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Abstract Data driven deformation is increasingly impor-
tant in computer graphics and interactive applications. From
given mesh example sequences, we train a deformation pre-
dictor and manipulate a specific style of surface deformation
interactively using only a small number of control points.
The latest approach of learning the connection between rigid
bone transformations and control points uses a statistically
based framework, called canonical correlation analysis. In
this paper, we extend this approach to a skinned mesh with
affine bones, each of which conveys a nonrigid affine trans-
formation. However, it is difficult to discover the underly-
ing relationship between control points and nonrigid trans-
formations. To address this issue, we present a two-layer
regression framework; one layer being from control points
to rigid and the other layer being from rigid to nonrigid
transformations. Our contributions also include bone-vertex
weight smoothing, enabling the distribution of each bone’s
influence across neighboring vertices. We can alleviate dis-
tortion around regions where nearby bones undergo various
transformations and improve deformations reaching beyond
the learned subspaces. Experimental results show that our
method can achieve more general deformations including
flexible muscle bulges or twists. The performance of our im-
plementation is comparable to the latest approach.

B.-U. Kim (�) · W.-W. Feng · Y. Yu
Department of Computer Science, University of Illinois at
Urbana-Champaign, 201 N. Goodwin Ave., Urbana, IL 61801,
USA
e-mail: kbu@illinois.edu

W.-W. Feng
e-mail: wfeng2@illinois.edu

Y. Yu
e-mail: yyz@illinois.edu

Keywords Deformation · Canonical correlation analysis ·
Regression · Weight smoothing

1 Introduction

With recent advances in data acquisition technology, data
driven techniques become increasingly important in com-
puter graphics and interactive applications since we can ap-
ply them to effectively process captured mesh sequences for
generating various animations. One of the important tech-
niques is automatic skinning for arbitrary mesh animations.
From a given skeleton-free mesh example sequence, we can
build a skinned mesh with proxy bones by assigning trian-
gles with similar transformations into the same proxy bone
cluster. Then we can estimate bone transformations and fit
their influence weights at each vertex by minimizing the er-
ror of linear blend skinning. At the run-time stage, each ver-
tex can be approximated by linearly blending a weighted
sum of multiple bone transformations. It provides a compact
representation for general mesh animations.

Data driven deformation works by building a mapping
from lower dimensional control signals, which could be a
few control points, to surface deformations based on train-
ing mesh poses. The goal is to learn a deformation predictor
that can faithfully reproduce the deformation style and to
achieve high performance at the run-time stage. The utiliza-
tion of a skinned mesh with proxy bones provides an impor-
tant model reduction for data driven deformation by finding
the mapping between the control points and bone transfor-
mations. The work of [6] reveals that a surface deformation
exhibits correlation among different surface regions and its
relation with control points can be formulated effectively in
their reduced subspaces using a statistically based frame-
work, called Canonical Correlation Analysis (CCA). The
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Fig. 1 Novel mesh deformations with our approach. We use one struc-
tural model, Cylinder Bulge, and two anatomical models, Muscle Arm
and Dragon Leg. All three deformations are not presented in the orig-
inal mesh sequences or animations. The vertices in red are a set of
control points guiding surface deformation

deformation predictor from CCA based regression has been
one of the successful tools in real-time data driven deforma-
tion. However, each bone transformation is restricted to be
rigid. This means nonrigid components such as shear and
scale have to be implicitly encoded in the translation com-
ponents when fitting the proxy bone transformations. This
restricts the resulting deformation to be less flexible. The
situation becomes even worse in cases where we compute
a new set of translations through the Poisson solver since
we lose the nonrigid information encoded in the previously
predicted bone translations.

In this paper, we extend the previous approach to a
skinned mesh with affine bones, each of which conveys a
nonrigid affine transformation. From the benefits of affine
bones, we can achieve a better approximation of mesh ani-
mations and reproduce flexible deformations such as muscle
bulges or volume changes. However, a direct regression for
affine transformations are less meaningful and makes it diffi-
cult to discover the underlying relationship between control
points and affine bones. To address this, we present a two-
layered regression framework for the deformation predictor.
We perform the CCA based regression from control points to
rigid components in the first layer, followed by a regression
from rigid to nonrigid transformations in the second layer,
where the second regression can be regarded as the indirect
mapping from control points to nonrigid components. In ad-
dition, we are free from the side effects of the Poisson based
translation solver since non-rigid information is dealt with
separately in our training stage, and does not rely on bone
translations to represent shear and scale components.

