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Abstract
Computer games and real-time applications frequently adopt mesh skinning as a deformation technique for virtual
characters and articulated objects. Rendering skinned models with global shading effects, such as interreflection
and subsurface scattering, using precomputed radiance transfer enables high-quality real-time display of dynam-
ically deformed objects. In this approach, we need to precompute radiance transfer for many sampled poses.
Resulting datasets reach hundreds of gigabytes, and are orders of magnitude larger than those for a static object.
This paper presents simple but effective large-scale data management techniques so that runtime data communica-
tion, decompression and interpolation can be performed efficiently and accurately. Specifically, we have developed
a mesh clustering technique based on spectral graph partitioning to facilitate interpolation from nearest neighbors
and an incremental clustering method for transfer matrix compression. By exploiting additional data redundancies
among different sampled poses, we can achieve higher compression ratios with the same fidelity. Our incremental
clustering can make the runtime cost of per-frame data decompression and interpolation satisfy a prescribed up-
per bound. As a result, we can achieve real-time performance using the massive precomputed data and an efficient
runtime algorithm.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Three-dimensional Graph-
ics and Realismcolor, shading, shadowing, and texture

1. Introduction

Precomputed radiance transfer (PRT) provides the oppor-
tunity to produce compelling realism with global shading
effects in real time. Originally developed for static scenes
in low-frequency [SKS02, SHHS03] or all-frequency set-
tings [LSSS04, NRH04, WTL04, TS06], PRT has been sub-
sequently extended to fixed animation sequences as well as
deformable objects with shading effects caused by detailed
surface features but without cast shadows [SLS05]. It has
also inspired techniques that produce soft shadows for dy-
namic scenes [ZHL∗05, RWS∗06] as well as algorithms for
real-time lighting design [KAMJ05] and cinematic relight-
ing [HPB06]. However, the generalization of PRT to dy-
namic scenes with global shading effects, such as interreflec-
tion and subsurface scattering, has not been very success-
ful. Our goal is to overcome this limitation on the class of
deformable objects generated by skinning [LCF00, MG03],
which is the most widely adopted deformation technique for

virtual characters and articulated objects in computer games
and real-time applications.

In skinning, there is a set of rigid “bones". Surface defor-
mations are defined as functions of the rigid movements of
nearby bones [LCF00,MG03,JT05]. Such a nature gives rise
to deformations at two different scales. The relative position
among large surface segments, such as the limbs of a virtual
character, may undergo large-scale changes. Nevertheless,
large-scale movements are highly correlated. For example, a
virtual character is typically designated with a few classes of
whole body movements, such as walking, running and danc-
ing. Each class of movements exhibit a high degree of co-
ordination among various body parts [SHP04]. Subspaces
that enclose relevant poses can be identified with a covari-
ance analysis on sample movements. At a smaller scale, de-
formations within each surface region, such as the bulging
of muscles, are smoothly varying, and spatially close points
share similar deformations.
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Figure 1: PRT-based real-time rendering of dynamically deformed objects with global shading effects.

In this paper, we focus on real-time PRT techniques that
can achieve realistic global shading effects, such as inter-
reflection and subsurface scattering, on glossy or translucent
surfaces deformed by skinning. Most importantly, such sur-
face deformation is not precomputed, but dynamically gen-
erated. To be able to produce these global shading effects, we
take the example-based approach that draws many samples
in the pose subspaces for a particular object and precom-
putes radiance transfer for them. Note that during runtime a
dynamically generated pose as well as its associated surface
deformation may be different from all the sampled poses.
Therefore, some type of interpolation from nearest neigh-
bors in the pose space is inevitable.

An important question is what criteria or distance metrics
we should use to search for these nearest neighbors. Pose
similarity should obviously be considered. But pose similar-
ity alone is insufficient. Even a subspace of poses typically
has multiple dimensions. Any practical number of sampled
poses only give rise to a sparse sampling within such a space,
which results in large interpolation errors. On the other hand,
the configuration of a single surface segment lies in a much
lower dimensional space. Therefore, we search for nearest
neighbors for each surface segment separately and then per-
form interpolation using different nearest neighbors for dif-
ferent surface segments. When searching for such segment-
wise nearest neighbors, we also consider similarity in terms
of local PRT data (i.e. the precomputed radiance transfer
matrices). Unlike local geometry, radiance transfer matrices
over a surface segment actually account for global effects
such as scattering and interreflections caused by other sur-
face segments.

Another tough challenge we face is the sheer size of the
data generated by precomputing. Because we need to pre-
compute radiance transfer for every sampled pose, resulting
datasets reach hundreds of gigabytes, and are orders of mag-
nitude larger than those for a static object. We need clus-
tering and compression methods that are better suited for

such large-scale data for the following reasons. First, com-
pressed datasets need to fit into the system memory. Other-
wise, dynamically loading data from hard disks during run-
time would be intolerably slow. Second, because loading all
compressed data into the GPU memory has become infeasi-
ble, effective data compression can reduce per-frame com-
munication overhead between the CPU and GPU. Further-
more, these goals should be achieved without compromising
rendering quality or increasing per-frame data decompres-
sion cost, which is directly related to the frame rate we can
achieve.

