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Abstract. We present methods for recovering surface height fields such as geometric details
of 3D textures by incorporating shadow constraints. We introduce shadow graphs which give
a new graph-based representation for shadow constraints. It can be shown that the shadow
graph alone is sufficient to solve the shape-from-shadow problem from a dense set of images.
Shadow graphs provide a simpler and more systematic approach to represent and integrate
shadow constraints from multiple images. To recover height fields from a sparse set of images,
we propose a method for integrated shadow and shading constraints. Previous shape-from-
shadow algorithms do not consider shading constraints while shape-from-shading usually
assumes there is no shadow. Our method is based on collecting a set of images from a fixed
viewpoint as a known light source changes its position. It first builds a shadow graph from
shadow constraints from which an upper bound for each pixel can be derived if the height
values of a small number of pixels are initialized correctly. Finally, a constrained optimization
procedure is designed to make the results from shape-from-shading consistent with the height
bounds derived from the shadow constraints. Our technique is demonstrated on both synthetic
and real imagery.

Keywords: 3D Texture, Surface Geometry, Shape-from-Shadow, Shadow Graph, Shading,
Photometric Stereo, Optimization

1. Introduction

The visual appearance of an object is governed by a hierarchy of geometric
components, including a macrostructure layer specified as a set of polygonal
and/or curved surfaces, a mesostructure layer involving geometric details that
are relatively small but still individually visible such as bumps and dents
on a surface, and a microstructure layer that involves surface microfacets
visually indistinguishable from each other. Traditional surface appearance
models include bidirectional reflectance distribution functions (BRDFs) at the
microstructure level, and bump maps at the mesostructure level. Combined
with geometric models of macrostructure, they can be used to produce high-
quality renderings, and provide novel visual interactions between humans and
machines.
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By 3D textures, we mean small-scale surface details that include both the
mesostructure layer and the microstructure layer. The microstructure layer
leads to pointwise surface reflectance properties while the mesostructure layer
gives rise to mutual shadowing and occlusions as well as pointwise local
surface normal orientations. Both layers contribute to the color variations on a
macrostructure surface. A photograph of the color variations on a surface is a
conventional (2D) texture defined by the computer vision and image process-
ing communities. Even with a fixed 3D texture on a surface, this conventional
texture can change with respect to different lighting and viewing conditions.
The mesostructure layer of a 3D texture can often be modeled as a height
field. From another point of view, a 3D texture is nothing but a height field
with a distinct reflectance function associated with every point. If the height
field is Lambertian, pointwise reflectance functions degenerate into pointwise
albedos.

Among the aforementioned three scales of geometry, modeling the mesostruc-
ture layer has caught researchers’ attention recently along with other image-
based shape and texture modeling problems [13]. The visual effects caused
by 3D textures lead to object appearance changes under different lighting and
viewing directions. Traditional texture mapping or bump mapping techniques
in computer graphics fall short at reproducing the mutual shadowing and oc-
clusion effects. Recently, bidirectional texture functions (BTFs) [4] have been
proposed to capture and reproduce these visual effects. Actually 3D textures
and BTFs are closely related. A 3D texture exhibits inherent geometric and
photometric properties while a BTF represents the projections of a 3D texture
in the 2D image plane under all possible illumination and viewing directions.
We can always obtain a BTF from a 3D texture by applying graphics render-
ing processes. While a BTF is a six-dimensional function which requires a
large amount of data storage, a 3D texture can also be represented discretely
as a 2D map of height displacements along with reflectances. The latter repre-
sentation offers a better choice as the internal representation for 3D textures.
However, height displacements and reflectances for real 3D textures are not
directly available without applying reconstruction techniques from computer
vision. The methods for recovering height displacements have so far been
limited to photometric stereo and shape-from-shading. Surface albedos can
be obtained as by-products during these recovery processes.

In this paper, we consider 3D texture surface reconstruction by incorporat-
ing shadows. Shape-from-shadow tries to reconstruct a surface using multiple
shadow images. It has a few advantages compared to other surface reconstruc-
tion techniques. For example, shadow constraints are insensitive to specular
reflection and spatial variations of reflectance, and are able to impose long-
range height constraints. The basic conclusion from previous work along this
direction [27, 32, 21, 16, 8, 22] says that with a sufficient number of shadow
images, the underlying surface can be recovered. However, the proposed algo-
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rithms for this problem are either complicated or heuristic. The major reason
for this is that it was not clear how to effectively represent shadow constraints
and integrate the information from multiple shadow images.

To clearly understand this problem, we introduce shadow graphs [37]
which can effectively represent and integrate shadow constraints from mul-
tiple images. We prove that the shadow graph alone is sufficient to solve the
shape-from-shadow problem from a dense set of images. Simple operations
on a shadow graph enable us to derive the structures of the underlying surface.
This approach is simpler and more systematic than the previous methods.

Usually most of the pixels in an image are not shadowed. However, shape-
from-shadow neglects the rest of the shading information in the input images.
As we will see, shadow constraints are usually inequalities which are not
as powerful as equalities. Consequently, it usually requires a dense set of
input images to obtain good results. On the other hand, shape-from-shading
[17] and photometric stereo [36] are effective approaches for a large class of
surfaces including faces and sculptures. Both techniques use the pixelwise
shading information to constrain surface normals, and do not allow shadows
in the input images. They need an integration step to reconstruct a surface.
This step tends to accumulate errors from pixel to pixel. Although theoret-
ically they can uniquely recover the underlying surface, the final relative
height differences between distant points may not come out very accurately.

To take the advantages from both shape-from-shadow and shape-from-
shading, we also develop a method of recovering shape from both shadow and
shading constraints. A constrained optimization procedure is developed to
make the results from shape-from-shading consistent with the height bounds
derived from shadow constraints.

The rest of the paper is organized as follows. Related work on surface
reconstruction using photometric methods will be discussed in the next sec-
tion. In Section 2, we introduce shadow graphs and present both theoretical
and experimental results on height field reconstruction using shadow graphs
only. In Section 3, we will consider integrating both shadow and shading
constraints, and propose a hybrid method for surface reconstruction. Exten-
sive experimental results on 3D textures and other surfaces using the hybrid
method will also be reported. We will conclude this paper in Section 4.

1.1. RELATED WORK

One method to study 3D textures is through BTFs which can be regarded
as a mapping from the 4D space of lighting and viewing directions to the
space of all 2D images. Previous work on BTFs aims to capture appearance
data for natural materials and represent them efficiently [4, 5, 6, 25, 9]. Each
material in the CUReT database [4] has a 4D sampling of images under
various viewing and lighting conditions. Because of the changing viewing
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direction, the images in the CUReT database are not registered. The PhoTex
database reported in [9] has images of material samples taken from a fixed
camera position. Therefore, it is more suitable for photometric stereo and
surface reconstruction in general. Although the work in [26] focuses on BTF
synthesis, the first step of the process is to recover a surface height field for the
considered material sample using shape-from-shading. A variety of options
using intensities, normals and height values have been proposed in [9] for
high-quality 3D texture synthesis.

