
Published in ACM Transactions on Graphics (Special Issue for SIGGRAPH 2008)

Real-Time Data Driven Deformation Using
Kernel Canonical Correlation Analysis

Wei-Wen Feng Byung-Uck Kim Yizhou Yu

University of Illinois at Urbana-Champaign

Abstract
Achieving intuitive control of animated surface deformation while
observing a specific style is an important but challenging task in
computer graphics. Solutions to this task can find many applica-
tions in data-driven skin animation, computer puppetry, and com-
puter games. In this paper, we present an intuitive and powerful
animation interface to simultaneously control the deformation of a
large number of local regions on a deformable surface with a min-
imal number of control points. Our method learns suitable defor-
mation subspaces from training examples, and generate new de-
formations on the fly according to the movements of the control
points. Our contributions include a novel deformation regression
method based on kernel Canonical Correlation Analysis (CCA) and
a Poisson-based translation solving technique for easy and fast de-
formation control based on examples. Our run-time algorithm can
be implemented on GPUs and can achieve a few hundred frames per
second even for large datasets with hundreds of training examples.

CR Categories: I.3.7 [Computer Graphics]: Three Dimensional
Graphics and Realism—Animation

Keywords: Animation, Skinning, Regression, Poisson Equation

1 Introduction
Achieving intuitive control of animated surface deformation while
observing a specific style is an important but challenging task. Very
often, the surface undergoing deformation does not have an intrin-
sic skeleton. For example, creating interesting and meaningful fa-
cial expressions requires surface deformation induced by an orches-
trated coordination of a number of muscles. An intuitive and pow-
erful animation interface should be able to simultaneously control
the deformation of a large number of local regions on such a de-
formable surface with a minimal number of control points (anima-
tion parameters). Solutions to this task can find many applications
in data-driven skin animation and computer puppetry. This is es-
pecially true with the recent trend in computer game design, which
makes in-game avatars and virtual environments subject to user-
level control and customization.

With the rapid progress in data acquisition and physically based
simulation techniques, one effective solution would be learning
suitable deformation subspaces from acquired or simulated exam-
ples, and generate new deformations on the fly according to the
translational movements of a sparse set of control points. Thus,
one challenge we need to overcome in intuitive control of arbitrary
deformations would be learning the mapping between sparse con-
trol point movements and the deformation of an entire surface with

Figure 1: Novel deformations of various styles can be generated in
real time with our data-driven method.

at least thousands of DOFs. Fortunately, deformations at different
regions of the surface might be highly correlated. For example,
moving an eyebrow should not only deform the eye, but also affect
the cheek and mouth in a meaningful expression. Moving one re-
gion of clothing might create wrinkles on other regions. Therefore,
it is crucial to learn these potentially nonlinear relationships from
the examples and let them guide novel deformations.

Another challenge in achieving our goal is the performance re-
quirement in real-time applications such as gaming. An update rate
of thirty frames per second is the basic requirement in gaming ap-
plications which have a large portion of their system resources de-
voted to AI and rendering instead of animation. Thus the run-time
algorithm for deformations needs to be extremely fast and reach a
frame rate much higher than 30fps. Preferably it should make use
of modern GPU’s parallel processing power. This consideration im-
plies that the framework should not involve sophisticated run-time
computation that is hard to parallelize effectively on GPUs.

In this paper, we present a statistically based framework to learn
deformation styles for a skinned mesh from example configura-
tions. Our contributions include a novel deformation regression
method based on kernel Canonical Correlation Analysis (CCA)
[Hotelling 1936; Melzer et al. 2003] and a Poisson-based transla-
tion solving technique for easy and fast deformation control based
on training examples. Our run-time algorithm can be implemented
on GPUs and can achieve a few hundred frames per second even
for large datasets with hundreds of training examples.

In our method, we first extract from example meshes a sparse set
of control points as well as a skinned mesh with bones and bone

1

Published in ACM Transactions on Graphics (Special Issue for SIGGRAPH 2008)

influence weights. The goal of a subsequent learning process is to
capture connections between control points and bone deformations
in the example data and train a predictor generating novel bone de-
formations from control point movements. To achieve this, we first
perform nonlinear model reduction by applying kernel CCA to find
a pair of nonlinear subspaces that maximize the correlation between
the pairs of example configurations. The original data are then pro-
jected into the subspaces to obtain their reduced coordinates. Stan-
dard regression techniques can be performed on the reduced coor-
dinates to train a desired predictor.

At run-time, the deformation predictor is used to generate novel
bone deformations according to control point movements. The pre-
diction process is reformulated into matrix-vector multiplications
and kernel transformations, both of which can be efficiently imple-
mented on GPUs for parallel processing. For deformations with
large bone rotations, the predicted bone translations can be im-
proved using a real-time Poisson-based linear solver which only
requires a single matrix-vector multiplication if the pseudo inverse
of its coefficient matrix has been precomputed. The resulting bone
transformations from previous steps can be directly used in a GPU-
based skinning algorithm. High performance has therefore been
achieved in all of our experiments.