In this paper, we present effective clustering and compres-
sion schemes for precomputed radiance transfer matrices so
that the aforementioned runtime data communication, de-
compression and interpolation can be performed efficiently
and accurately. First, we have developed a data segmentation
scheme to facilitate interpolation from nearest neighbors.
Once all the meshes associated with the sampled poses have
been consistently segmented in the surface domain, every
group of corresponding surface segments are further evenly
divided into small groups in the pose domain using spec-
tral graph partitioning and a nonlinear measure that com-
putes similarities in terms of both pose and radiance trans-
fer matrices. Second, we have developed a revised clustered
PCA algorithm for transfer matrices. It incrementally creates
new PCA clusters for data associated with new pose config-
urations. By exploiting additional data redundancies among
different sampled poses, our method can achieve a higher
compression ratio with the same approximation error. Our
incremental clustering can make the cost of per-frame data
decompression and interpolation satisfy a prescribed upper
bound.

In addition, we have designed an efficient runtime algo-
rithm that takes advantage of the precomputed clustering and
compression results while effectively distributing the work-
load among multiple rendering passes. As a result, high-
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(a) Input (b) Consistent Segmentation (c) Mesh Segment Clustering (d) Revised Clustered PCA
Figure 2: A multistage pipeline for data segmentation and clustering in the joint spatio-pose space. (a) PRT data for all
combinations of poses and vertices can be arranged into a large-scale matrix. (b) Consistent segmentation horizontally divides
the matrix into multiple submatrices. (c) Mesh segment clustering reorganizes columns of each submatrix into multiple smaller
clusters. (d) Revised clustered PCA projects each row of the clusters onto the basis vectors of the same PCA cluster to facilitate
runtime interpolation. Vertices in the same PCA cluster are shown with the same pattern.

quality real-time rendering with global shading effects is
achieved.

2. Overview
Since a dynamic articulated object may have a number of
linked parts moving simultaneously, interactively computing
light transport, including glossy reflection, interreflection,
shadowing and subsurface scattering, under environment il-
lumination for such objects is extremely challenging. There-
fore, state-of-the-art techniques can only dynamically gener-
ate soft shadows [RWS∗06], all-frequency shadows [SM06],
or ambient occlusion values [KA06a,KA06b,KA07]. There
exist other limitations with these techniques. In fact, the al-
gorithm in [SM06] can interactively generate shadows for
one moving part only, and only diffuse shading has been
demonstrated on original object surfaces in [RWS∗06].

To achieve all global shading effects on glossy or translu-
cent articulated objects, we take the approach that draws
many samples in the pose subspaces for a particular object,
precomputes radiance transfer for all of them, and interpo-
lates the precomputed transfer matrices during runtime. Note
that the high-level approach of the rendering stage in [JF03]
is similar to ours. Nevertheless, they only devoloped meth-
ods for diffuse surfaces and small elasticity-based deforma-
tions while our articulated objects typically generate defor-
mations at a much larger scale. The data driven approach
adopted by our paper is also used for real-time ambient oc-
clusion in [KA06b]. In their work, a linear model for pre-
dicting ambient occlusion is derived from a set of training
data with various poses. The ambient occlusion is a one di-
mensional scalar value representing the proportion of oc-
clusion while the dimension of the transfer matrix is much
higher, and thus pose a bigger challenge for both data man-
agement and run-time performance. In this paper, we adopt
the basic PRT framework for glossy objects presented in
[SKS02,SHHS03] which account for global shading effects

caused by low-frequency environment lighting using a trun-
cated spherical harmonic basis.

Since we need to sample poses and perform interpola-
tion, we briefly discuss our pose sampling strategy here even
though it is not the focus of this paper. We took multi-
ple representative sequences from the CMU motion capture
database [MoC]. Each sequence represents a distinct type
of whole body motion, such as boxing, dancing, running and
walking. A pose consists of all the joint angles in a specific
skeletal configuration of the object, and there is a pose at
every frame of these sequences. We ran clustered principal
component analysis (CPCA) on all the poses and extracted
a few pose subspace clusters. For each cluster generated this
way, we choose the first eight principle components repre-
senting the variations of pose subspace within that cluster.
We can adjust these eight PCA coefficients to generate new
poses. Since we would like to obtain pose samples that are
distributed more uniformly and widely within each subspace
than the input poses, we resample each subspace by perform-
ing stratified Monte Carlo sampling on the PCA coefficients.
A set of sampled PCA coefficients along with the princi-
ple components are used for generating a sampled pose. Let
C = {p1, p2, ..., pmp} be the set of resampled poses. Note
that we need to generate a deformed surface mesh for ev-
ery sampled pose using skinning and then precompute ra-
diance transfer matrices for these deformed meshes. All the
deformed meshes have the same number of vertices and the
same connectivity among the vertices. Only the vertex po-
sitions have been altered. Let ϒ j = {v j

1,v j
2, ...,v j

nv} be the
complete set of vertices in the deformed mesh for a single
pose pj ∈ C. We can arrange all the vertices within ϒ j into
a single column vector, and arrange such column vectors for
all poses into a matrix, M. Each row of vertices within M
are actually corresponding vertices on different meshes (Fig.
2(a)).