In terms of surface reconstruction, a few algorithms explicitly make use
of shadow constraints [21, 16, 8, 34]. Most of them belong to shape-from-
shadow(darkness) algorithms. Some shape-from-shadow algorithms [21] use
a shadowgram as an intermediate representation which is derived from a
dense set of lighting directions. [16] assumes the underlying surface has a
spline representation because shadows only provide a relatively sparse set of
constraints. The number of unknown coefficients in the spline model is de-
signed to scale with the number of shadow constraints. [8] introduces a shape-
from-shadow algorithm using relaxation. A pair of upper-bound and lower-
bound surfaces are constructed by updating the height values at pixels with
violated shadow constraints. Like shape-from-shading, shape-from-shadow
can recover unknown lighting directions as well [22].

The computation of shape-from-shading has been typically characterized
as that of finding surface orientation from one single image followed by a
step that converts the orientation information into height under integrability
constraints. The surface is usually assumed to be Lambertian. [24] introduces
an algorithm that allows direct computation of height from shading. Since
the unknowns directly represent pixelwise height values, this approach can
be more naturally integrated with other methods of recovering shape, such as
stereo and shape-from-shadow. [10] presents provably convergent algorithms
for this problem.

Photometric stereo [36] can usually obtain better results than shape-from-
shading because of the use of multiple input images. This approach has been
generalized to recover shape for metallic and hybrid surfaces with both dif-
fuse and specular reflection [18, 28]. The lighting direction for each image
is usually assumed to be known. However, both surface shape and lighting
directions can be recovered simultaneously from SVD decomposition up to
a bas-relief transformation [2, 1]. Shadowed pixels in each image can be
masked out in the process with the hope that there are still enough images
covering them [19, 12].

[34] considers recovery of shape from shading under a uniform hemispher-
ical light source. Partial shadowing is taken into account because only a part
of the light source is visible from every surface point. Interreflections are also
considered in the algorithm presented in [29].
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2. Shadow Graphs
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Figure 1. (a) 2D schematic of shadowed and nonshadowed regions on a terrain-like surface.
L is the parallel lighting direction. x0 is an occluder, x1 is on the shadow boundary caused by
x0, and x2 is a non-shadowed point. (b) An occluding contour and shadowed points in a real
image.

We consider recovering terrain-like surface height fields for 3D textures
in this paper. For the convenience of discrete representation based on pixels,
a height field is assumed to be a piecewise constant function with every pixel
corresponding to a piece with constant height. Every piece of the height field
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is represented by the point corresponding to the center of the pixel. We as-
sume the incident lighting direction from a collimated source is known. This
assumption is reasonable because the lighting direction is usually carefully
calibrated before 3D texture samples are captured. A calibrated lighting di-
rection tends to be more accurate than a recovered one. We also assume that
the distance between the camera and the surface is sufficiently large so that
the orthographic projection model is accurate.

Let us first check what kind of constraints are available from images with
shadows. Let h(x) be a height field defined on a planar domain D with a finite
area in the image plane and L be the lighting direction pointing downwards
with a zenith angle (the angle of the lighting direction with respect to the
global surface normal) θ(< 90o). The normal orientation of this height field
is denoted as n(x). The boundary curve of domain D is Ω. The projected
vector of L in the domain D is Lp. Let xi and xj be two arbitrary 2D points
in D. The line segment between them is denoted as a vector interval [xi,xj]
for convenience. Based on whether a point on the height field is in shadow or
not under lighting direction L, there are two different sets of constraints (Fig.
1).

− If any point on the line segment [x0,x1] is in shadow, the points at x0

and x1 are the delimiting points of this shadow segment, and the point at
x0 is the occluding point generating this shadow segment, we have the
following shadow constraints.

h(x) ≤ h(x0) − ‖x − x0‖2

tan θ
,∀x ∈ [x0,x1]; (1)

h(x1) = h(x0) − ‖x1 − x0‖2

tan θ
; (2)

L · n(x0) = 0 (3)

where the last equation means the lighting vector L falls inside the
tangent plane at x0 if the original continuous height field is locally
differentiable at x0.

− If the point at x2 is not in shadow, we have the following antishadow
constraints.

h(x) ≤ h(x2) +
‖x − x2‖2

tan θ
,∀x ∈ [xb,x2] (4)

where xb ∈ Ω and the line segment [xb,x2] is in the same direction as
Lp.

Let us first focus on how to represent the inequality constraints (1) and (4)
in a graph.
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DEFINITION 1. A shadow graph is a weighted directed graph G = (V, E, W )
where the set of nodes V is the set of points defined on domain D, an edge
e = (xi,xj) ∈ E indicates h(xj) is dependent on h(xi) and h(xi)−h(xj) ≥
W (e) where the edge weight W (e) can be any real number.

A shadow graph can be induced from an image of the height field under an
arbitrary lighting direction L. Shadowed pixels can be detected from the im-
age, and an occluder can be located for each continuous shadow segment with
the knowledge of the lighting direction. For example, if [xi,xj] is a shadow
segment and the vector from xi to xj is in the direction of the projected
lighting direction Lp, the point at xi is the occluder of all the points in [xi,xj].
There should be an edge (xi,x) with weight ‖x−xi‖2

tan θ in the induced graph for
all x ∈ (xi,xj]. This graph basically encodes the shadow constraints avail-
able from the image. All the edge weights in this graph should be positive.
However, this graph can have negative weights if the additional antishadow
constraints in Eq. (4) are represented as well.

Suppose we have multiple images of the height field under a set of lighting
directions {Lk}m

k=1. Each of the images has its own shadow graph. Finally,
the edges from all of these individual graphs can be accumulated into one
graph that is corresponding to all the images. Since all the individual graphs
have the same set of nodes, the merged graph simply has all the weighted
edges from all of the individual graphs. Note that this merged graph does
not have the specific lighting information, which is not particularly important
because all the constraints essential to the height field are kept there.

PROPOSITION 1. A shadow graph with positive weights is a directed acyclic
graph.

Proof We can prove this by contradiction. Suppose there is a circular path
in the graph and a node v is on the path. Since all the arcs on this path have
positive weights, it is easy to conclude that h(v) > h(v) by starting from v,
going through this path and back to v. This is a contradiction.

DEFINITION 2. The transitive closure of a shadow graph G is defined to be
a new graph Gc = (V, Ec, W c) on the same set of nodes such that (xi,xj) ∈
Ec as long as there is a path from xi to xj in G, and W ((xi,xj)) is set to be
the maximum accumulated weight among the paths from xi to xj .

There are a set of nodes Vt ⊂ V in Gc that do not have any incident edges
with positive weights, which means they are not shadowed by any other points
in any of the images. The highest point(s) of the height field surely belongs to
this set because there are no other points which can occlude it(them) from the
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light sources. The absolute height values of the nodes in Vt are unrecoverable
from shadow constraints. However, if we can recover their height values from
other approaches such as stereo processing, the information embedded in Gc

can be used for obtaining an upper bound of the height at any point in V −Vt.
The set of edges in Gc connecting Vt and V −Vt becomes the most important
for this purpose. Suppose there is a node v ∈ V − Vt and a set of associated
edges Ev ⊂ Ec such that if an edge e = (vt, v) ∈ Ev, vt ∈ Vt. The upper
bound of the height at the point corresponding to node v can be obtained from

U(h(v)) = min(vt,v)∈Ev
(h(vt) − W ((vt, v))). (5)

Let us examine the asymptotic behavior of this upper bound when we in-
crease the number of input images with lighting directions covering the whole
lighting hemisphere. The set Vt will shrink and approach its limit which is
the set of the highest points of the height field. Otherwise, assume there is
a pair of nodes v1, v2 ∈ Vt and h(v2) < h(v1). We can always design a
lighting direction from which the point corresponding to v1 shadows the point
corresponding to v2, which means v2 /∈ Vt. This is a contradiction. Since
eventually Vt only has nodes at the same height, we do not need to seek their
relative height through other reconstruction techniques. Our interest should
be focused on the relative height of other points compared to the highest
points whose height can always be set to zero.