2 Related Work
Mesh skinning has been widely used in games for skeleton
driven skin deformation. Linear blend skinning (SSD) [Magnenat-
Thalmann et al. 1988] is a popular technique that transforms every
vertex using a weighted sum of nearby bone transformations. Bone
influence weights can be automatically estimated from examples.
Direct blending of rotation matrices by SSD suffers from collapsing
joints and the “candy wrapper” artifact when joints are overly bent
or twisted. Techniques have been proposed to compensate such
inaccuracies. The method in [Mohr and Gleicher 2003] can well
model example-based muscle deformations by adding extra joints
around the area with large skinning errors. Their joint placement is
compact and can resolve artifacts from SSD with little performance
impact. Dual-quaternion skinning [Kavan et al. 2007a] have also
demonstrated good results in terms of both deformation quality and
performance. In addition to these fast skinning algorithms, there
exist more expensive example-based techniques [Anguelov et al.
2005; Weber et al. 2007] that effectively integrate recent mesh de-
formation algorithms to generate high-quality skin deformations.

Meanwhile, fully automatic techniques have been developed to
compute proxy bones and their influence weights from mesh ani-
mations [James and Twigg 2005]. In [Park and Hodgins 2006], the
extracted proxy bones were used for segmenting markers into rigid
segments. High quality skin deformations can be reconstructed via
a second-order skinning scheme followed by RBF-based interpola-
tion of the residual errors. The algorithm in [Wang et al. 2007] also
relies on proxy bones in addition to rotational regression to over-
come the limitations of SSD. Although the technique in [James and
Twigg 2005] is primarily targeted at articulated models, it can be
extended to highly deformable surfaces by fitting a suitable num-
ber of bones [Kavan et al. 2007b]. Nevertheless, the relatively large
number of necessary proxy bones make it hard to intuitively control
the animation of deformable surfaces.

Example-based mesh deformation driven by a small number of
translational handles instead of a skeleton have been previously in-
vestigated in the framework of MeshIK [Sumner et al. 2005; Der
et al. 2006], where deformation gradients are interpolated from ex-
ample poses and new vertex positions or new bone transformations
are solved via a relatively expensive nonlinear optimization, which
simultaneously involves all examples. In contrast, this paper adopts
a learning approach which has an offline training stage in addition
to the run-time animation stage. Because of the precomputation in
the training stage, impressive real-time performance has been made

possible during the run-time stage. In addition, our method can ac-
commodate a larger number of training examples to faithfully learn
a deformation style because its run-time stage has linear scalabil-
ity in terms of training examples while the time complexity of the
algorithm in [Der et al. 2006] is a cubic polynomial of the number
of example poses. Thus, our method is better suited for real-time
data-driven animation.

Facial expressions are difficult to animate due to correlated de-
formations in multiple regions, the variety of expressions and the
existence of small features such as wrinkles. Blendshape face is a
popular real-time technique for facial animation. By establishing
relationships between motion capture data and blendshape weights,
new facial animations can be generated from facial MoCAP data
[Joshi et al. 2003; Deng et al. 2006]. However, unlike our method,
these techniques require relatively dense marker movements. In
FaceIK [Zhang et al. 2004], spatially varying blending weights
based on control point positions are computed to generate novel
expressions from multiple example faces. In Face poser [Lau et al.
2007], a nonlinear optimization is formulated in a maximum a pos-
teriori (MAP) framework to find optimal PCA coefficients. These
face animation techniques are relatively expensive and are not well
suited for real-time applications.

Cloth is another challenge for both deformation acquisition and
creation. A pattern-based cloth capturing method has been pro-
posed in [White et al. 2007] to reconstruct a deforming cloth mesh
from multiple views, but a real-time interface is still needed to cre-
ate potentially novel animations consistent with the style of the cap-
tured data. On the other hand, the main objective of the editing
techniques in [Kircher and Garland 2006; Xu et al. 2007] was to
modify an existing mesh animation but not to create a novel one
according to control point movements.

This paper also shares the same motivation with previous work
on skeletal animation driven by low-dimensional control signals
[Grochow et al. 2004; Chai and Hodgins 2005]. Specifically, the
method in [Grochow et al. 2004] performs global nonlinear model
reduction using a particular form of Gaussian processes. At run-
time, a relatively expensive nonlinear optimization is still neces-
sary to reconstruct a complete skeletal configuration from low-
dimensional signals. In comparison, our method performs local
nonlinear model reduction for every proxy bone using kernel CCA
and does not require nonlinear optimization at the run-time. Note
that CCA with the linear kernel has been applied in [Dontcheva
et al. 2003] for aligning two serial signals in skeletal animation.