We perform a consistent mesh segmentation across all the
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deformed meshes using the technique in [JT05] to obtain a
set of segments for every mesh. A consistent segmentation
partitions different meshes into the same number of seg-
ments and corresponding vertices on different meshes be-
long to corresponding segments (Fig. 2(b)). Let {ϒ j

k|1 ≤ k ≤
nr} be the segmentation of ϒ j so that ϒ j =

⋃
k ϒ j

k. Next,
we group corresponding segments on different meshes to-
gether and define Ωk = {ϒ j

k|1 ≤ j ≤ M} for 1 ≤ k ≤ nr .
We can imagine that each Ωk is actually a submatrix of M,
and occupies a subset of rows within M. We further run
spectral graph partitioning (Section 3) on each Ωk indepen-
dently to reorganize its columns and evenly distribute them
into smaller clusters each of which typically has 3-8 seg-
ments. Let {Ωk,g|1 ≤ g ≤ nc} be the clusters from dividing
Ωk so that Ωk =

⋃
g Ωk,g. If we move the segments of each

cluster together, we can imagine each cluster as a subma-
trix where each column consists of vertices from the same
mesh segment and each row consists of corresponding ver-
tices from different segments within the same cluster (Fig.
2(c)). The mesh segments within each cluster should exhibit
two types of similarity. If ϒ j1

k and ϒ j2
k belong to the same

cluster, their corresponding poses, pj1 and pj2 , should be
similar, and radiance transfer matrices at corresponding ver-
tices of ϒ j1

k and ϒ j2
k should also be similar. After data seg-

mentation, radiance transfer matrices over all sampled poses
are finally compressed using a revised clustered PCA algo-
rithm.

During runtime, given an input skeletal configuration as
well as the associated surface mesh, which shares the same
segmentation discussed above, we first use the skeleton to
find the most similar pose among the samples. Suppose this
most similar pose is pj, which is then used to find the cluster

Ωk,g j
k

where each mesh segment, ϒ j
k(1 ≤ k ≤ nr), belongs.

Radiance transfer matrices at each row of corresponding ver-
tices within each retrieved cluster of mesh segments are fi-
nally interpolated to generate estimated transfer matrices for
the vertices on the input mesh. There are two major reasons
to perform the aforementioned clustering on each group of
segments Ωk(1 ≤ k ≤ nr). First, the resulting clusters can
accelerate runtime nearest neighbor search. We directly con-
sider the mesh segments in the same cluster as approximate
nearest neighbors. Second, such clustering can accelerate
runtime transfer matrix interpolation once transfer matrices
at corresponding mesh vertices in the same cluster of mesh
segments are compressed using the same set of PCA basis
vectors (Section 4 and Fig. 2(d)).

3. Mesh Segment Clustering
In this section, we apply a spectral graph partitioning al-
gorithm, called normalized cut [SM00], to dividing each
Ωk(1 ≤ k ≤ nr) into smaller clusters of mesh segments. In
the current context, clustering based on normalized cut has
important advantages. First, unlike linear subspace methods,
such as PCA and clustered PCA, normalized cut is based

on local pairwise similarity. Therefore, it is better suited for
interpolation based on nearest neighbors. Second, normal-
ized cut can easily handle nonlinear similarity measures and
can easily integrate multiple similarity measures together to
achieve a tradeoff among them. Third, a similarity measure
in normalized cut is typically defined as a Gaussian, which
is a widely used radial basis function. Such a nonlinear mea-
sure is consistent with pose-based skin deformation tech-
niques that use radial basis functions [LCF00]. The normal-
ized cut algorithm has recently been successfully applied to
the compression of motion capture sequences [Ari06]. In the
following section, we briefly introduce this algorithm first.

3.1. Normalized Cut Framework
Let G = (U ,E) be a weighted graph, where the set of nodes,
U = {u1,u2, ...,un}. An edge, (ui,u j) ∈ E , has a weight
w(ui,u j) defined by the similarity between the location and
attributes of the two nodes defining the edge. The idea is
to partition the nodes into two subsets, A and B, such that
the following disassociation measure, the normalized cut, is
minimized.

Ncut(A,B) =
cut(A,B)

asso(A,U)
+

cut(A,B)
asso(B,U)

(1)

where cut(A,B) = ∑s∈A,t∈B w(s, t) is the total connec-
tion from nodes in A to nodes in B; asso(A,U) =
∑s∈A,t∈U w(s, t) is the total connection from nodes in A to
all nodes in the graph; and asso(B,U) is similarly defined.
This measure works much better than cut(A,B) because it
favors relatively balanced subregions instead of cutting small
sets of isolated nodes in the graph.

To compute the optimal partition based on the above mea-
sure is NP-hard. However, it has been shown [SM00] that a
good approximation can be obtained by relaxing the discrete
version of the problem to a continuous one which can be
solved using eigendecomposition techniques. Let y be the
indicator vector of a partition. Each element of y takes two
discrete values to indicate whether a particular node in the
graph belongs to A or B. If y is relaxed to take on continu-
ous real values, it can be shown that the optimal solution can
be obtained by solving the following generalized eigenvalue
system,

(D−W)y = λDy (2)

where D is a diagonal matrix with D(i, i)= ∑ j w(ui,u j), W is
the weight matrix with W(i, j) = w(ui,u j). The eigenvector
corresponding to the second smallest eigenvalue is the op-
timal indicator vector in real space. A suboptimal partition
can be obtained by first allowing y to take on continuous real
values, solving the above generalized eigenvalue system for
y, and then searching for the best threshold to partition the
real-valued elements of y into two subgroups. There exist
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different criteria to guide this threshold search. By default,
one would like to use the cost function in (1) as the criterion
so that the threshold can minimize this cost. Alternatively,
as in our case, one may look for two evenly subdivided sub-
groups. Then, the threshold should be the median of the ele-
ments in y. In either case, it is a one-dimensional search that
can be performed very quickly. The two resulting subregions
from this partition can be recursively considered for further
subdivision. This algorithm can be used to solve different
clustering or segmentation problems by choosing different
edge weights [MBLS01].