Another contribution of our paper is using bone-vertex
weight smoothing (BVWS) to distribute each bone’s influ-
ence effectively across neighboring vertices. Previous meth-
ods compute bone influence weights by minimizing the least
square fitting errors. While this produces optimal fitting for
the input mesh poses, it cannot guarantee to produce new
deformation results without artifacts when the bone trans-
formations are generated on the fly. We observe that if the
neighboring vertices are not smoothly influenced by differ-
ent bones and these bones undergo various transformations,
then the blending result may be prone to unpleasant artifacts.
Thus, we develop a weight fitting scheme based on Lapla-
cian mesh smoothing to compute a smoother distribution of
bone influence weights over the mesh surface while mini-
mizing the error of predicted vertex positions.

Experimental results show that our approach allows us
to reproduce stretching and squashing deformations faith-
fully and alleviate noisy deformation predictions through
BVWS, especially for deformations falling outside the sub-
space spanned by the training examples. The performance
of our implementation on GPUs can achieve a few hundred
frames per second with hundreds of bones, which is similar
to the previous approach with only rigid transformations.

2 Background

Linear blend skinning [10], also called Skeleton Subspace
Deformation (SSD), is the popular technique in computer
graphics and animations, where each vertex is bound to
skeletons, or rigid bones, and its position can be computed
as a weighted sum of associated skeleton transformations.
SSD is easy to implement, but it suffers from artifacts such
as well-known collapsing joints and “candy wrapper” effect
caused by linearly blending of rotation matrices [9, 11]. We
can also generate the new pose in their pose space [9] where
a specific pose can be synthesized as a function of the given
example meshes.

For a skeleton-free mesh, we can build a skinned mesh
from mesh sequences, where clustering triangles with simi-
lar rotation sequences can be identified as a near-rigid struc-
ture of the mesh [8], called proxy bone. The proxy bone
transformations and bone-vertex influence weights can then
be estimated automatically from example mesh spaces by
minimizing the position error between the deformed vertices
and the ground truth vertices at each frame [8, 16].

The skeletal animation can be driven by low-dimensional
control signals [2, 7] and this idea can be extended to
example-based mesh deformations in the framework of in-
verse kinematic [4, 15], where a small subset of vertices act
as constraints for optimization, finding the best pose whose
vertex positions or bone transformations satisfy those con-
straints. However, real-time solutions are difficult, as this
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Fig. 2 Top row: the prediction errors in translations can be amplified
and result in the great visual artifacts such as discontinuities. This can
be recovered with a new set of translations through the Poisson based
solver. Bottom row: the new translations from Poisson solver may nul-
lify the stretch which was encoded into the previous translations but
if we handle stretch separately from translation then we can maintain
area changes due to stretch

process requires quite an expensive nonlinear optimization
and the performance drops quickly when the number of ex-
ample poses grows. To achieve the real-time performance,
the off-line learning system would be more efficient. The
work of [16] is based on SSD where the deformation gra-
dient is trained from mesh examples and can be predicted
according to the configuration of skeletons. In addition to
rotation regression, the shear/scale can be trained in terms of
axis-angle, and thus affine deformations can be reproduced
well. However, the method still relies on skeletons and can
only be applied on articulated deformations.

On the other hand, the work of [6] can work on the ar-
bitrary deformable surface without skeletons. In their ap-
proach, CCA is used for building the connection between
a set of control points and each rigid bone transformation.
They also introduce the nonlinear version of CCA, called
kernel CCA, to better capture the nonlinear relationships be-
tween underlying pairs of input data. Because all these train-
ings can be preprocessed in the off-line, they can predict
bone transformations in real-time with a few matrix–vector
multiplications on GPUs. Once bone transformations are
predicted, each vertex position is computed with the stan-
dard way of linear blending skinning in the modern graphics
hardware. Thus, the performance is fast with a few hundred
frames per second.