PROPOSITION 2. Eq. (5) gives an upper bound for the height at any node
in V − Vt provided that the estimation of the height for the nodes in Vt is
accurate. With an increasing number of input images with lighting directions
covering the whole lighting hemisphere, Eq. (5) converges asymptotically to
the correct relative height, with respect to the highest points in Vt, at any
point in V − Vt.

Proof The first part is obvious. The second part can be proved by induction.
Since we only have a finite number of points according to our surface model,
we can sort the points in decreasing order of their height. The highest points in
the sorted list are assumed to be at height zero. Suppose the point at xm is the
k-th element in the sorted list and the height of its k − 1 preceding elements
can be recovered to an arbitrary precision independently of the height of the
rest of the elements in the list. Now we show that the height of the point
at xm can also be recovered to an arbitrary precision independently of the
height of its following elements in the list. Note that all the surface points
are lit if we have a vertical lighting direction. If we decrease the angle of
elevation of the light, the point at xm will certainly be shadowed since it
is not one of the highest points. Given a certain sampling density for the
illumination hemisphere which contains all the possible lighting directions,
there exist two adjacent sampled directions Lr and Ll such that the point at
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xm is non-shadowed when the light is at Lr and becomes shadowed when
the light moves to Ll. An upper bound for this point can be obtained from
Ll and an occluder at xo whose height is recovered to an arbitrary precision.
If we keep increasing the sampling density on the illumination hemisphere,
the difference between Lr and Ll can become arbitrarily small and the upper
bound for the point at xm can also become arbitrarily close to its true height.

The conclusion drawn from the above proposition is that the height field
can be recovered to a prescribed precision from the shadow graph alone as
long as we have sufficient number of images that evenly cover the illumina-
tion hemisphere above the material sample. Since the convergence can only
be achieved asymptotically, a very large number of images would be required
for a reasonable reconstruction.

It is clear that the antishadow constraints can be derived from the shadow
constraints if we have a very dense set of images since the height field itself
can be recovered from the shadow constraints alone according to the above
Proposition. However, if we only have a sparse set of images, this is not nec-
essarily true. Representing these antishadow constraints in a shadow graph
usually can provide additional information. According to Eq. (4), antishadow
constraints transform to additional edges with negative weights. Cycles can
appear in the resulting graph. However, the accumulated weight of any cycle
can not be positive according to the following Proposition.

PROPOSITION 3. The accumulated weight of a circular path in a shadow
graph must be either zero or negative.

Proof Suppose x0,x1, · · ·,xn ∈ V are consecutive nodes of a circular path,
i.e. (xi,xi+1) ∈ E(i = 0, ..., n − 1) and (xn,x0) ∈ E. From the definition
of a shadow graph, h(xi) − h(xi+1) ≥ W ((xi,xi+1))(i = 0, ..., n − 1) and
h(xn) − h(x0) ≥ W ((xn,x0)). Therefore,

n−1∑

i=0

W ((xi,xi+1)) + W ((xn,x0))

≤
n−1∑

i=0

(h(xi) − h(xi+1)) + (h(xn) − h(x0)) = 0.

The transitive closure of a shadow graph G with cycles is still well-defined
because negative cycles do not interfere with the objective to seek paths with
maximum accumulated weights according to the definition. The resulting
graph Gc can still be used for obtaining an upper bound of the height for
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any point in V − Vt. Since there may be negative edges pointing from nodes
in V − Vt to some nodes in Vt, these edges can be used for obtaining a lower
bound for some nodes in V − Vt. Since it is not guaranteed that there is an
edge from each node in V − Vt to some node in Vt given a sparse set of
images, we can only obtain lower bounds for a subset of nodes in V − Vt.
And these lower bounds may appear useful in combination with other surface
reconstruction techniques.

2.1. SHADOW GRAPH CONSTRUCTION FROM REAL IMAGES

We typically use a single intensity threshold to perform shadow detection
in real images. The shadow intensity threshold can either be chosen by the
user or automatically determined. Shadow segmentation schemes will be dis-
cussed in Section 3.3.

When dealing with real images with noise, shadow thresholding cannot
be expected to be error free. Inaccurate shadow segmentations may result in
cycles in the induced shadow graphs. Since cycles can lead to the contradic-
tion in the proof of Proposition 1, we must convert a cyclic graph into an
acyclic one by removing some of the edges in the graph. Since we would
like to make the least amount of change to the graph, a sensible criterion
for an optimal conversion is that the total accumulated weight for the re-
moved edges should be minimized. This is the maximum acyclic subgraph
problem: given a directed graph G = (V, A), V = 1, ..., n, with arc weights
wij > 0, (i, j) ∈ A, find a subset A′ ⊂ A such that G′ = (V, A′) is acyclic
and w(A′) =

∑
(i,j)∈A′ wij is maximized. This problem is NP-hard [20].

To obtain an efficient approximation solution for this problem, we adopt
the permutation-based algorithms in [15]. A permutation π of 1, ..., n induces
an acyclic subgraph Gπ = (V, Aπ), where Aπ = {(i, j) ∈ A|π(i) < π(j)}.
Every maximal acyclic subgraph of G is induced by some permutation be-
cause one can always renumber the vertices of an acyclic graph so that each
arc (i, j) in it satisfies i < j, and if the graph is maximal then it is the one
induced by this permutation. A simple prototype algorithm [15] that gen-
erates a permutation, π, such that w(Aπ) ≥ 0.5w(A), is given below. For
i ∈ V, S ⊂ V , let win

i (S) =
∑

j∈S wji, w
out
i (S) =

∑
j∈S wij .

1. Set S = V, l = 1, u = n.

2. Choose i ∈ S. Set S ← S−{i}. If win
i (S) ≤ wout

i (S), set π(i) = l, l ←
l + 1. If win

i (S) > wout
i (S), set π(i) = u, u ← u − 1.

3. If u ≥ l go to Step 2. Else, stop and output π.

The various approximation algorithms in [15] can always produce an acyclic
subgraph, but tend to remove more edges than necessary. After applying a
permutation-based algorithm, for each of the removed edges, we still run a
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Figure 2. (a) A shadowgram for a one-dimensional terrain-like surface; (b) a shadowgram for
a one-dimensional non-terrain-like surface.

depth-first search to check whether the graph is still acyclic once the edge is
inserted back into the graph. These two steps together lead to a polynomial
time approximation that removes the least number of edges.

