J, Lefohn A,
Whitaker RT (2003) Particle-based
simulation of fluids. Eurographics
Proceedings. Comput Graph Forum
22(3):401–410

37. Pullen K, Bregler C (2002) Motion capture
assisted animation: texturing and synthesis.
In: SIGGRAPH ’02: Proceedings of the
29th annual conference on computer
graphics and interactive techniques. ACM
Press, New York, pp 501–508

38. Rasmussen N, Enright D, Nguyen D,
Marino S, Sumner N, Geiger W, Hoon S,
Fedkiw R (2004) Directable photorealistic
liquids. In: SCA ’04: Proceedings of the
2004 ACM SIGGRAPH/Eurographics
symposium on computer animation. ACM
Press, New York, pp 193–202

39. Reynolds CW (1987) Flocks, herds and
schools: A distributed behavioral model. In:
SIGGRAPH ’87: Proceedings of the 14th

annual conference on computer graphics
and interactive techniques. ACM Press,
New York, pp 25–34

40. Shi L, Yu Y (2005) Controllable smoke
animation with guiding objects. ACM
Trans Graph 24(1):140–164

41. Stam J (1999) Stable fluids. In:
SIGGRAPH ’99: Proceedings of the 26th
annual conference on computer graphics
and interactive techniques. ACM
Press/Addison-Wesley, New York,
pp 121–128

42. Tanco LM, Hilton A (2000) Realistic
synthesis of novel human movements from
a database of motion capture examples.
In: HUMO ’00: Proceedings of the
workshop on human motion (HUMO’00).
IEEE Press, Washington, DC, pp 137–142

43. Tang D, Ngo J, Marks J (1995) N-body
spacetime constraints. J Visual Comput
Animat 6:143–154

44. Terzopoulos D, Platt J, Fleisher K (1989)
Heating and melting deformable
models(from goop to glop). In: Proceedings
of Graphics Interface, pp 219–226

45. Tonnesen D (1991) Modeling liquids and
solids using thermal particles. In:
Proceedings of Graphics Interface,
pp 255–262

46. Treuille A, McNamara A, Popović Z,
Stam J (2003) Keyframe control of smoke
simulations. ACM Trans Graph
22(3):716–723

47. Unuma M, Anjyo K, Takeuchi R (1995)
Fourier principles for emotion-based human
figure animation. In: SIGGRAPH ’95:
Proceedings of the 22nd annual conference
on computer graphics and interactive
techniques. ACM Press, New York,
pp 91–96

48. Wei X, Zhao Y, Fan Z, Li W,
Yoakum–Stover S, Kaufman A (2003)
Blowing in the wind. In: SCA ’03:
Proceedings of the 2003 ACM
SIGGRAPH/Eurographics symposium on
computer animation. Eurographics
Association, Aire-la-Ville, Switzerland,
pp 75–85

49. Wejchert J, Haumann D (1991) Animation
aerodynamics. In: SIGGRAPH ’91:
Proceedings of the 18th annual conference
on computer graphics and interactive
techniques. ACM Press, New York,
pp 19–22

50. Witkin A, Kass M (1988) Spacetime
constraints. In: SIGGRAPH ’88:
Proceedings of the 15th annual conference
on computer graphics and interactive
techniques. ACM Press, New York,
pp 159–168

51. Witkin A, Popović Z (1995) Motion
warping. In: SIGGRAPH ’95: Proceedings
of the 22nd annual conference on computer
graphics and interactive techniques. ACM
Press, New York, pp 105–108

52. Yamane K, Kuffner JJ, Hodgins JK (2004)
Synthesizing animations of human
manipulation tasks. ACM Trans Graph
23(3):532–539

Controllable motion synthesis in a gaseous medium 487

53. Yngve GD, O’Brien JF, Hodgins JK (2000)
Animating explosions. In: SIGGRAPH ’00:
Proceedings of the 27th annual conference

on computer graphics and interactive
techniques. ACM Press/Addison-Wesley,
New York, pp 29–36

54. Yoon HY, Koshizuka S, Oka Y (1996)
A particle gridless hybrid method for
incompressible flows. Int J Numer Methods
Fluids 30(4):407 – 424

LIN SHI is a doctoral student in the Depart-
ment of Computer Science at the University of
Illinois at Urbana-Champaign. He received his
M.S. in physics from New York University in
2001 and his B.S. in physics from Fudan Uni-
versity, China, in 1999. His research interests in-
clude physics-based animation and control, mo-
tion planning and optimization, texture synthesis,
mesh processing, and computational geometry.

YIZHOU YU is currently an assistant profes-
sor in the Department of Computer Science at
the University of Illinois at Urbana-Champaign.
He received his Ph.D. in computer science from
the University of California at Berkeley in 2000
and his M.S. in applied mathematics and B.S.
in computer science from Zhejiang University,
China, in 1994 and 1992, respectively. He has

done research in computer graphics and vision
including fluid and hair simulation, image-based
modeling and rendering, texture analysis and
synthesis, visibility and mesh processing, and ra-
diosity and global illumination and has authored
or coauthored more than 30 research papers. He
is a recipient of the 2002 National Science Foun-
dation Career Award and a 1998 Microsoft Grad-
uate Fellowship. His current interests include
data-driven models, physics-based modeling and
animation, texture analysis and synthesis, and
other computer graphics and vision problems.

CHRIS WOJTAN is a graduate student in the
College of Computing at the Georgia Institute
of Technology. His advisor is Professor Greg
Turk, and he is currently supported by the Na-
tional Science Foundation Graduate Research

Fellowship. Chris received his B.S. in com-
puter science at the University of Illinois at
Urbana-Champaign in 2004. During the summer
of 2004 he worked on scientific visualization
at Lawrence Livermore National Laboratory. His
interests include physically based animation and
control of physical simulations.

STEPHEN CHENNEY is an assistant professor at
the University of Wisconsin at Madison. His in-
terest is primarily in animation research, broadly
defined, with results ranging from controlling
simulation to nonphotorealistic rendering of an-
imation. He receieved a B.S. from the University
of Sydney and a Ph.D. in computer science from
the University of California at Berkeley.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