3 Overview
Our goal is to achieve real-time example-based surface deformation
and animation using sparse control points. The original surface can
be an arbitrary deformable surface without a skeleton. Given a set
of surface deformation examples, we first build two different ab-
stractions for the surface. The first abstraction is designed as an
animation interface. It is a very sparse set of control points whose
locations on the surface are such that they can unambiguously con-
vey the intended deformation. The second abstraction is a sparse
set of abstract bones whose deformation parameters are collectively
used for generating the deformation of every vertex on the surface
in real time. To build connections between these two abstractions,
a crucial preprocessing step is to train deformation predictors d(c)
from pairs of configurations of control points and bone deforma-
tions, (c,d). At run-time, these predictors effectively generate new
bone deformations, and in turn new surface deformations faithful to
the style in the training examples, from novel control point move-
ments. Since the prediction models are precomputed, generating
new deformations at run-time is efficient and uses little computa-
tional resource. The work flow of our system is summarized in
Figure 2.

2

Published in ACM Transactions on Graphics (Special Issue for SIGGRAPH 2008)

Figure 2: The work flow of our method.

Training Stage. Given meshes with np different deformations,
we identify several mesh vertices in highly deformable regions and
use them as the control points. We adapt the method in [Meyer and
Anderson 2007] to guide our control point selection. The method
works by performing principal component analysis (PCA) on ver-
tex positions from mesh deformation examples to obtain a set of
bases. Varimax rotation is used to rotate each PCA basis vector into
a more localized version. Two representative points with largest
differences are then selected automatically from each rotated basis
vector. Finally, we interactively choose nc samples from these rep-
resentative points that are placed near the semantic features of the
input mesh such as eyes or the mouth. These points are then con-
catenated together to form the vector c. Note that user interaction
is only for choosing one of multiple points automatically identified
near the same semantic feature and can be finished in a few minutes.

We also build a skinned mesh which includes a set of bone de-
formations and the bone influence weights for each vertex. The
skinned mesh is generated by grouping original triangles with simi-
lar transformations into the same bone [Wang et al. 2007]. The error
EA→B of joining bone A to bone B is defined to include not only
vertex prediction errors, induced by applying B’s transformation to
A’s vertices, but also edge prediction errors in terms of both edge
orientation and length. Each bone acts as an abstract representative
for transformations, and its influence weights on a vertex are then
obtained by minimizing the fitting error of vertex positions in all
examples. In terms of bone transformations, we choose to fit a rigid
transformation in the form of a dual-quaternion using the method
in [Kavan et al. 2007b].

Once the set of control point sequences and corresponding defor-
mations have been collected for each bone from the examples, we
perform nonlinear model reduction using kernel CCA [Hotelling
1936; Melzer et al. 2003] and build a deformation predictor using
linear regression. We first transform every data pair,(c,d), into re-
duced coordinates (cr,dr) by performing kernel CCA, which finds
pairs of projection bases which maximize the correlation between
cr and dr. We then apply linear regression on the reduced coordi-
nates (cr,dr) to compute the deformation predictor that maps cr to
dr. The mapping is in the form of a regression matrix, and can be
computed by minimizing least-square errors. Both the CCA bases
and regression matrix are computed for each bone in the skinned
mesh.

Run-time Stage. At the run-time, the CCA bases are used to
transform new control point coordinates into reduced coordinates.
The regression matrix is then applied to the reduced coordinates
as the predictor to obtain new dual quaternion transformations for
each bone. For highly deformable meshes, instead of using the pre-
dicted bone translations, we recompute them by solving the Poisson
equation [Yu et al. 2004] in real time to distribute errors more uni-
formly over the entire mesh as well as to better satisfy positional

constraints specified by the control points. Note that we still use
the rotational part of the prediction as usual. Most of the run-time
process in our method can be formulated as simple matrix-vector
multiplications plus kernel function evaluations, which can be im-
plemented on GPUs very efficiently. The run-time performance of
our method can achieve hundreds of frames per second in our ex-
periments.

4 CCA Based Regression
We apply a statistically based method called canonical correlation
analysis [Hotelling 1936] to perform model reduction and obtain
optimal basis pairs that reveal the functional dependency between
control points and bone deformations. While principal component
analysis (PCA) performs feature extraction for a single set of vari-
ables, CCA extracts pairs of features that yield maximum correla-
tion between two sets of variables and, thus, is better suited as a
preprocessing step for regression. We choose to use CCA because
of its ability to capture data dependency while avoiding overfitting.
If we directly apply linear regression or kernel-based regression
methods such as RBFs on the input data, the resulting predictor
can fit the example data very well, but there is the risk of overfit-
ting if the input examples are sparse. The obtained predictor might
not be able to learn the essence of the actual deformation model,
especially in terms of non-linear facial deformations, and produce
unnatural novel deformation sequences (Figure 3). Moreover, for
example pairs that are nonlinearly correlated, the kernel trick can
be applied in the CCA formulation to establish nonlinear depen-
dency between variables, which enrich the classes of deformation
our system can handle.