2.2. COMPARISON WITH SHADOWGRAMS

Shadow information can also be described using another representation known
as a shadowgram [21, 8]. Let us first look at shadowgrams for a one-dimensional
terrain-like surface illuminated by a collimated light source parameterized by
a single angle θ. As shown in Fig. 2(a), the shadowgram is a binary function
defined on the angle, θ, and the spatial dimension of the terrain, x. A white
entry in the shadowgram indicates that image pixel x would be lit when the
light source were at angle θ, while a black entry indicates that it would be
shadowed. It was shown in [21] that the shadowgram generated by a terrain-
like surface can be completely described by two curves bounding the black
regions: θ+ and θ−. For a specific point x, θ+(x) and θ−(x) represent the
lighting angles at which x is lit for the first and last time, respectively. There-
fore, θ+(x) < θ−(x). If the light source travels from horizon to horizon, it is
possible that one of these angles might be equal to 0 or π. θ−(x)−θ+(x) < π
unless the point in question is a global maximum of the scene. Because one
has this guarantee, it is possible to reconstruct the surface by integrating θ+

and θ−.
When the one-dimensional surface is non-terrain-like, the shadowgram

possesses not only two curves, but also some white holes where one would ex-
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pect darkness if the surface were a terrain (Fig. 2(b)). Here θ+(x) and θ−(x)
are not defined as first and last lighting curves, but rather as the envelope of
the shadowgram which lies closest to the middle horizontal line defined by
θ = π

2 . It is shown in [23] that using these two curves to reconstruct the
surface will produce the surface’s generated terrain which is defined to be
its upper envelope. Furthermore, the holes in the shadowgram may be used
to carve pieces out of the generated terrain for reconstructing some of the
hidden parts of the surface.

In a general situation, a surface in a 3D space is parameterized by two vari-
ables, and the lighting direction is defined by two angles. The shadowgram
thus becomes a four-dimensional function defined on all these four variables.
Although shadowgrams can represent non-terrain-like surface, they are much
more complicated than shadow graphs because they explicitly keep lighting
directions in the representation. If we count the number of edges in a shadow
graph, there is at most one incident edge at each pixel of an image because a
pixel can be shadowed at most once by another pixel in the same image. Thus,
the number of edges in a shadow graph is O(kn2) where k is the number of
images which the shadow graph is constructed from and n2 is the size of
each image. Recovering a height field from a shadow graph thus becomes
tractable.

2.3. EXPERIMENTS

(a)

(b)

Figure 3. (a) Sample input images for a plaster material sample. (b) synthetic images of a
height field recovered from a shadow graph only. 48 images were used to construct the shadow
graph. The rightmost image is a synthetic rendering of the recovered height field illuminated
from a novel lighting direction.
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(a)

(b)

Figure 4. (a) Sample input images for a pyramid scene. (b) Synthetic images of a height field
recovered from a shadow graph only. 48 images were used to construct the shadow graph. The
rightmost image is a synthetic rendering of the recovered height field illuminated from a novel
lighting direction.

Table I. The mean error of the height field, recovered from a shadow
graph only, decreases significantly when an increasing number of images
with shadows are used to compute the shadow graph. The first row shows
the number of images used. The remaining rows show the decreasing
errors for three examples. The errors are measured in pixels.

4 8 12 16 24 48

Face 23.291 22.695 20.598 11.474 11.136 5.729

Plaster 8.261 6.510 6.168 6.062 5.970 4.480

Pyramids 26.789 22.621 19.090 18.194 14.873 7.950

We chose three synthetic examples to verify the capability of shadow
graphs for surface reconstruction. In these examples, the height fields are
reconstructed from shadows only. We also generated synthetic images from
the height fields. The first dataset is a recovered height field of a real plaster
sample using the approach presented in [26]. This height field serves as the
ground truth to test the algorithm in this paper although we do not know
the accuracy of this dataset. Sample input images are shown in Fig. 3(a) and
synthetic images from the recovered height field are shown in Fig. 3(b). The
second dataset is an artificial scene with four pyramids shown in Fig. 4(a).
The pyramids have different height and orientations. Synthetic images from
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(a)

(b)

Figure 5. (a) Sample input images for a face model. (b) Synthetic images of a height field
recovered from a shadow graph only. 48 images were used to construct the shadow graph. The
rightmost image is a synthetic rendering of the recovered height field illuminated from a novel
lighting direction.

the recovered height field are shown in Fig. 4(b). The third dataset is a face
model shown in Fig. 5(a). All the height fields used for synthetic rendering
were recovered from 48 input images through the use of shadow graphs. The
first three synthetic images in each example have the same illumination direc-
tions as the three input images shown above them. The last synthetic image
has a novel illumination direction.

Since the original height fields are known, we also verified that the ac-
curacy of the recovered height fields increases with an increasing number
of input images, as shown in Table I. Since this is an asymptotic behavior
predicted by Proposition 2, in general, a very large number of images are
necessary to obtain an accurate reconstruction.

In consideration of this asymptotic behavior, the results shown in Fig. 3-5
are fairly reasonable. The overall shapes of the objects have been recovered
and the relative height among different objects are also recovered accord-
ing to the synthetic renderings and the cast shadows they have although the
background plane in the pyramid and face models tends to have larger errors
than the foreground objects due to the flatness of the background and a lack
of self-shadowing. However, the most noticeable artifacts are the numerous
”chisel marks”. This is because we only adopt shadow constraints without
any form of regularization to smoothe the surfaces. The shadow constraints
are inequalities most of the time, and only become equalities at the shadow
boundaries. Therefore, the rough height field is just an upper envelope of
an underlying smooth surface. To some extent, shape-from-shadow recovers
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a surface by carving. Because of the ”chisel marks”, the height fields are
not visually appealing. In the next section, we are going to explore a hy-
brid approach that can reconstruct height fields that are both visually and
numerically accurate.

3. Height Field Reconstruction from Integrated Shadow and Shading
Constraints

Recovering a height field from shadow graphs alone needs a large num-
ber of images. How can we reduce the number of input images ? Given a
sparse set of images with known lighting directions, we would like to re-
cover the underlying height field using both shadow and shading constraints.
As we have seen, shadows impose explicit constraints over surface height
values, but shadows from sparse images are usually not sufficient if applied
alone. On the other hand, shading information imposes additional constraints
over normal orientations. Thus, it would be natural to integrate shadow con-
straints with shading information during surface reconstruction. We are going
to explore two options where shadow constraints are considered either as
soft constraints or as hard constraints. We first present an algorithm for soft
shadow constraints. It is then generalized to enforce hard shadow constraints.

3.1. ENFORCING SHADOW CONSTRAINTS WITH PENALTY TERMS

Traditional shape-from-shading recovers surface normal orientations first fol-
lowed by a numerical integration step to obtain a height field [35]. This
two-step approach is incompatible with shadow constraints which are directly
expressed in terms of height values. Since shape-from-shading is not the fo-
cus of this paper, we adopt the direct height from shading algorithm in [24]
as the base for solving shading constraints. Since this technique computes a
height field directly rather than through surface normals, it is relatively easy
to incorporate shadow constraints and enforce surface upper/lower bounds
from the previous section. The shape-from-shading problem is formulated to
minimize the following cost function in [24]:

E1 =
∑

i,j

[α(ρR(pij , qij) − I(i, j))2 + λ(u2
ij + v2

ij)] (6)

where ρ is the surface albedo, I is the observed image intensity, pij and qij are
not variables as in traditional shape-from-shading, but symmetric first-order
finite differences of the surface height field {hij} which is the unknown in
this height-from-shading formulation, uij and vij are symmetric second-order
finite differences of the surface height field, α and λ are two constant coef-
ficients, and R is the Lambertian reflectance model. The first term in Eq. (6)
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corresponds to the photometric error term. And the second is a regularization
term on the smoothness of the surface.