However, the deformation prediction based techniques
may suffer from the errors in translations and they usually
produce the visual artifacts due to the mesh discontinuities
as shown in top row of Fig. 2. New translations can be re-
covered through the Poisson equation in the gradient domain
such as deformation gradient [1, 14, 16] or edge gradient [6]
to alleviate the artifacts. Unfortunately, there are problems
with the Poisson based translation solver for rigid transfor-
mations. Rigid bones have only rotations and translations

and, therefore, stretch need to be encoded into either trans-
lation or rotation. Scale can be encoded into translation and
shear can be simulated by the combination of translation and
rotation [13].

Figure 2(D) shows the example of the side effects of the
Poisson based translation solver with a rigid transformation.
The original (blue) triangle is deformed to the green one
where stretch is mostly encoded into translation. Unfortu-
nately, the new translation from the Poisson equation will
nullify the previously encoded scale because it just plays
on the role of recovering the errors in the predicted trans-
lation. This causes inaccurate deformation results different
from training examples. On the other hand, as shown in
Fig. 2(E), if we encode stretch into a nonrigid transforma-
tion separately from translation then we can be free from
the side effects of the Poisson based translation solver. Thus,
we propose a new learning framework to handle the nonrigid
transformations explicitly.

We also propose a new method to improve the predicted
surface deformation by smoothing bone-vertex weights
across the vertices. The motivation of the method originated
from the work of mesh smoothing [5]. Our main goal is
maintaining a high quality skin approximation over several
mesh examples while smoothing bone-vertex weights across
the neighboring vertices. Therefore, we regard the weight
smoothing as an additional criteria in the optimization and
integrate it into the objective function when computing ver-
tex skin weights.

3 Deformation with affine bones

We propose a learning framework similar to the one in [6],
but we explicitly handle the stretch deformations by using
the affine bones instead of rigid bones in the previous work.
In our approach, each nonrigid bone transformation is de-
composed a rigid (rotation) and a nonrigid (stretch) compo-
nent. At run-time, a configuration of control points will drive
rigid bones and then the rigid bones induce nonrigid stretch
to add affine deformation. Finally, we compute new trans-
lations through the Poisson solver to generate new surface
deformations.

In this section, we begin with a skinned mesh with affine
bones and perform a two-layered regression from control
points to rotation, followed by from rotation to stretch. Fi-
nally, we describe how affine bone transformations involve
Poisson equation.

3.1 Skinned mesh with affine bones

From the training examples with P different poses, we can
construct the skinned mesh with B proxy bones. We per-
form the hierarchical clustering [16] in which triangles with
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Fig. 3 The overview of our learning framework where Bc and Hw is
the coefficient matrices for the two-layered regression, respectively

the similar transformation are progressively grouped into the
same bone. After initial clustering, we can identify which
vertices are belonging to which bones and their transforma-
tions Tj

b where j = 1 . . . P and b = 1 . . .B . Then we should
estimate bone-vertex influence weight wbi which indicates
how much b bone transformations influence on vertex i. We
can compute vertex weights by minimizing the fitting error
between the deformed vertex position and the ground truth
vertex position v

j
i at pose j . Specifically,

min
wi ,T

P∑

j=1

∥∥∥∥∥v
j
i −

B∑

b=1

wbi

(
Tj

bvi

)
∥∥∥∥∥

2

, i = 1 . . .N, (1)

where vi is the vertex position in the rest pose with N

vertices and the objective function is solved with the non-
negative least square (NNLS) method to avoid the over-
fitting [8]. Similarly, the affine bone transformations T =
(F, t) can be solved using (1) as well by fixing the vertex
weights. Here, F is a nonrigid component, a 3 × 3 matrix
being formed by composing matrices of rotation and stretch,
and t is a translation.