In the following subsections, we review the mathematical back-
ground of CCA, and describe the details of our regression method.

4.1 Canonical Correlation Analysis
Given two sets of variables {c,d} with c ∈ Rn and d ∈ Rm, CCA
finds pairs of bases {uc,ud} such that the projections cr = uc

T c
and dr = ud

T d have their correlation ρ maximized. Here we
follow the derivation from [Melzer et al. 2003]. Specifically,

ρ =
E[crdr]√
E[c2

r]E[d2
r]

=
E[uc

T cdTud]√
E[uc

T ccTuc]E[ud
T ddTud]

. (1)

The maximization can be formulated as :

max
uc,ud

ρ = max
uc,ud

uc
T Σcdud√

uc
T Σccucud

T Σddud

(2)

where Σcd = cov(c,d) is the cross-covariance matrix of c, d, and
Σcc, Σdd are defined similarly. The solution for {uc,ud} can be
obtained via singular value decomposition (SVD) of the matrix :

Σ
− 1

2
cc ΣcdΣ

− 1
2

dd = UDVT (3)

where U ,D,V are the resulting decomposition of SVD. The i-th
basis pair can be obtained by computing

uc
i = Σ

− 1
2

cc U i (4)

and

ud
i = Σ

− 1
2

dd Vi (5)

where Ui and Vi are the i-th column of matrices U and V . Note
that there are a maximum number of min(m, n) basis pairs, where
min(m,n) is equal to the smaller dimension of c and d.

3

Published in ACM Transactions on Graphics (Special Issue for SIGGRAPH 2008)

4.2 The Kernel Trick
Instead of representing CCA bases in a linear subspace, we can
also construct a nonlinear version of the algorithm via kernel func-
tions. The kernel method was originally used to extend a support
vector machine (SVM) to its non-linear version. It works by map-
ping the original data into a higher dimensional feature space and
solving a corresponding nonlinear version of the problem in that
feature space. Suppose φ : Rs → Rt, t > s is a mapping that
transforms x into the feature space. A kernel function, k(x,y),
can be used to define the dot product in the feature space. That is,
k(x,y) = φ(x)T φ(y). In many cases, the kernel function has a
simple closed-form expression even when the mapping itself is hard
to formulate explicitly. The kernel trick means if the original prob-
lem can be reformulated to depend only on the dot product of the
original data, the nonlinear version of the problem can be formu-
lated to depend only on the kernel function. As a simple example,
let φ(x) be a mapping which transforms a vector x = (x1, x2) into
the vector of all second degree monomials (x2

1, x
2
2, x1x2, x2x1).

We can clearly see that φ(x)T φ(y) = k(x,y) = (xT y)2. Here
k(x,y) = (xT y)2 is the second degree polynomial kernel.

The nonlinear version of CCA in our current context can be
derived via the kernel trick. Given np pairs of example data
{ci,di}np

i=1 with ci ∈ Rn and di ∈ Rm, we define C =
(c1 . . . cnp) and D = (d1 . . . dnp) as data matrices with their i-th
columns being ci and di, respectively. The covariance matrices for
nonlinearly mapped data can be written as :

Σcd = φ(C)DT , Σcc = φ(C)φ(C)T , Σdd = DDT ,

where φ(C) is a nonlinear version of matrix C by applying the
mapping φ on each column of C. We choose to transform only the
input matrix C instead of both (C,D) because a nonlinear mapping
of D would result in a nonlinear reconstruction at run time from
reduced coordinates to original ones, which would be expensive
considering the performance requirement of our method. Because
the basis pair {uc,ud} always lies in the span of the mapped data
{φ(C),D}, we can further express a pair of bases {uc,ud} as
uc = φ(C)fc and ud = Dfd, where fc, fd ∈ Rnp are coefficient
vectors with their dimensions equal to the number of example pairs.
Therefore we can write the nonlinear version of (2) using the kernel
as follows:

max
fc,fc

ρ = max
fc,fc

fc
T KcKdfd√

fc
T (Kc)2fcfd

T (Kd)2fd
(6)

where Kc = φ(C)T φ(C) and Kd = DT D. Note that the entries
of Kc can be computed by the kernel function kc instead of by φ(c)
explicitly. This is the dual form of (2), and can be solved in a similar
manner via SVD as (4) and (5).

Suppose we retain nf pairs of coefficient vectors from SVD to
form two matrices, Fc = (fc

1 . . . fc
nf) and Fd = (fd

1 . . . fd
nf).