The shape-from-shading problem is underconstrained and the regulariza-
tion term is crucial to obtain a reasonable solution. However, 3D textures
typically have high-frequency small-scale details. Being overly dependent on
the regularization term would hamper the accurate recovery of these details.
Therefore, we decide to use multiple images to overconstrain the problem
as in photometric stereo[36]. Obviously, shadowed pixels need to be ignored
in shape-from-shading. The above height-from-shading formulation can be
easily generalized to accommodate multiple input images and shadow masks
as follows.

E2 = α
∑

k

∑
i,j lkij(ρijR

k(pij , qij) − Ik(i, j))2+
λ

∑
i,j(u

2
ij + v2

ij)
(7)

where Ik(i, j) represents the k-th input image with corresponding reflectance
map Rk, lkij is a binary shadow mask indicating whether pixel (i, j) in the k-th
image is lit by the light source or not, and ρij is the pixelwise surface albedo.
Although this treatment is similar to photometric stereo, it solves the height
field directly instead. With multiple images, the regularization term becomes
much less important, and its weight can be set close to zero. However, it is still
helpful at underconstrained pixels that are lit in less than three different im-
ages. In principle, when the surface is static and Lambertian, both the height
field {hij} and albedo map {ρij} can be solved simultaneously from three
or more input images with non-coplanar illumination directions. In practice,
we found that it is more accurate to solve for the albedo map first using
photometric stereo, and recover the height field using Eq. (7) with a known
albedo map. Note that the normals recovered from photometric stereo are
discarded since Eq. (7) can directly recover the height field. Because only the
Lambertian reflectance model is explicitly considered, specular highlights are
treated as outliers since they are quite concentrated and usually cover a small
number of pixels. With multiple input images, each pixel has multiple in-
tensity measurements and the majority of the intensities observe Lambertian
model well. The rest of the intensities are labeled as outliers and iteratively
reweighted [14] during minimization.

To further incorporate the constraints in Eq. (1) and (4) into the above
formulation, we notice that the constraints have the same form which looks
like

hij − hi′j′ ≥ diji′j′ . (8)

To enforce these kind of inequalities in a gradient-based minimization
method, a differentiable half-sided parabola is adopted as a penalty function,

sfss-ijcv.tex; 2/11/2004; 12:10; p.16



17

S(i, j, i′, j′) = [min(0, hij − hi′j′ − diji′j′)]2. (9)

The penalty functions for all the inequalities and equalities can be in-
serted as additional terms into Eq. (7). The new cost function for surface
reconstruction is given as follows.

E3 = α
∑

k

∑
i,j lkij(ρijR

k(pij , qij) − Ik(i, j))2+
λ

∑
i,j(u

2
ij + v2

ij)+
β

∑
k(

∑
mk

Sk(imk
, jmk

, i′mk
, j′mk

) + Tk)
(10)

where mk is the index of the inequality constraints from the k-th image,
Sk(imk

, jmk
, i′mk

, j′mk
) represents the actual penalty terms contributed by the

k-th image, and Tk represents the collection of penalty terms for the equality
constraints associated with shadows, such as those in Eq. (2) and Eq. (3). α,
β and λ are weights used to indicate the relative importance of each term.
They are currently set up by the user. In our experiments, we use iterative
minimization algorithms and require α = 1 − λ. λ is initialized to 0.1 and
divided by a constant factor after each iteration to phase out the regularization
term. We set β ≥ 1 to emphasize the importance of shadow constraints.

All the above three cost functions are differentiable and can be minimized
by the standard conjugate gradient algorithm [31]. Since the cost functions
have local minima, it is important to start from a good initialization to con-
verge to the correct solution. In practice, multiresolution minimization can
perform more efficiently and accurately. When the input images have a high
resolution, an image pyramid can be built for each of them and the solution
obtained from a lower resolution can serve as a good initial solution for a
higher resolution.

3.2. ENFORCING UPPER AND LOWER BOUNDS

Upper Bound

Initial Height Field

Upper Bound

Adjusted Height Field

(a) (b)

Figure 6. (a) Some parts of the height field recovered from minimization may exceed the
upper bound; (b) We need to globally adjust the initial height field to maintain its original
smoothness instead of simply clipping it against the upper bound.

In the formulation in Section 3.1, shadow constraints are enforced as soft
constraints by using penalty terms in an original height-from-shading algo-
rithm. It is not guaranteed that all constraints are satisfied. Sometimes, it is
more desirable to consider shadow constraints as hard constraints since they
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are less sensitive to specular reflection and albedo variations, and to consider
shading constraints as soft ones since a small amount of deviation in shading
is not very noticeable. Directly using the shadow and antishadow constraints
in a constrained optimization framework is computationally expensive since
the number of such constraints can be much larger than the number of pixels.
The upper and lower bounds derived from the shadow graph in Section 2
can better serve as constraints during optimization since the number of such
bounds is only O(n2) which is on the same order of magnitude as the number
of pixels.

The upper and lower bounds can be estimated as follows. ( Note that the
height of the nodes in the set Vt is unknown at the beginning, and they can be
estimated from a solution of the height field from Section 3.1. )

1. Obtain an initial estimation of the height value for each point by mini-
mizing Eq. (10);

2. Adjust the initial height values of the nodes in Vt to satisfy all the an-
tishadow constraints among them as in the following convergent proce-
dure;

a) fix the height of the highest point in Vt;

b) loop through the rest of the points and check whether the considered
point is in the shadow of some other point in Vt because of the vio-
lation of a antishadow constraint; if so, raise the considered point to
the minimum height that can eliminate the violation.

3. Calculate the upper and lower bounds for nodes in V − Vt from the
transitive closure Gc.

To enforce the upper and lower bounds, our complete algorithm still takes
an initial solution of the height field from minimizing Eq. (10). However,
there are multiple possibilities to improve this initial solution:

1. For each point, if it is higher than its upper bound, push it down to the
upper bound; if it is lower than its lower bound, raise it to the lower
bound.

2. Use a constrained optimization algorithm to enforce the upper and lower
bounds.

3. Fix a subset of the adjusted points from the first step and minimize Eq.
(10) with those fixed points as additional boundary conditions; alternate
adjustment and minimization (with a few additional fixed points every
iteration) until all the bounds are satisfied.
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The first scheme chooses to satisfy all the hard constraints by using brute
force and ignoring all the shading constraints, therefore tends to have un-
natural discontinuities at those adjusted places. The second scheme chooses
to apply a general-purpose constrained optimization algorithm to automat-
ically and iteratively adjust the heights so that the bounds are satisfied at
the end. Unfortunately, constrained optimization algorithms, such as sequen-
tial quadratic programming (SQP) and nonlinear bounded least-squares, are
usually computationally expensive on high-dimensional data such as images.
Such algorithms repeatedly solve local quadratic programming problems which
require the inversion of a matrix of the same size of a Hessian matrix. If the
images have size n × n, the number of unknowns in the optimization is n2,
and the size of a Hessian is n2 × n2.