3.2. Mesh Segment Clustering
In the current context, we would like to partition every group
of corresponding mesh segments, Ωk(1≤ k ≤ nr) into multi-
ple smaller clusters. We set up a complete graph for a given
group of segments. A node in the graph corresponds to a
mesh segment from the group. The attributes of a node in-
clude the complete skeletal configuration corresponding to
that node as well as the radiance transfer matrices at all the
vertices within that segment.

The weight w(ui,u j) over an edge (ui,u j) is the product
of two similarity terms. One measures the overall similar-
ity between the transfer matrices associated with the two
nodes of the edge. The other measures the similarity be-
tween the poses associated with the two nodes. Both simi-
larity terms can be in the form of a Gaussian distribution.
Overall, w(ui,u j) is a local measure of how likely the nodes
belong to the same partition. w(ui,u j) is close to 1 for nodes
which are likely to belong together, and close to 0 for nodes
which are likely to be separated, as judged purely from local
evidence available at the two nodes.

Overall similarity regarding both transfer matrices and
pose configuration is formulated as

w(ui,u j) = exp

(
−∑l ‖Ti

l −T j
l ‖2

F

2σ2
t

− ∑b∈S ‖Ri
b −R j

b‖2
F

2σ2
p

)
(3)

where ui and uj are two graph nodes each of which has a
corresponding mesh segment, Ti

l denotes the transfer matrix
at vertex vl in the mesh segment at node ui, S represents the
complete skeleton of an articulated object, b is a “bone" in
this skeleton, Ri

b denotes the local rigid body transform at

this “bone" in the pose corresponding to node ui, and T j
l and

R j
b are defined similarly. We use the Frobenius norm for both

transfer matrices and local rigid body transforms. Parame-
ters σt and σp are automatically determined from the respec-
tive standard deviations of the root mean squared differences
of corresponding transfer matrices or local transforms within
a pair of corresponding mesh segments. These parameters
can be further adjusted to reflect the relative weighting be-
tween the two similarity measures. In our experiment, we set
σ2

t equal to 1.0 times the variance of transfer matrices, and
σ2

p equal to 2.0 times the variance of global poses.

Once the graph is set up, it is recursively partitioned into
two subgraphs using the aforementioned normalized cut al-
gorithm. Binary partition only needs one eigenvector with
the second smallest eigenvalue with respect to (2). Note that
since we favor over the similarity between transfer matri-
ces than poses, the resulting pose clustering will be differ-
ent than the clustering results based on only the pose differ-
ences. In terms of data compression, it is always favorable to
exploit the data redundancy. Our clustering method tends to
group data with similar transfer matrices together and sub-
sequently improve the compression results.

Since we always use the same number of neighbors to per-
form runtime interpolation and these neighbors are always
from the same cluster, we enforce final clusters from graph
subdivision have an equal size. This is achieved by enforc-
ing the two subgraphs from every binary partition have an
equal size. Recursive partition terminates when the size of
the subgraphs reaches a given threshold, which is typically 4
in our experiments.

4. Transfer Matrix Compression
We need to precompute a radiance transfer matrix at ev-
ery vertex of the mesh for every pose, which gives rise to
an amount of data that is three orders of magnitude larger
than that for a static object. However, there exist extra re-
dundancies across different meshes that we can exploit by
compressing transfer matrices from different meshes to-
gether. Nevertheless, there are two important requirements
that need to be satisfied. First, the cost of per-frame data de-
compression should be bounded to guarantee runtime per-
formance. Second, since runtime interpolation will be per-
formed among transfer matrices at corresponding vertices
within the same cluster of mesh segments, they should be
compressed in such a way that facilitates such interpolation.

We have developed a revised clustered PCA algorithm
with incremental cluster creation to overcome these diffi-
culties. Note that incremental cluster creation is different
from incremental singular value decomposition algorithms
[Bra02] that incrementally update the basis vectors of a clus-
ter. Clustered PCA divides the original dataset into a few
clusters each of which is approximated separately using a
truncated PCA basis. In this context, the first requirement
translates to an upper bound on the number of distinct PCA
clusters used by per-frame data since all our PCA clusters
have a fixed number of basis vectors. The second require-
ment is satisfied by using the basis vectors of the same PCA
cluster to approximate all transfer matrices falling on the
same row of the same cluster of mesh segments (Fig. 2(d)).

Our incremental algorithm goes through the set of poses
in a sequential order and incrementally creates new PCA
clusters as necessary for each additional pose while guar-
anteeing the total number of distinct PCA clusters used by
that pose is below a prescribed upper bound, mcp f . Suppose
we are looking at pose pj . Let E = {Ki|1 ≤ i ≤ mpca} be
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the set of existing PCA clusters each of which has a list of
transfer matrices that have been assigned to it. The mesh
for p j has a set of vertices ϒ j, which has been partitioned

into segments, {ϒ j
k|1 ≤ k ≤ nr}. Suppose ϒ j

k ∈ Ωk,g j
k
, where

Ωk,g j
k

is a cluster of mesh segments, as defined in Section

2. Since vertices on other mesh segments in Ωk,g j
k

might

have been assigned PCA cluster memberships, according to
the second requirement, corresponding vertices in ϒj