The projection of an input c onto the basis uc
i can be computed as

φ(c)T uc
i =

np∑

j=1

f i
cjφ(c)T φ(cj) =

np∑

j=1

f i
cjkc(c, cj).

Thus, the vector of reduced coordinates, cr ∈ Rnf , can be ex-
pressed in a matrix-vector form as follows.

cr = Fc
T ξc, (7)

where ξc∈Rnp is the kernelized vector whose j-th entry is
kc(c, cj).

Our Results PCA+RBF Regression RBF Regression

Figure 3: A comparison among our method, regression based on
both PCA and RBFs, and direct RBF-based regression. The top
row shows the fitting quality of a training example, and the bottom
row shows a predicted deformation once the user pulls a control
point. The colored spheres are the control points, with the red one
indicating the point being edited by the user. All three methods can
fit the training data very well without noticeable differences. How-
ever, RBF and joint PCA-RBF regression fail to generalize beyond
original examples and produce distorted results.

4.3 Regression
We use regression to build up connections between control point co-
ordinates and bone deformations. We use dual quaternions for rep-
resenting bone deformations [Kavan et al. 2007a]. A dual quater-
nion q0 + εqε represents a rigid transformation. It involves two
classic quaternions, q0 and qε, therefore, a bone deformation in-
volves eight parameters, d ∈ R8. Linear blending of dual quater-
nions can be applied to blend multiple corresponding rigid trans-
formations, and the resulting dual quaternion still represents a rigid
transformation. We choose to represent a bone deformation using a
dual quaternion instead of an affine transformation matrix because
it has better interpolation property than the transformation matrix
and can avoid the “candy wrapper” artifact [Kavan et al. 2007b]
when used for skinning. It also has fewer parameters than an affine
transformation matrix, and is therefore a more suitable choice for
regression.

Regression is performed once for each bone. The outcome of
regression is a predictor, d(c), that is able to predict a bone de-
formation, d, given the concatenation of all control point coordi-
nates, c ∈ Rnc×nDOF where nc is the number of control points
and nDOF is the degree of freedom of each control point. Note
that a control point can have at most 3 DOFs in its 3D position.
Given np surface deformation examples, we first extract from each
example a pair of data, (ci,di) for the bone. Kernel CCA is then
performed on all extracted data pairs to obtain the set of nf CCA
bases and the collection of reduced coordinates, Cr ∈ Rnf×np

and Dr ∈ Rnf×np , of all data pairs after projection onto the bases.
While PCA can only have a common set of bases for all bones,
there is a distinct set of CCA bases specifically tailored for each
bone. Given those pairs of reduced coordinates, we compute an op-
timal predictor Bc ∈ Rnf×nf by performing the following linear
regression:

min
Bc

np∑

i=1

‖Bccr
i − dr

i‖2 (8)

where cr
i and dr

i are the i-th column of Cr,Dr, respectively. We

4

Published in ACM Transactions on Graphics (Special Issue for SIGGRAPH 2008)

Rest Pose Linear Kernel Non-linear Kernel

Figure 4: A comparison of kernel functions in our CCA-based
model reduction. Predictors based on nonlinear polynomial kernels
produce higher quality deformations without artifacts when com-
pared with results based on the linear kernel.

choose a simple linear predictor because the example data pairs
have already been nonlinearly transformed using kernel CCA to
maximize their dependency and linear regression can already pro-
duce accurate predictions in all our experiments.

Since the output deformation from our predictor is in the form
of reduced coordinates as well, they need to be used to further re-
construct the eight parameters of a dual quaternion. Different from
PCA, the bases generated by CCA are not necessarily orthogonal to
each other. Therefore we cannot directly reconstruct these param-
eters by considering the reduced coordinates as weights over the
CCA bases. In theory, dual bases of the CCA bases need to be com-
puted to achieve accurate reconstruction. Since we do not kernelize
the example deformations in our CCA formulation, the matrix of
dual bases can be represented as a linear mapping Hd ∈ R8×nf

which transforms the reduced coordinates Dr to optimally approx-
imate the example deformations D. Thus, it is the solution of the
following linear least-squares problem:

min
Hd

∑

i

‖Hddr
i − di‖2. (9)

Note that since the matrices Fc,Bc,Hd are consecutive linear
mappings, we can concatenate them into a single linear operator
Mb = HdBcFc that predicts the resulting deformation d given
the kernelized vector ξc from the input c. In our run-time imple-
mentation, this combined predictor Mb is used in place of Fc, Bc

and Hd for efficient execution.
We have verified the merit of CCA-based nonlinear model reduc-

tion by comparing our results with regression based on radial basis
functions (RBF). We tested both direct RBF regression and RBF-
based regression from reduced coordinates obtained by applying
PCA to control point configurations. In both schemes, a regression
model is computed by minimizing least-squares errors. As we can
see from Figure 3, although the fitting error for the training exam-
ples is small in all of the methods, the direct regression scheme
tends to overfit the training data and produce unnatural predicted
results. On the other hand, while PCA-based model reduction can
prevent overfitting, there are still distortions in the predicted results.
This is because the same set of PCA bases are used in the regression
for all bone transformations, and it cannot necessarily give rise to a
good functional dependency for every bone.