The last scheme chooses to adapt unconstrained optimization algorithms
so that they allow a part of the variables to be fixed. To achieve that, we can
simply set the corresponding derivatives to be zero. We fix a few additional
points within their bounds before unconstrained minimization takes place in
every iteration. This can satisfy all the bounds in a finite number of iterations
since we only try to recover height values at a finite number of points (pixels).
An intuitive illustration is given in Fig. 6.

In practice, we chose the last scheme with some additional details. After
initialization, the height values of the nodes in Vt, and the upper and lower
bounds are fixed in all iterations. In every iteration, we subtract the upper
bounds from the current estimation of the height field to obtain a difference
field. Then the set of local maxima in the difference field are located. Those
points corresponding to the local maxima are lowered to their correspond-
ing upper bounds and fixed thereafter. Other points higher than their upper
bounds are also modified to be lower than their upper bounds, but not fixed.
The same procedure is repeated for lower bounds before the unconstrained
minimization in Eq. (10) takes place once again with the newly fixed points as
additional boundary conditions. We hope that the shading constraints solved
during minimization can automatically adjust the neighborhoods of those
fixed points so that there will be much less violated bounds in the next it-
eration. This can also avoid having many unnatural discontinuities since the
minimization procedure serves as a smoothing operator by considering all
constraints simultaneously.

Since we adopt unconstrained optimization during each iteration by sim-
ply using zero derivatives for those fixed variables, this custom-designed
algorithm is much more efficient than those general-purpose constrained op-
timization algorithms. For example, the sequential quadratic programming
software package [11] we have tested took two hours to finish one iteration
on eight 64x64 images on a Pentium III 800MHz workstation while our al-
gorithm only took less than one minute each iteration. The actual number of
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iterations to achieve convergence varies with examples. Usually dozens of
iterations are needed before convergence.

3.3. SHADOW SEGMENTATION

Since we exploit shadow constraints during surface reconstruction, it is im-
portant to obtain accurate shadow segmentation. There are two different types
of shadow boundaries. According to Fig. 1(a), the shadow boundary at the
occluder x0 is called the self shadow boundary while the shadow boundary at
x1 is called the cast shadow boundary. It is straightforward to see that a cast
shadow boundary generates an intensity discontinuity since we use collimated
light sources. However, the intensity across a self shadow boundary over a
differentiable surface is continuous since the surface normal varies smoothly
and gradually points away from the light source. The shadow boundary is at
the location where the surface normal becomes perpendicular to the lighting
direction. The continuous change of intensity makes a self shadow boundary
hard to detect. For 3D textures, this problem is less severe since 3D textures
have high-frequency geometric details which make self shadow boundaries
easier to localize.

There are two additional factors that affect the sharpness of a shadow
boundary. The first one is the sensor’s ground noise level. It is impossi-
ble to obtain perfectly black shadow regions since every camera has ground
noise and the signal to noise ratio drops dramatically when the incident in-
tensity becomes close to zero. The second factor is mutual interreflections
in the shadow regions. Shadow regions receive a small amount of indirect
illumination from the surrounding environment to make themselves slightly
brighter. These two factors make it harder to accurately localize the shadow
boundaries.

There have been significant amount of previous work on shadow detection
[3, 30] most of which focuses on detecting shadows from video sequences
where either the object casting the shadow is moving or the camera is mov-
ing. Temporal differencing and background subtraction have been commonly
exploited in the literature. [30] provides a good evaluation and comparison
among various algorithms. In terms of shadow detection in still images, as
is the case in this paper, intensity thresholding is the dominant approach.
The specific threshold for the shadow pixels is typically user-defined. More
advanced image segmentation techniques, such as region growing and graph
partitioning [33], tend to exploit spatial coherence to group nearby pixels to-
gether. Since we try to recover the height fields of 3D textures with high spa-
tial frequencies, maintaining spatial coherence is not desirable. In addition,
since the images we use for material samples are taken in a well controlled
environment without ambient illumination, the intensities of shadowed and
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nonshadowed pixels are reasonably separated. Therefore, thresholding is both
effective and convenient.

To achieve more accurate pixel classification than simple thresholding,
we designed two schemes to perform thresholding more carefully. The first
scheme needs the user to specify two intensity thresholds: a lower threshold
T1 and a higher threshold T2. They represent conservative thresholds for
shadowed regions and illuminated regions, respectively. During surface re-
construction, all the pixels with intensity below T1 are regarded as shadowed
pixels and shadow constraints are imposed while pixels with intensity above
T2 are regarded as illuminated pixels and shading constraints are imposed. In
this scheme, we simply do not make use of the pixels with intensity between
the two thresholds to avoid possible errors from inaccurate shadow segmen-
tation. Of course, we assume that the ignored pixels in a subset of the images
are actually considered in the rest of the images. Otherwise, we have to rely
on the regularization term to make reasonable speculations on their height
values.

In the second scheme, we consider the shadow threshold as an additional
parameter that needs to be determined during surface reconstruction. It is still
reasonable for the user to define a range [T1, T2] for the shadow threshold. An
automatic procedure is then executed to search for the best threshold within
the given range. The automatic procedure is based on the following heuristic:
given the correct shadow threshold, most pixels will be correctly classified as
either shadowed or illuminated pixels, correct constraints will be imposed on
them during optimization, and the cost of Eq. (10) after minimization should
be very low; when the shadow threshold is too low or too high, some pixels
will be misclassified, incorrect constraints will be imposed on them, and the
cost of Eq. (10) after minimization remains higher than it should be. Accord-
ing to the above heuristic, we iteratively adjust the shadow threshold using
the one-dimensional Golden Section search [31]. One iteration for shadow
threshold adjustment involves the whole process of minimizing Eq. (10) with
the current shadow threshold fixed. Thus, surface reconstruction and shadow
segmentation can be carried out simultaneously.

3.4. EXPERIMENTS

We have tested our algorithms using integrated shadow and shading con-
straints on both synthetic and real imagery.