3.2 CCA based regression for rigid bone transformations

We can build the connection between a set of control points
c and a bone deformation d in their reduced subspaces [6].
The difficulties are that we may not be able to apply CCA
based regression directly from control points coordinate to
a nonrigid affine bone transformation because 12 entries
of affine matrix is less meaningful. For a more meaningful
way, the linear matrix F should be decomposed into rotation
matrix Q and stretch matrix W through Polar Decomposi-
tion [13]. For better interpolation and efficient computation,
we can transform rotation Q to quaternion q ∈ R

4 and rep-
resent a symmetric stretch matrix W with only right upper 6
entries w ∈ R

6.
In this way, we can extract rigid and nonrigid components

from bone transformations and handle them separately; ro-
tations for posing bones and stretches for adding flexible

surface. For rotations, we perform nonlinear model reduc-
tion using kernel CCA for every data pair of (c,q) which
transforms into reduced coordinates (cr ,qr ) with the coeffi-
cient matrix Fc from c to cr . We provide Appendix I for the
mathematical description for kernel CCA. After performing
nonlinear model reduction, we can find the linear mapping
from cr to qr with regression.

min
Bc

P∑

j

∥∥Bccj
r − qj

r

∥∥2
,

where cj
r and qj

r is the values in the reduced coordinates at
the training example j .

In practice, the bases generated by CCA are not necessar-
ily orthogonal to each other. Thus, we should compute the
optimal reconstructor from the reduced coordinate qr to q
in the original space. Specifically,

min
Hq

P∑

j

∥∥Hqqj
r − qj

∥∥2
,

where qj is quaternion at the training example j .

3.3 Regression for nonrigid bone transformations

To handle affine bone transformations, we should train a
mapping to stretch matrix according to the control point co-
ordinates. In our approach, we assume that each bone stretch
has a close relationship with its corresponding bone rotation
in addition to control point coordinates. Thus, we choose to
compute the linear mapping from qr to w for each bone, in-
stead of a mapping directly from control points c to w. It
is obvious that this regression can provide not only the di-
rect mapping from a bone rotation in the reduced coordinate
to a bone stretch but also the indirect mapping from control
points to a bone stretch because we have already establish
the maximized correlation between control points and each
bone rotation in their reduced coordinates. Specifically,

min
Hw

P∑

j

∥∥Hwqj
r − wj

∥∥2
,

where wj is the right symmetric entries of stretch matrix at
the training example j .

Note that we can stack the matrix Hq and Hw into a sin-
gle matrix Hd because they both have qr as input for re-
gression. Then we represent the deformation predictor D(c)
to generate d ∈ R

10 which consists of q ∈ R
4 and w ∈ R

6,
by concatenating three matrix sequences, M = HdBcFc . Fi-
nally, the reconstructed q and w are converted to the full
3 × 3 matrices, rotation R and stretch W to obtain the non-
rigid affine component F = RW.
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Fig. 4 Bone-vertex weight smoothing. (A) Initial clustering, (B) initial
bone-vertex weight fitting, (C) BVWS with 3 iterations

Once we obtain F, we also need to compute bone trans-
lations to complete surface deformations. We use the same
Poisson equation as in the work of [6]. However, instead
of using a rotation, we use a nonrigid affine component F
to derive the edge gradients. Then we can reformulate the
Poisson equation into a linear least square system, Ax = b,
where x is new translation vectors, b consists of each non-
rigid bone transformation F, and A is computed from the
rest-pose vertex positions and bone-vertex/bone-edge skin-
ning weights. Finally, the linear system can be solved in the
form of x = Pb where P = (ATA)−1AT and it can be pre-
computed because A is fixed at run-time.

4 Bone-vertex weight smoothing (BVWS)

In addition to the predicted bone transformations, another
important factor that may affect the quality of the re-
sulting deformations is the bone influence weights. Since
each vertex may be influenced by several bone transfor-
mations, the blended transformations may not be smooth
when nearby bones undergo different movements, and con-
sequently cause visual artifacts near the boundaries of dif-
ferent bones. One effective solution for these artifacts is to
ensure that the blending weights are smoothly distributed
over the surface, and thus the resulting blended transforma-
tions are also smooth. Therefore, we propose a novel method
to generate smooth blending weights based on Laplacian
smoothing.