We have also compared the quality of predicted deformations
from linear and polynomial kernels in CCA-based model reduction.
As shown in Figure 4, for certain deformation styles such as facial
animation, nonlinear kernels yield more natural results.

5 Poisson Translation Solver
At run-time, the transformation for each bone is generated indepen-
dently using the predictor learned in the previous section. Usually
we can directly use this resulting transformation for dual quaternion
skinning. However, when nearby bones undergo very different 3D

rotations, small prediction errors in translation may be amplified in
the visual results and create artifacts in regions jointly controlled
by multiple bones. We solve this problem by computing a new set
of translations for the bones in a Poisson formulation. The motiva-
tion is that while bone rotations define deformed local shapes, it is
the bone translation that integrates these local shapes together. By
solving for new translations, we can ensure that the resulting trans-
formations will be consistent among nearby bones while preserving
the deformed local shapes from our prediction. In addition, control
point positions can be enforced as soft constraints in the Poisson
formulation.

As a preprocessing step for the Poisson solver, we perform linear
blend skinning for both vertices and edges on the deformable mesh
surface. Let v0

i be the rest position of the i-th vertex vi, {wb
i }nb

b=1 be
its skinning weights for all bones, and {Rb, tb}nb

b=1 be the rotation
matrices and translation vectors of all bones, the skinned vertex
position vs

i =
∑

b
wb

i (Rbv0
i + tb). We also fit a set of skinning

weights {ŵb
k}nb

b=1 for each edge ek = vk0 − vk1 in the mesh. We
treat ŵb

k as a skinning weight for edge ek analogous to wb
i for vi.

Specifically, we compute {ŵb
k}nb

b=1 by minimizing the following
fitting error of the edge:

min
ŵk

np∑

j=1

‖ej
k −

nb∑

b=1

ŵb
k(Rb

je0
k)‖2 (10)

Note that we use the same set of bone transformations when fitting
weights for edges. Since the edge orientation is a vector, we have
removed the translation component in the error formulation.

Our Poisson-based translation solver is formulated as an opti-
mization problem which minimizes the differences of two edge pre-
dictions. The objective function of this minimization is formulated
as follows.

min
t

ne∑

k=1

‖(vs
k0 − vs

k1) − es
k‖2 + β

nc∑

l=1

‖vs
il
− cl‖2 (11)

where β is a weighting factor for positional constraints, es
k =∑

b
ŵb

k(Rbe0
k) is the skinned edge representation, cl represents

the current position of the l-th control point, vil is the vertex corre-
sponding to the l-th control point, and ne is the number of edges.
Here the rotation matrix Rb is directly from prediction, and new
translation vectors t = {t0 . . . tnb} are sought as the solution of
this minimization. It can be easily verified that (11) is actually a
linear least-squares problem, mint ‖At − T‖2, where T contains
all bone rotation matrices and control point positions, and matrix
A can be computed from rest-pose vertex positions and the skin-
ning weights for both vertices and edges. Since entries in matrix

Without Poisson With Poisson

Figure 5: Deformation prediction without an additional translation
solver may yield distorted results. However, once our Poisson-
based translation solver has been applied, the resulting deformation
becomes natural without artifacts.

5

Published in ACM Transactions on Graphics (Special Issue for SIGGRAPH 2008)

A do not change at run-time, we precompute its pseudo inverse
P = (ATA)−1AT in a preprocessing stage. Therefore the solu-
tion of (11) can be directly found by a matrix-vector multiplication
t = PT. This simple solution technique makes it straightforward
to implement on GPUs.

The insightful reader might notice that dual-quaternion skinning
has been replaced by linear blend skinning in our Poisson formu-
lation. The reason for this approximation is that the evaluation of
dual quaternions makes the solution nonlinearly depend on the pre-
dicted rotations. Thus the problem becomes a nonlinear optimiza-
tion, which is much more expensive to solve at run-time. In prac-
tice, we have found the resulting translations from this approxima-
tion works very well in all our experiments.

To validate our translation solving process, we have compared
the predicted deformations from novel control point movements
with and without the translation solver. As we can see in Figure
5, the predicted deformation is much more distorted without the
Poisson-based translation solver because of the inconsistency of the
translations among nearby bones. On the other hand, new transla-
tions obtained from our translation solver can better position nearby
bones and are much more natural visually.