k should
have the same membership as well. Thus, we can divide
{Ωk,g j

k
|1 ≤ k ≤ nr} into two subgroups, {Ωk,g j

k
|k ∈ Ia} and

{Ωk,g j
k
|k ∈ Ib}, where vertices of the mesh segments in the

first subgroup of clusters have been assigned to PCA clus-
ters in E but vertices associated with the second subgroup
have not. The second subgroup of clusters are called active
clusters. Let E j = {Ki|i ∈ I j} ⊆ E be the set of PCA clusters

already used by vertices from pose pj and ρ j
assigned be the

percentage of the vertices from pj that have been assigned

PCA clusters. When 1−ρ j
assigned ≤ r mcp f −|E j|

mcp f
, where r is a

ratio typically set to 2, we perform an incremental clustering
step; otherwise, the number of new PCA clusters that can be
created within the per-frame budget is too few compared to
the number of unassigned vertices and, therefore, we need to
perform a reclustering step to reinitialize a sufficient number
of new PCA clusters better suited for the pose under consid-
eration.

4.1. Incremental Clustering

We create mcp f − |E j| new PCA clusters, and every vertex
of the segments in the second subgroup is assigned to ei-
ther one of the new clusters or one of the existing clusters in
E j. We have revised the original clustered PCA algorithm to
achieve this goal. In the revised CPCA algorithm, we assign
every row of corresponding vertices within the same clus-
ter of segments to the same PCA cluster. According to the
mesh clustering process presented in the previous section,
the transfer matrices at such corresponding vertices should
already have a high degree of similarity. Therefore, assign-
ing them to the same PCA cluster would not sacrifice much
accuracy, as confirmed by our experiments.

The criterion to determine cluster membership is the cu-
mulative squared approximation errors contributed by all the
vertices in the row. There are still two alternating steps in
the revised CPCA algorithm. In the first step, every row of
vertices in an active cluster of segments, Ωk,g j

k
(k ∈ Ib), is as-

signed to the PCA cluster that produces minimal cumulative
squared errors. In the second step, the basis vectors of the
new PCA clusters are updated. Thus, in this revised algo-
rithm, existing clusters in E j can accept new members, but
their previously existing members cannot change their mem-
berships. The basis vectors of these clusters are updated only
when these clusters have accepted a significant number of
new members. If we define a cost function as the summed
squared approximation errors within all mcp f clusters, it is

straightforward to show that this cost function monotoni-
cally decreases during each of the above two steps. There-
fore, the revised CPCA algorithm converges.

4.2. Reclustering

In the reclustering step, to guarantee high-quality approx-
imation within the per-frame budget, we simply choose to
generate mcp f entirely new PCA clusters for the current pose
by running the original CPCA algorithm. Before doing that,
those rows of vertices associated with the first subgroup of
clusters of mesh segments, i.e. {Ωk,g j

k
|k ∈ Ia}, need to be

removed from the PCA clusters where they have been previ-
ously assigned.

4.3. Cluster Merging

Because reclustering may split among multiple new clus-
ters vertices that previously belong to the same PCA cluster,
it may cause the number of PCA clusters used by another
pose to exceed our per-frame budget. Therefore, we perform
a cluster merging step once our incremental algorithm has
generated clusters for all the poses. As a preprocessing step,
we first measure distance between pairwise PCA clusters.
We only need to consider pairs of clusters that have mem-
bers from the same pose, and only consider those poses that
have used more clusters than they should. The distance be-
ween two PCA clusters depends on the similarity of their
corresponding principal component basis, and the similar-
ity of their mean vectors. We measure the distance between
two set of principal component basis by the L2-norm of
the difference between their corresponding projection matri-
ces and the difference between their mean vectors [GL96].
The difference between the mean vectors is more elaborated.
We only consider the difference between the residue vectors
which are the orthogonal part of the mean vector to the sub-
space spanned by the corresponding PCA basis. If two PCA
clusters have similar basis and residue vectors, the subspaces
they spanned are similar even though they have different
means vectors. The distance between two PCA clusters can
thus be formulated as :

d(Ψ,Φ) = ‖PΨ −PΦ‖2 +η‖MΨ −MΦ‖2, (4)

where PΨ = UΨUT
Ψ is the projection matrix of cluster Ψ,

UΨ is a matrix whose columns are the basis vectors of Ψ;
MΨ = mΨ −PΨmΨ is the residue vector, mΨ is the mean
vector of Ψ, and η is the weighting for residue difference;
PΦ and MΦ are defined similarly.

During each iteration of the merging process, a pair of
PCA clusters with the minimal distance is chosen. This pair
of clusters is merged only if at least one pose shared by their
members has more clusters than the per-frame budget. Once
merged, distances between the new cluster and all relevant
existing clusters need to be computed. This process is re-
peated until the number of clusters used by all poses has
fallen below the upper bound, mcp f . There exist efficient and
accurate algorithms for merging two clusters without going
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back to the raw data in these original clusters. We apply the
merging algorithm in [HMM00]. At the end of merging, the
coefficient vector of every transfer matrix needs to be recom-
puted according to its final cluster membership.

5. Runtime Algorithm
The shading equation we follow is largely similar to the one
in [SHHS03]. Although our implementation is in three color
channels, in the following, we explain the shading process
using a single channel. The final radiance from a surface
point along a specific viewing direction V and under a spe-
cific low-frequency global lighting vector L can be formu-
lated as

Γ = VT BTL, (5)

where B is a BRDF matrix, T is the radiance transfer matrix
with an integrated rotation from the global frame to the lo-
cal frame [SKS02], and the lighting vector L is a coefficient
vector computed by projecting an environment map onto SH
bases. The BRDF matrix is obtained by first discretizing a
continuous BRDF, B(v, s), in both viewing and lighting di-
rections to obtain an intermediate matrix whose rows corre-
spond to different viewing directions and columns to differ-
ent lighting directions. Here we use stereographic projection
for our BRDF parameterization. Then each row of the in-
termediate matrix is projected onto the spherical harmonic
(SH) bases.