By definition of Laplacian Smoothing, the continuous
form of smoothing equation (diffuse process) is as follows:

∂X

∂t
= λL(X). (2)

The basic idea is to move the mesh vertices along the
direction of Laplacian to produce a smooth surface. By inte-
grating (2) over time, we can distribute noises over its neigh-
bor fast while keeping the overall shape of the mesh. One
important observation is that the diffusion process reaches
equilibrium state when L(X) = 0. An intuitive interpre-
tation is that the vector of L(X) can be regarded as the
mean-curvature normal from differential geometry. There-
fore, minimizing L(X) can be regarded as minimizing the
total curvature on the surface, which implies the surface
smoothing. Since our goal is to smooth the vertex weights

instead of mesh geometry, we apply the discrete Laplace op-
erator to vertex weight wbi for vertex vi . Specifically,

L(wbi) = 1

m

∑

j∈E(i,j)

(wbj − wbi),

where E(i, j) is edges between vertex i and j and m is the
number of one-ring neighbors to vertex i. Note that our goal
is not only to smooth the vertex weights across the mesh
by minimizing L(X), but also to minimize the fitting error
between the skinned vertex positions and the ground truth
vertex positions. Thus, we can rewrite the objective function
of (1) as follows:

min
wi ,T

P∑

j=1

(∥∥∥∥∥v
j
i −

B∑

b=1

wbi

(
Tj

bvi

)
∥∥∥∥∥

2

+ ρ

B∑

b=1

∥∥L(wbi)
∥∥2

)
,

i = 1 . . .N, (3)

where ρ is the control parameter for smoothness and set to
0.01 for all our experiments.

Since the original Tj
b would not be optimal anymore un-

der the new vertex weights, we also perform refitting bone
transformations by fixing vertex weights from (3) and repeat
a few iterations for spreading the weights smoothly. In our
experiments, we use 3 iterations of BVWS.

5 GPU implementation

Our implementation on GPUs is very straightforward.
We use CUDA [3] for matrix-vector multiplications and
OpenGL Shading Language [12] based GPGPU techniques
for linear blend skinning. As stated before, we upload to the
graphics card memory the precomputed matrices, M and
P, for deformation predictor and Poisson based translation
solver, respectively.

At every frame, the control points sequence c is sent to
GPUs and then its kernelized vector ξc can be computed
by dot product in the feature space using kernel function.
In our simulation, we use RBF kernel function for our all
experiments. For each bone deformation, we perform the
matrix-vector multiplications d = Mξc where d consists of
quaternion q and the right stretch entries w and they are
transformed into R and W, followed by composing the lin-
ear matrix F = RW. For a new set of translation, we per-
form another matrix-vector multiplication t = PF. Finally,
we store the new bone transformations T = (F, t) into the
texture memory which can be accessed by vertex shader at
linear blend skinning stage as shown in Fig. 5.

We can perform the standard linear blend skinning by
binding the bone/weight information per vertex using Ver-
tex Buffer Objects. With per vertex-linear blend skinning
computation, we can obtain the deformed vertex position



B.-U. Kim et al.

Table 1 Data for simulation where #V is the number of vertices, #B
for bones, #C for the reduced dimension of CCA, #Tr for training ex-
amples, #Te for the original meshes, #M and #P is the matrix size for
D(c) and Poisson based translation solver, #T is the total size for ma-

trices to be uploaded to the graphics card. The unit of data size is KB
and the size of (A/B) means A is estimated with dual quaternion and B
with our method

Examples #V #B #C #Tr #Te #M #P #T

Cylinder bulge 2000 50 2 4 40 9.49/10.66 29.69 39.19/40.36

Cylinder bulge∗ 2000 100 2 4 40 18.87/23.55 117.97 136.84/141.52

Dragon leg 2210 100 2 19 86 66.09/82.50 117.97 184.06/200.47

Muscle arm 5256 100 2 5 50 22.02/25.14 117.97 139.98/143.11

Fig. 5 Overview of our GPU implementation which consists of three
stage: Deformation Predictor, Poisson based translation solver, and
Linear Blending Skinning. The first two stages facilitate the computing
power of CUDA and the last stage does a general GPGPU technique
with the shading programming

simply by an weighted sum of bone transformations, ṽi =∑B
b=1 wbi(Fbvi + tb).