Remark A solution in the form of matrix-vector multiplication
for the Poisson problem has previously been used for solving for
transformations of a reduced deformable model [Wang et al. 2007].
However, their method was derived in the context of deformation
gradients and both the new matrix transformations and translations
were solved. In our method, we propose a novel view of the prob-
lem by treating edges as additional elements for skinning, and there-
fore do not require any specific treatment for deformation gradients
or recomputing the rotation matrices.

6 GPU Implementation
Since all the run-time components can be reduced to linear opera-
tions, we can implement most of them efficiently on GPUs. During
each frame, the data sent to the GPU from CPU only includes the
current control point coordinates, which have less than 150 bytes in
all of our examples. Both the deformation prediction and transla-
tion solving processes are performed entirely on GPUs.

The overall GPU implementation can be separated into three
stages: two matrix-vector multiplications for CCA-based predic-
tion, one matrix-vector multiplication for solving translations, and a
dual-quaternion skinning step in a vertex shader. In both prediction
and translation solving steps, there are additional kernel transfor-
mations and quaternion conversion for each bone. But overall the
computation is dominated by straightforward matrix-vector multi-
plications. In our implementation, we use CUDA [nVidia CUDA],
a general GPU programming framework by nVidia, for the first two
GPGPU stages.

6.1 Deformation Prediction
Given uploaded control point coordinates c, we first compute the
kernelized vector ξc from data matrix C, which is defined at the
end of Section 4.2. The predicted deformation db for bone b can
then be obtained via a matrix-vector multiplication db = Mbξc,
where Mb is defined in Section 4.3 as the product of multiple ma-
trices. For computational efficiency, we concatenate Mb from all
bones into one large matrix M, and perform the multiplication only
once per pass. Note that both M and C can be precomputed and
preloaded to GPU before the run-time process.

6.2 Translation Solving
Once we have obtained the predicted dual quaternions, we convert
their non-dual parts into rotation matrices and concatenate them
into a single vector T. Similar to the previous stage, we can pre-
compute and preload the pseudo inverse matrix P to the GPU mem-
ory. The translations t can then be computed directly by t = PT.
Once we have obtained t, we use it to generate a new set of dual

Figure 6: Comparisons with ground truth on articulated mesh defor-
mation. The top row shows the ground truth which was not part of
the training data, and the bottom row shows synthetically generated
results from our method with the Gaussian kernel.

quaternions d′ by updating the translation part of d with t. We map
the resulting dual quaternions d′ into an OpenGL texture buffer to
make it available in the skinning stage.

6.3 DQ-Palette Skinning
The last part of our GPU implementation performs dual-quaternion
skinning [Kavan et al. 2007a] to actually deform the mesh. Dual-
quaternion skinning for vertex vi is formulated as

v̂s
i = (

nb∑

b=1

wb
i db)v̂0

i (

nb∑

b=1

wb
i db)−1

where wb
i is a vertex skinning weight, d̄ = q0 − εqε is the dual

quaternion conjugation, d−1 = d∗ = q∗
0 + εq∗

ε is the inverse
of unit dual-quaternion d with ‖d‖ = 1, and v̂ = 1 + ε(vxi +
vyj + vzk) is the dual quaternion representation for vertex v =
(vx, vy , vz).

We perform the above skinning in a vertex shader in an interme-
diate pass before normal computation and shading. The rest-pose
vertex positions and their skinning weights are preloaded to GPU
as a Vertex Buffer Object (VBO). In the vertex shader, we compute
at each vertex a weighted sum of revised dual quaternions from
the previous pass. The interpolated dual quaternion is then applied
to the vertex to obtain its deformed position. In a final rendering
pass, per-vertex normal vectors are computed on the fly using the
deformed vertex positions from the previous pass. This results in
accurate normal vectors for shading.

7 Experimental Results
We chose three different types of example deformations, including
facial animation, articulated mesh animation, and secondary defor-
mation of clothing driven by underlying articulated motion, for our
experiments. Among them, the facial animation and clothing de-
formation examples were real-world data acquired using computer
vision techniques [Zhang et al. 2004; White et al. 2007]. In the
CCA-based regression stage, we chose the fifth degree inhomoge-
neous polynomial kernel, k(x,y) = (xT y + c)5, for facial an-
imation, and the Gaussian kernel for other deformations. The
differences between these two kernel functions are not significant
in predicted results. The Gaussian kernel worked well in all our

6

Published in ACM Transactions on Graphics (Special Issue for SIGGRAPH 2008)

Figure 7: Frames from predicted facial deformations generated us-
ing our method with a polynomial kernel. The frames in the top
row belong to a testing facial animation sequence. The bottom row
shows novel expressions generated from interactive editing.

experiments while the polynomial kernel produced slightly better
result for facial animation.

The parameters of the kernel functions are estimated automati-
cally. For the Gaussian kernel, its standard deviation is set to the
standard deviation of control point positions from the training ex-
amples. In the chosen polynomial kernel, c is set to the average
norm of control points scaled by a constant factor (0.1 in our case).