In this paper, we always use 25 spherical harmonic bases
for both lighting and BRDF. Inspired by PCA-based sep-
arable approximations of an arbitrary BRDF [KM99], we
further factorize the BRDF matrix using singular value de-
composition (SVD) and represent it as a product of a view
map, H, and a light map, G, B = HGT . There is an im-
portant distinction between our factorization and that in
[LSSS04, WTL04]. We decompose the BRDF matrix after
spherical harmonic projection while they directly decom-
pose the original BRDF for all-frequency rendering. Since
we have also found experimentally that a 4-term approxima-
tion can produce sufficiently accurate results, both H and G
are chosen to have only four columns. With the resolution of
the BRDF view map set to 32× 32 and the number of SH
bases being 25, H and G are represented as 1024 × 4 and
25× 4 matrices, respectively.

Suppose during runtime we need to estimate the transfer
matrix T̃v at vertex v for a new incoming pose whose most
similar sampled pose is pj , which is found quickly using
a Kd-tree. Let v belongs to the k-th mesh segment, which
further belongs to a cluster of mesh segments, Ωk,g j

k
. Then T̃v

can be interpolated from the transfer matrices defined at the
corresponding vertices of v on the mesh segments in Ωk,g j

k

as follows.

T̃v = ∑
l

αlT
jl
v = ∑

l

αl

(
∑

i
cv, jl

i Ul
i

)
, (6)

Figure 3: Renderings from our method. Left: a glossy de-
forming mesh. Right: a translucent deforming mesh. Both
images exhibit global shading effects, including soft shad-
ows, diffuse and specular interreflections. The right image
also exhibits subsurface scattering.

where T jl
v represents the transfer matrix at the correspond-

ing vertex of v on a mesh segment in Ωk,g j
k
, and αl is its

interpolation coefficient. The interpolation coefficients are
derived from the distance between input pose and the sam-
pled poses in Ωk,g j

k
. This distance computation has non-

uniform weights for different bones. We give larger weight
to the bone which the mesh segment belong to than other
bones. These interpolation coefficients are implemented us-
ing normalized radial basis functions (NRBFs) [Nel00], and
need to be computed only once for each mesh segment.
Since we still use clustered PCA to approximate transfer
matrices, {Ul

i |i = 1, ...,nb} represent the set of PCA basis
matrices whose linear combination approximates Tjl

v , and
cv, jl

i (i = 1, ...,nb) are the PCA coefficients. Because our re-

vised CPCA algorithm assigns different T jl
v ’s from the same

row of Ωk,g j
k

to the same PCA cluster, we can drop the su-

perscript in {Ul
i |i = 1, ...,nb}, and (6) becomes

T̃v = ∑
i

(
∑
l

αlc
v, jl
i

)
Ui = ∑

i
λiUi, (7)

where λi = ∑l αl c
v, jl
i . This means we can simply interpo-

late scalar PCA coefficients to avoid reconstructing multiple
transfer matrices.

Substituting (7) into (5), we obtain

Γ = VT HGT

(
∑

i
λiUi

)
L (8)

=
(

VT H
)

(

Z︷ ︸︸ ︷
∑

i
λi((

Qi︷ ︸︸ ︷
GT Ui)L︸ ︷︷ ︸

Si

)), (9)

where the parentheses in (9) indicate the order of evaluation
we use, and Qi,Si and Z are intermediate variables.

The computation of (9) is partitioned into multiple stages,
including precomputing, a runtime CPU pass and two run-
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time GPU passes. We have implemented the GPU passes us-
ing DirectX 9 API.

• In the precomputing stage, we multiply the 4× 25 ma-
trix, GT , with each 25× 25 matrix, Ui, to obtain a 4× 25
matrix, Qi. Such computation is performed for the 8 basis
matrices we use for each PCA cluster. Since the size of Qi is
smaller than a basis matrix, this step actually helps improve
our overall data compression ratios.

• During the runtime CPU pass, we select the Qi’s needed
by the current frame and multiply each of them with the cur-
rent 25×1 lighting vector, L, to obtain a 4×1 vector, Si. The
time complexity of this step is proportional to the number of
PCA clusters needed by the current frame. The resulting vec-
tors, Si’s, are saved as a 2D texture. In addition, we compute
λi’s by interpolating relevant PCA coefficients as in (7). This
step needs to be done for every vertex, and is performed on
the CPU because the available bandwidth between the sys-
tem memory and GPU does not permit us to transmit the data
before interpolation. In our experiment, this stage is gener-
ally the bottleneck of our rendering algorithm. To improve
runtime performance, we have implemented this pass using
two threads on a dual-core processor. The resulting coeffi-
cients are saved as textures as well. Since only a subset of
the clusters are selected in each frame, all the computed tex-
tures during this pass become small enough to be transmitted
to the GPU on a per-frame basis.

• In the first GPU pass, we compute Z = ∑i λiSi for ev-
ery vertex, where λi and Si are passed from the previous
CPU pass. Although this is purely vertex-based processing,
considering the performance limitation of vertex textures on
DirectX 9 generation GPUs, we choose to implement it in a
pixel shader program via a GPGPU technique by drawing a
quad covering as many pixels as the total number of vertices.
Every pixel in the quad computes its own Z vector using the
textures representing Si’s and λi’s. These Z vectors from the
pixel shader are saved back to the GPU video memory as a
2D texture map using multiple render targets.