6 Experimental results

In our experiments, we use one structural model, “Cylin-
der Bulge,” and two anatomical models, “Dragon Leg” and
“Muscle Arm” as shown in Fig. 1. The structural model
demonstrates the fundamental deformation for stretching
and the anatomical models include the complicated muscle
changes at bulging and twisting. We have sampled training
examples from the original mesh sequences which may be
obtained from the motion captures or animation synthesized
programs. Table 1 shows the summary of our simulation
data.

Figure 6 demonstrates the limitations of the previous
method with rigid bone transformations and the advantage
of our system with nonrigid affine bone transformations. In
this experiment, we have sampled four training examples
from the original mesh sequences. As shown in Fig. 6, (A)
is the ground truth from the last frame of the original mesh
sequences, which is also the last training example. From this
pose, we generate the new deformation by dragging one of
the control points with green color up to the position with

red color as shown in (B), (C), and (D). Here, (B) and (C) are
the results from the previous method using dual-quaternion
as bone transformations while (D) is our result using affine
transformations. We also apply the Poisson based transla-
tion solver to obtain new bone translation in (C) and (D). As
shown in (B), we can reproduce the bulge effects well with
enough number of bones even we use rigid bone transforma-
tions. However, the control point may not be able to guide
the mesh deformation exactly without the constraints from
translation solver. Therefore, it is hard to find the solution to
reach beyond the training example spaces. We can overcome
this limitation by solving the Poisson equation involving the
soft constraints with control point positions. Unfortunately,
we lose stretches with the new bone translations as shown
in (C). (D) shows the advantage of our system. We cannot
only preserve surface stretches successfully but also exactly
drive the deformation guided by the control point coordi-
nates.

Figure 7 demonstrates muscle bulging and twisting with
the anatomical arm which involves not only an apparent
muscle flexing at biceps but also subtle muscle changes
along with arms when tightening/relaxing at elbow or wrist
twisting. We have simulated the mesh deformation by mov-
ing the control point positions over the trajectories of the
original mesh sequences. (A) is the ground truth, (B) and (C)
are results with dual quaternion, (D) is the result with our
method. Top rows are the captured images at the regions of
inner side muscles when the wrist is twisting. Bottom rows
are from the deformations when the arm is flexed fully. As
we can expect, the prediction errors in the translations re-
sult in the visual distortions in (B). These artifacts can be
alleviated with the Poisson based translation solver in (C).
However, the resulting deformation in (C) cannot preserve
muscle bulging; muscle volumes are lost compared to the
ground truth. Our method in (D) can generate these flexi-
ble deformations and the result is almost identical with the
ground truth.

Figure 8 demonstrates the skinning position errors on
some selected training examples from the anatomical model
of Dragon Leg. We compute vertex skinning error as the
norm of offset between the ground truth positions and the
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Fig. 6 Cylinder bulge deformation. (A) The skinned mesh, (B) deformation is predicted with dual quaternion, (C) deformation is predicted with
dual quaternion and Poisson translation solver, (D) deformation is predicted with flexible bones

Fig. 7 Muscle arm deformation. (A) The ground truth, (B) deformation predicted with dual quaternion, (C) deformation predicted with dual
quaternion and Poisson solver, (D) our method

Fig. 8 Dragon leg skinning prediction. Top rows are skinning prediction with the usual vertex/bone transformation fitting method. Bottom rows
with the vertex/bone transformation fitting method with vertex weight smoothing. They both are performed with 3 iterations
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Fig. 9 Dragon leg deformation prediction. Top and bottom rows are
generated from our method without and with vertex weight smoothing,
respectively. We also visualize the vertex weights

Fig. 10 Performance with FPS. All performance were taken from a
1.8 GHz Core2Duo processor with nVidia 8800GTX with 512 MB
video memory

deformed positions. Top rows are from the conventional
NNLS fit of vertex skinning weights and bottom rows are
the results from BVWS. As shown in the top rows, the errors
are not distributed evenly and there may be large distortions
at some local regions. On the other hand, BVWS distributes
the skinning errors over the vertices more evenly.

Figure 9 demonstrates the comparison of surface defor-
mations with and without BVWS. We have generated the
deformations with the same interactive movement of control
points. There are artifacts at the regions of the calf muscles
on the leg without vertex weight smoothing. On the other
hand, our weight smoothing method helps eliminate such
artifacts in the predicted deformations successfully.