3.4.1. Synthetic Data
We chose to use the same synthetic examples in Section 2.3 to verify the
effectiveness of our algorithms. The first example is a 3D texture while the
other two represent general height fields to indicate that our algorithms are
not limited to 3D textures. Eight synthetic images were generated as input for
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(a)

(b)

(c)

Figure 7. (a) Input images for the plaster material sample. The angle of elevation of the light-
ing directions in the top row is 45 degrees, the bottom row 30 degrees. (b) Synthetic images
of a height field recovered from shape-from-shading only. (c) Synthetic images of the height
field recovered from our hybrid method. In terms of illumination directions, the first image
has a novel direction and each of the other three in (c) has a corresponding image in (a). The
second image corresponds to the first one of the first row in (a); the third image corresponds to
the first one of the second row; and the last image corresponds to the third one of the second
row. Every image in (c) also has the same illumination direction as their corresponding image
in (b).

each of the three datasets we chose. Four of them were lit from an angle of
elevation of 45 degrees and the others were lit from 30 degrees to create im-
ages with significant amount of shadow. We apply both shape-from-shading
and our hybrid algorithm to recover the height field for each example. Since
the original height fields are known, we compared the accuracy of the height
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(a)

(b)

(c)

Figure 8. (a) Input images for the pyramid scene. The angle of elevation of the lighting
directions in the top row is 45 degrees, the bottom row 30 degrees. (b) Synthetic images
of a height field recovered from shape-from-shading only. (c) Synthetic images of the height
field recovered from our hybrid method. In terms of illumination directions, the first image
has a novel direction and each of the other three in (c) has a corresponding image in (a). The
actual correspondence is the same one used for Fig. 7. Every image in (c) also has the same
illumination direction as their corresponding image in (b).

fields recovered from both approaches based on error measurements. We also
generated synthetic images for each example from the recovered height fields.
Some of the synthetic images are lit from the same lighting directions as some
of the input images to verify both shadowed and non-shadowed regions while
the other synthetic images are lit from a novel lighting direction which is
different from the ones for the input images to show that the recovered height
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(a)

(b)

(c)

Figure 9. (a) Input images for the face model. The angle of elevation of the lighting direc-
tions in the top row is 45 degrees, the bottom row 30 degrees. (b) Synthetic images of the
height field recovered from shape-from-shading only. (c) Synthetic images of the height field
recovered from our hybrid method. In terms of illumination directions, the first image has
a novel direction and each of the other three in (c) has a corresponding image in (a). The
actual correspondence is the same one used for Fig. 7. Every image in (c) also has the same
illumination direction as their corresponding image in (b).

fields can be useful for creating images with correct appearance from novel
lighting conditions.

The input images for the plaster sample are shown in Fig. 7(a), and the
synthetic images of the height fields recovered from shape-from-shading and
our hybrid approach are shown in Fig. 7(b)&(c), respectively. The input im-
ages for the pyramid scene are shown in Fig. 8(a). The synthetic images of
the recovered height fields are shown in Fig. 8(b)&(c). Fig. 9 shows the input
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Table II. Comparison of three algorithms on three datasets
using noise-free images: i) shape-from-shading only by mini-
mizing E2 in Eq.(7), ii) hybrid method by minimizing E3 in
Eq.(10), iii) hybrid method by enforcing bounds as in Section
3.2. Each entry has a pair of error measurements for the re-
covered height field. The first one is the mean error while the
second one is the RMS error. All numbers are given in the unit
of a pixel.

Plaster Pyramids Face

E2 1.478, 1.934 2.481, 3.658 3.552, 4.416

E3 1.099, 1.455 1.782, 2.242 1.508, 1.743

E3+Bounds 1.005, 1.400 1.671, 2.198 1.367, 1.614

Table III. Comparison of three algorithms on three datasets
using images with 5% noise: i) shape-from-shading only by
minimizing E2 in Eq.(7), ii) hybrid method by minimizing E3

in Eq.(10), iii) hybrid method by enforcing bounds as in Sec-
tion 3.2. Each entry has a pair of error measurements for the
recovered height field. The first one is the mean error while the
second one is the RMS error. All numbers are given in the unit
of a pixel.

Plaster Pyramids Face

E2 1.483, 1.940 2.544, 3.762 3.583, 4.452

E3 1.055, 1.409 1.809, 2.268 1.500, 1.753

E3+Bounds 1.039, 1.396 1.768, 2.210 1.493, 1.749

and synthetic images for the face model. In these examples, the solutions
obtained from shape-from-shading do not preserve relative height differences
among surface points very well. This is most noticeable from the synthetic
images shown in Fig. 9(b) where the recovered face model looks too flat
while the face model recovered by our hybrid approach is visually much
more closer to the origial one. For the same reason, the synthetic images for
the height fields recovered from shape-from-shading typically do not have
sufficient amount of cast shadow. Our hybrid algorithm managed to enforce
the shadow constraints and make the generated images look more similar to
the input ones. Considering shape-from-shadow only, the results in Section
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Table IV. Comparison of accuracy and timing for the face model in
terms of number of input images and number of levels in a multires-
olution optimization. The first row shows the number of images. The
remaining rows show the mean errors of the height fields and timing
results simultaneously when image pyramids between one to three
levels are used during optimization. The mean reconstruction errors
are given in the unit of a pixel, while the timing results are given in
seconds.

face 4 8 24 48

1 level 4.160, 36s 3.968, 80s 3.563, 277s 1.486, 569s

2 levels 3.529, 32s 3.268, 57s 2.938, 177s 1.334, 398s

3 levels 1.624, 26s 1.367, 48s 0.978, 173s 0.977, 383s

2.3 actually appear less flattened than the results from shape-from-shading
which, however, tends to generate very smooth surfaces.

Fig. 10 shows two comparisons of the cross sections. In each of the com-
parisons, there are four curves including the ground truth, the curve from
minimizing Eq. (7), the curve from minimizing Eq. (10) and the curve from
enforcing the height bounds. The results from minimizing Eq. (7) are not
as good as the other two versions because it does not consider shadow con-
straints. In our examples, most points are lit from at least one lighting direc-
tion. The height field can be recovered from shape-from-shading or photo-
metric stereo alone. However, the additional shadow constraints can definitely
improve the accuracy of the results because shading only imposes local con-
straints, and shading-based techniques can introduce accumulated errors from
pixel to pixel during integration while shadow constraints are very good at
directly enforcing long-range relative height constraints.

Table II and III show the error measurements of the recovered height
fields from three algorithms: the variant of shape-from-shading described in
Eq. (7), the algorithm enforcing soft shadow constraints by minimizing Eq.
(10), and the generalized algorithm enforcing hard height bounds. The latter
two consistently performed better than shape-from-shading and the amount
of improvement is significant. The numerical accuracy of the latter two al-
gorithms does not differ significantly although the version enforcing hard
bounds performed slightly better. In Table III, a zero mean Gaussian noise
with a standard deviation of 5% of the gray-scale range (0-255) is added to
the original input images used for Table II. The three algorithms all performed
robustly by only slightly increasing the errors in the recovered height fields.
The amount of increased error is typically below 5%.
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We implemented a multiresolution version of the hybrid algorithm and
did a comparison on the face dataset using image pyramids between one to
three levels. An image pyramid is built for each of the input images. The
multiresolution optimization begins at the coarsest resolution and recovers a
height field using the coarsest image from each image pyramid. The coarsest
height field is then interpolated to initialize the height field at the next higher
resolution. This step is repeated until the highest resolution has been reached.
A convergence test is also performed simultaneously with the multiresolution
test. For a fixed number of levels, an increasing number of input images are
used to recover the height field. The error measurement and timing result for
each combination are shown in Table IV. In summary, the algorithm runs
faster and produces more accurate results with an increasing number of res-
olutions. The algorithm runs slower but produces more accurate results with
an increasing number of input images.

sfss-ijcv.tex; 2/11/2004; 12:10; p.27



28

20 30 40 50 60 70 80 90 100 110 120
−20

−18

−16

−14

−12

−10

−8

−6
original 
sfs      
sfs−sc   
sfs−upper

(a)

0 20 40 60 80 100 120
−5

0

5

10

15

20

25

30
original 
sfs      
sfs−sc   
sfs−upper

(b)

Figure 10. Comparison of the cross sections of four height fields: the ground truth is shown
as ’original’; the one from minimizing Eq. (7) is shown as ’sfs’; the one from minimizing Eq.
(10) is shown as ’sfs-sc’; and the one from enforcing bounds is shown as ’sfs-upper’. (a) cross
sections for the plaster sample. (b) Cross sections for the pyramid scene;
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3.4.2. Real 3D Textures
We performed extensive experiments on real material samples captured in the
Heriot-Watt PhoTex database [9] and the Columbia-Utrecht CUReT database
[4]. We focus our experiments on those material samples with obvious height
relief since explicit height field reconstruction may not be necessary for the
rest of the material samples.