• In the second GPU pass, we use a pixel shader program
to first compute VT H for every pixel. Since we use bilinear
interpolation in the viewing direction, V has four nonzero
entries, and VT H is computed as a linear blend of four row
vectors of H. Meanwhile, the per-vertex Z vectors from the
previous pass are linearly interpolated at every pixel in the
GPU pipeline implicitly. At the end, we perform pixelwise
multiplication between the row vector, VT H, and the inter-
polated Z vector to obtain the final radiance for each color
channel.

In addition to opaque surfaces, we also support translu-
cent objects with subsurface scattering (Fig. 3). We follow
the algorithms in [WTL05] for precomputing single and
multiple scattering. The precomputed results can still be rep-
resented using transfer matrices except that the BRDF ma-
trix in (5) should be replaced with a matrix that accounts for
light coming from both sides of the surface.

Armadillo Boxer Horse

original data size 253GB 215GB 3.06GB
compressed data size 1.7GB 1.54GB 76MB

data used in demo 200MB 430MB 76MB
frame rate 30 30 45∼50

Table 2: Compression Result and Performance. As shown,
we have achieved a compression ratio of around 140
on large examples. Because we generated the poses with
enough variations, the demo animations from our paper usu-
ally require only a small subset of the sampled poses for real-
time interpolation. The Cook-Torrance BRDF model is used
for Armadillo and the Phong model is used for both Boxer
and Horse. All performance measurements were taken from
a 3.0GHz PentiumD with nVidia Geforce 7900GTX 512MB
VRAM.

6. Experimental Results
We have successfully experimented with three examples.
Renderings from our method can be found in Figs. 1, 3 and
4. For each example, we start with a static mesh and a few
deformed versions of this mesh. The deformed meshes for
Boxer and Armadillo model are obtained from the results
in [SYBF06]. A skinning model with blending weights is
trained from these deformed versions using the technique
in [JT05], which also produces a consistent segmentation of
the meshes. Meanwhile, we obtain a number of MoCAP se-
quences such as walking, running, boxing and dancing, from
the CMU database [MoC], and align the skeleton used in
the MoCAP sequences with the segmented meshes. As dis-
cussed in Section 2, CPCA clustering is then performed on
these pose data to generate the pose subspace clustering. We
then resample new poses by adjusting the PCA coefficients
in each pose subspace cluster to obtain a database of sam-
pled poses. This is a fairly automatic process. We do not
perform any other pose selection except we only generate
up to 1024 poses, which are evenly distributed among the
pose clusters. Each of the sampled poses can generate a de-
formed version of the original mesh using the trained skin-
ning model, and we precompute radiance transfer matrices
for each of them using ray-tracing [PH04]. The statistics
of these precomputed datasets are shown in Table 1 and the
compression results are in Table 2. As we can see, two of the
examples are very large. Each of them has more than 200GB
of raw PRT data. Our data processing algorithms actually di-
vide such large-scale raw data into smaller chunks and only
load into the memory one chunk at a time. Once we have
run the mesh segment clustering algorithm and the revised
CPCA algorithm, we quantize each PCA coefficient down
to 16 bits. In this way, we can achieve a compression ratio
of around 140 without losing much visual fidelity. Although
the number of generated poses are relatively large, only a
fraction of the sampled poses might be used during the run-
time interpolation. As shown in Table 2, the demo videos in
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#vertices #poses # mesh prt coefficients segment clustering revised CPCA
segs computation time #clusters cpu time #clusters cpu time

Armadillo 33,000 1024 19 77hrs 2432 42hrs 36000 91hrs
Boxer 32,000 1024 11 64hrs 2816 38hrs 96000 115hrs
Horse 19,000 48 27 2hrs 648 30mins 2984 1.7hrs

Table 1: Statistics for Precomputation. We utilize the cluster servers in our institution to accelerate the computation for PRT
coefficients. In the Boxer example, every mesh segment cluster contains 4 segments. There are 72000 PCA clusters on the
character model and additional 24000 clusters for a floor plane. In the Armadillo example, every mesh segment cluster contains
8 segments, which have the side effect that the total number of PCA clusters is much reduced. The small number of sampled
poses for the Horse example gives rise to much smaller numbers of mesh segment clusters and PCA clusters, and an overall
much smaller dataset. Every PCA cluster in these examples has eight 25× 25 basis matrices. The number of vertices in Boxer
and Horse examples also include the ground plane.

Our Scheme Pose-Space

1 8851 10661
2 5307 11015
3 6104 8167
4 8348 9686
5 9819 13922

Avg 7685.2 10690.2

Table 3: Comparisons of approximation errors between our
interpolation scheme for transfer matrices and pose-space
based interpolation. The first five rows show the errors for
five randomly generated poses, and the last row shows the
average errors among the five.

our paper make use only a small subset of the sample poses
and require less than 512MB of memory.