Figure 10 demonstrates the performance comparisons
for the previous method and our method. In the previous
method, the Poisson based translation solver can be optional
because we can predict the appropriate translation with dual
quaternion for small transitional changes such as facial an-
imation. For our method, however, it is best though to use

our system with the Poisson reconstruction step. From the
graph, our system shows a few hundred of FPS on the con-
ventional personal computer with the modern graphics card
and is competitive with the previous method.

7 Conclusions

In this paper, we have extended the previous technique of
CCA based data driven deformation to affine bones. By us-
ing bones with affine transformations, we can faithfully gen-
erate arbitrary deformations with volume changes. The per-
formance is similar to the previous method since the matrix
size for the deformation predictor only increases slightly,
which has little impact on the performance.

Our contributions also include a method for bone-vertex
weight smoothing. It allows us to alleviate visual artifacts
by blending bone transformations smoothly over vertices.
Moreover, BVWS provides a general scheme for computing
vertex weights with an objective function that can be com-
bined with many clustering algorithms. In future, we hope to
further reduce skinning errors by computing smooth weights
adaptively at highly deformable regions or user selected re-
gions.
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Appendix: Kernel canonical correlation analysis

For given P training examples, we can define the data ma-
trices C = (c1 . . . cP ) and E = (q1 . . .qP ) from pairs of con-

trol points coordinate and quaternion {cj ,qj }Pj=1. For a non-
linear version of CCA, we can apply the mapping φ(·) to
transform the original data into a higher dimensional feature
space (In practice, we use the nonlinear mapping of only C
for the performance reasons). Then we can express a pair of
bases for the linear version of CCA as {φ(C)fc,Efe}, where
fc, fe ∈ R

P are coefficient vectors. Thus, we can write kernel
CCA as follows:

max
fc,fe

ρ = max
fc,fe

fT
c φ(C)Tφ(C)ETEfe√

fT
c (φ(C)Tφ(C))2fcfT

e (ETE)2fe

,

where we can obtain κ pairs of coefficient vectors for two
matrices, Fc = (f1

c . . . fκc ) and Fe = (f1
e . . . fκe ) from SVD.

At run-time, we should project the control points coor-
dinate c into the reduced coordinates cr ∈ R

κ and it can be
represented as a matrix-vector form as follows:

cr = FT
c ξ c,
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where ξ c ∈ R
κ is the kernelized vector whose j th entry is

kc(c, cj). In our simulation, we use the Gaussian as the ker-
nel function, kc(c, cj) = exp(− cT cj

β
) with β = 40.0.
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based inverse kinematics. ACM Trans. Graph. 23(3), 522–531
(2004). http://doi.acm.org/10.1145/1015706.1015755

8. James, D.L., Twigg, C.D.: Skinning mesh animations. ACM
Trans. Graph. 24(3), 399–407 (2005). http://doi.acm.org/
10.1145/1073204.1073206

9. Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: A uni-
fied approach to shape interpolation and skeleton-driven deforma-
tion. In: SIGGRAPH ’00: Proceedings of the 27th Annual Con-
ference on Computer Graphics and Interactive Techniques, pp.
165–172. ACM Press/Addison-Wesley Publishing Co., New York
(2000). http://doi.acm.org/10.1145/344779.344862

10. Magnenat-Thalmann, N., Laperrire, R., Thalmann, D., Montréal,
U.D.: Joint-dependent local deformations for hand animation
and object grasping. In: Proceedings on Graphics Interface ’88,
pp. 26–33 (1988)

11. Mohr, A., Gleicher, M.: Building efficient, accurate character
skins from examples. ACM Trans. Graph. 22(3), 562–568 (2003).
http://doi.acm.org/10.1145/882262.882308

12. Rost, R.J.: OpenGL(R) Shading Language, 2nd edn. Addison-
Wesley, New York (2006)

13. Shoemake, K., Duff, T.: Matrix animation and polar decomposi-
tion. In: Proceedings of the Conference on Graphics Interface ’92,
pp. 258–264. Morgan Kaufmann Publishers Inc., San Francisco
(1992)
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