Fig. 11-16 show some of the results on material samples captured in the
PhoTex database. Only four or eight 256x256 input images were chosen for
each material sample. Many of the input images have shadows. Because of
the spatial height pattern on the material, images corresponding to different
illumination directions may have dramatically different appearances (for ex-
ample, Fig. 11). The height fields were recovered using our hybrid shape
from shadow and shading approach. The shadow threshold for each sample
was determined automatically within a user defined range using the second
technique discussed in Section 3.3. For example, this threshold for the sample
shown in Fig. 15 was found to be 92 out of 256 possible gray-scale levels. The
reconstructed surfaces were then synthetically rendered using the original as
well as novel illumination directions. From these synthetic images, we can
see that interesting high-frequency details in the height fields have been pre-
served, and the recovered height fields can reproduce the dramatic appearance
changes due to different lighting directions. Since our synthetic rendering
program currently does not simulate interreflections, large shadow regions
in the synthetic images remain completely dark and featureless while their
counterparts in the real images have vaguely visible details. These recovered
height fields can be used for displacement mapping to produce the appearance
of natural rough materials.

We did another test on a rough plastic sample from the CUReT database
(Fig. 17). This sample has a reasonable amount of specular reflection. Four
registered input images were used for recovering the surface height field. As
mentioned previously, we treat specular highlights as outliers and automati-
cally reweight these outliers during iterative minimization. Good results have
been obtained on this sample since the feature patterns are clearly visible in
the recovered height field with well-defined boundaries. This indicates that
our scheme for specularity is quite effective as long as the amount of specular
reflection is not overly dominant. Note that there are height discontinuities
at the boundaries of the feature patterns, the weight for the regularization
term in the shape-from-shading formulation can be adaptively adjusted at
these locations to improve the reconstruction accuracy. The details of such
an adaptive scheme can be found in [26].

We also did a test for a degenerate case. Three 128x128 images of a
concrete sample from the CUReT database [7] were used as the input to
our algorithm. They were registered together with user assistance before the
experiment. From Fig. 18(a)-(c), we can see they show various amount of
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shadow. The lighting directions of the input images are actually coplanar.
Traditional photometric stereo would have problems to recover the height
field. However, our algorithm obtained reasonable results since it exploits
shadow constraints and a regularization term. Minimizing E3 in Eq. (10) took
5 minutes on a Pentium III 800MHz processor, and the iterative procedure for
enforcing bounds took another half an hour. Synthetic images were generated
from the recovered height field. The recovered dataset was illuminated from
both original lighting directions (Fig. 18(d)-(f)) of the input images and novel
lighting directions (Fig. 18(g)-(h)).
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(a)

(b)

Figure 11. (a) Input images of a material sample from the Heriot-Watt PhoTex database. The
angle of elevation of the illumination is 15 degrees. The azimuth angles are 0, 90, 180 and 270
degrees. (b) Synthetic images of the recovered height field illuminated from the same lighting
directions as the input images. sfss-ijcv.tex; 2/11/2004; 12:10; p.31
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(a)

(b)

Figure 12. (a) The recovered height field for the material sample in Fig. 11. The height
field is visualized as a gray-scale image. (b) A synthetic image of the recovered height field
illuminated from a novel lighting direction with an angle of elevation 45 degrees.
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(a)

(b)

Figure 13. (a) Input images of a material sample from the Heriot-Watt PhoTex database. The
angle of elevation of the illumination is 15 degrees. The azimuth angles are 0, 90, 180 and 270
degrees. (b) Synthetic images of the recovered height field illuminated from the same lighting
directions as the input images. sfss-ijcv.tex; 2/11/2004; 12:10; p.33
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(a)

(b)

Figure 14. (a) The recovered height field for the material sample in Fig. 13. The height
field is visualized as a gray-scale image. (b) A synthetic image of the recovered height field
illuminated from a novel lighting direction with an angle of elevation 45 degrees.
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(a)

(b)

Figure 15. (a) Input images of a material sample from the Heriot-Watt PhoTex database. The
illumination for the first row has an angle of elevation 45 degrees while the second row 15
degrees. (b) Synthetic images of the recovered height field illuminated from the same lighting
directions as the input images.
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(a)

(b)

Figure 16. (a) The recovered height field for the material sample in Fig. 15. The height field is
visualized as a gray-scale image. (b) Synthetic images of the recovered height field illuminated
from novel lighting directions with an angle of elevation 30 degrees. The azimuth angles are
45, 135, 225 and 315 degrees.
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(a)

(b)

Figure 17. (a) Four calibrated gray-scale images of a rough plastic sample from the CUReT
database. (b) A recovered height field from our algorithm. The height field is visualized as a
gray-scale image.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 18. (a)-(c) Real images of a concrete sample from the CUReT database; (d)-(f) syn-
thetic images of the recovered height field illuminated from original lighting directions; (g)-(h)
synthetic images of the recovered height field illuminated from two novel lighting directions.
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4. Conclusions and Discussions

In this paper, we presented various shadow-based methods for recovering
high-frequency surface geometric details. We introduced the concept of shadow
graphs and proved that the shadow graph alone is sufficient to solve the
shape-from-shadow problem from a dense set of images. We also developed
a method for recovering 3D textures as well as height fields in general from
both shadow and shading constraints. A constrained optimization procedure
has been developed to make the results from shape-from-shading consistent
with the height bounds derived from shadow constraints. Our methods are
robust under noise contamination and specular reflection. The hybrid method
using both shadow and shading constraints can tolerate a reasonable amount
of specularity since it considers specular reflection as outliers and relies on
diffuse reflection for surface recovery. As the amount of specular reflection
becomes dominant such as in the case of metallic material samples, we should
rely more heavily on shadow constraints since they are insensitive to specu-
larity. Therefore, input images should be taken with a denser sampling of the
illumination hemisphere in order to have more shadow constraints and more
accurate height bounds from the shadow graph.

Traditional shape-from-shading [17] only takes one input image and heav-
ily relies on the regularization term. Recovered surfaces often have obvi-
ous errors. Photometric stereo [36] can improve on this by using three or
more images. We generalized shape-from-shading to incorporate multiple
images, thus achieve better accuracy. However, it has been demonstrated that
the integration of shadow constraints can further significantly improve the
reconstruction accuracy using the same number of input images.
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