With such a precomputed and compressed dataset, we can
render dynamically deformed versions of the original mesh
in real time. We have experimented with two possible meth-
ods to generate dynamically deformed meshes. In the first
method, the user can interactively adjust the pose of the
skeleton, and every adjusted pose produces a new deformed
mesh. In the second method, we can take a new MoCAP se-
quence with the same skeletal structure and use the poses in
this sequence to deform the mesh. Note that these poses are
different from all previously sampled poses. In both cases,
the transfer matrices for the dynamically deformed mesh are
interpolated from the precomputed data in real time and the
deformed mesh is shaded instantly on the GPU using the in-
terpolated transfer matrices. Since it is not very convenient
to interactively produce interesting new poses without ref-
erencing MoCAP data, most of our demonstrations use the
second method.

6.1. Validation

6.1.1. Frame Rate

Frame rate is by far the most important goal. An important
reason that we can achieve real-time performance with at

Ground Truth Our Method Pose-Space
Figure 4: A comparison between our interpolation scheme
and pose-space based transfer matrix interpolation. Since
pose-space interpolation only considers similarity in global
pose configurations without accounting for similarity among
transfer matrices themselves, visually noticeable artifacts
occur.

least 30 frames per second is that transfer matrix interpola-
tion is actually performed through the interpolation of their
scalar PCA coefficients, as formulated in (7). This is facili-
tated by both mesh segment clustering and the revised CPCA
algorithm. We did a comparison on the two large examples
between our technique and a different version that does not
use the same set of PCA bases to approximate transfer ma-
trices at corresponding vertices within the same cluster of
mesh segments. The latter only achieved at most 8 frames
per second, more than three times slower than our version.
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Ground Truth Our Method Pose-Space
Figure 5: Another comparison between our interpolation scheme and pose-space based transfer matrix interpolation in the
self-occlusion area. Pose-space interpolation fails to capture some self-occluded effects and has more visual artifacts

6.1.2. Interpolation Accuracy

We interpolate transfer matrices for each mesh segment in-
dependently using the cluster of mesh segments it belongs.
Our clusters of mesh segments are formed considering sim-
ilarity in both transfer matrices and pose. In contrast, given
a new pose, a conventional scheme finds a few nearest sam-
pled poses, and then simply interpolates all transfer matrices
for the new pose from the same set of nearest sampled poses.
It is thus a global scheme that always uses the same set of
neighbors for different mesh segments.

We have compared our interpolation scheme with this
pose-space scheme on our examples. During the precom-
puting stage of these comparisons, we use the same num-
ber of PCA clusters to compress the raw PRT data in both
cases. During runtime, we randomly generate new poses that
further produce new deformed meshes, which are rendered
using the two interpolation schemes which choose different
sets of neighbors. We also directly ray-trace the deformed
meshes to produce the ground truth. Table 3 lists summed er-
rors of the interpolated transfer matrices for a few randomly
generated poses. The errors of our interpolation scheme are
consistently lower. However, differences in numerical errors
may not reflect the true differences in visual quality. We fur-
ther compare the rendered images from these interpolation
schemes in Figs. 4 and 5. The global scheme produces ob-
vious artifacts on certain parts of the surface while the re-
sults from our scheme are visually comparable to the ground
truth.

6.1.3. Compression Quality

We further validate the compression quality of our revised
CPCA algorithm by comparing it with running the orig-
inal CPCA on each pose independently. Because an im-
portant goal of our algorithm is to satisfy the two require-
ments discussed in Section 4 instead of achieving maximum
compression ratios, without incremental cluster creation, it
should generate larger approximation errors than the orig-
inal CPCA. However, incremental cluster creation exploits
data redundancies across different poses and, therefore, can
compensate the negative effects produced by the require-
ments we impose on compression. As a result, with the same

total number of PCA clusters, our revised CPCA actually
achieves smaller approximation errors than running CPCA
independently on each pose. For example, on the BOXER

dataset, when there are a total of 72000 clusters over 1024
poses, the average error per pose is 4489 for our algorithm
and 5516 for independent CPCA. More importantly, the lat-
ter cannot satisfy the second requirement, therefore, would
significantly lower the frame rate. As shown in Fig. 6, our re-
vised algorithm also produces results with better visual qual-
ity and without obvious boundaries among PCA clusters.

7. Conclusions and Future Work
We have presented effective data clustering and compres-
sion techniques as well as an efficient runtime algorithm that
can achieve high-quality real-time rendering of dynamically
skinned models using precomputed radiance transfer. Our
techniques can reduce the amount of precomputed data to
a managable size, and achieve a compression ratio of 140
on large-scale datasets with hundreds of gigabytes of raw
data. Meanwhile, they also facilitate runtime data commu-
nication, decompression and interpolation. Our algorithms
and results have demonstrated that using an example-based
approach for PRT-based rendering of dynamic objects with
glossy or translucent materials is both feasible and practical.

There are limitations with our current algorithms and im-
plementation. First, we are limited to low-frequency envi-
ronment lighting. We would like to investigate in future
whether it is feasible to extend our work to all-frequency
lighting using nonlinear wavelet approximation [NRH03,
NRH04]. Second, we would like to model interactions
among multiple objects using subspaces and investigate pre-
computed radiance transfer for such interactions. Third, our
implementation is partially limited by the memory capacity
and streaming bandwidth of the current generation of GPUs.
We expect these aspects improved in the future generations
and even better runtime performance achieved on them.
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Ground Truth Independent CPCA Our Revised CPCA
Figure 6: A comparison between our revised CPCA and running CPCA independently on different poses. Note that our revised
CPCA satisfies additional requirements, and incrementally creates new clusters. With the same total number of PCA clusters
(72000 clusters over 1024 poses in this example), our algorithm produces visually better results while independent CPCA
produces visible boundary effects.
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