At run-time, novel bone deformations can be predicted in real
time in our system (Table 1) with novel control point movements.
We demonstrate this by generating novel animated surface defor-
mation with the motion trajectories of a sparse (< 10) set of con-
trol points. Here we obtain the control point trajectories directly
from the testing mesh sequences though they can also be marker
movements from MoCAP data. Although surface deformation is
underdetermined with such a sparse set of constraints in the origi-
nal deformation space, our regression model is able to predict the
deformations from the learned subspaces based on the training ex-
amples. The resulting deformations are shown in Figures 6, 7, and
8. The top rows of Figures 6 and 8 show ground truth that was not
part of the training data. We have also designed an interface to let
the user drag any of the control points either in a 3D space or on a

Figure 8: Comparisons with ground truth on deformation of cloth-
ing. The top row shows the ground truth which was not part of
the training data, and the bottom row shows synthetically generated
results from our method with the Gaussian kernel.

Figure 9: A bending style is trained from given examples to gen-
erate novel deformations with the same style. The blue models on
the left are training examples. The green ones on the right are novel
deformations generated using the Gaussian kernel.

Figure 10: A simultaneous galloping and collapsing sequence gen-
erated from a deformation predictor trained using two separate gal-
loping and collapsing sequences. The Gaussian kernel is used.

2D projection plane. The interactively defined control point posi-
tions can also be used for generating novel surface deformations.

We show the capability of our method in learning different defor-
mation styles in Figure 9 and 15. Given sparse training examples of
a bending style, our method can produce novel deformations with
the same style. We can also combine examples of different defor-
mation styles to produce a hybrid deformation predictor. In Figure
10, a simultaneous galloping and collapsing sequence is generated
from our predictor using training examples from separate horse gal-
loping and collapsing sequences.

We have compared our results with FaceIK [Zhang et al. 2004]
and PCA-based blendshape on facial animation. We used the
same set of control points and their moving sequences for all three
methods and recorded the prediction errors for each method. The
RMS errors for FaceIK, PCA-based blendshape and our method
are 0.0242, 0.0143 and 0.0108, respectively, when the largest di-
mension of the bounding box of the face is scaled to have a unit
length. Visual comparison results are also shown in Figure 11.
While the numerical errors are not large for all methods, the visual
result from our method is more natural and closer to the ground
truth than others. FaceIK is not a real-time technique and some-
times produces results with obvious distortion around facial fea-
tures such as the mouth. For PCA-based blendshape, we built a set
of blendshape bases using PCA and solved for optimal blendshape
weights from new control point positions using least-squares. Be-

Ground Truth FaceIK PCA Blendshape Our Method

Figure 11: A comparison of predicted deformation among our
method, FaceIK [Zhang et al. 2004] and PCA-based blendshape.
Our method generalizes well within the deformation subspace
learned from training examples, and produces results closer to the
ground truth than the other two methods.

7

Published in ACM Transactions on Graphics (Special Issue for SIGGRAPH 2008)

Examples Vertices Bones cpts #CCA #Train #Test Prep fps

Face 23,728 260 8 8 38 384 20 min 502
Pants 1,453 150 7 8 80 1691 15 min 466

Armadillo 33,000 80 5 8 29 298 18 min 408
Horse 8,431 150 8 8 27 n/a 13 min 506

Cylinder 2,000 40 2 2 3 40 2 min 798
Bar 8,000 90 2 2 3 40 6 min 632

Table 1: Statistics and Timings. All performance measurements
were taken from a 3.0GHz Pentium D processor with nVidia
Geforce 8800GTS 640MB VRAM. ’cpts’ means the number of
control points, ’#CCA’ means the number of CCA bases used for
each bone, ’#Train’ means the number of training examples, ’#Test’
means the number of testing examples, and ’Prep’ means the to-
tal time for all preprocessing steps. Our Poisson-based translation
solver were not used for Face and Cylinder. Instead of the total
number of vertices, the number of bones, training examples and
the translation solver are more influential factors affecting the final
frame rate.

cause the sparse set of control points are not sufficient to robustly
solve for the blendshape weights, there are visible artifacts in the
resulting deformations. We have also compared the performance
of our method with Face poser [Lau et al. 2007]. In their method,
a nonlinear optimization is performed on CPU at run-time and re-
quires significantly more time than our method. It can only solve
for less than six frames per second while our method is around two
orders of magnitude faster.

We have compared the accuracy of our regression with SAD [Ka-
van et al. 2007b] using the same number of proxy bones. Since
SAD cannot be directly used for generating novel deformations, we
only perform the comparison on the training examples. Our results
were obtained by predicting the deformations from control point
configurations in the training examples, and SAD results were from
direct skinning of training examples. The comparison is shown in
Figure 12, where our method can faithfully reproduce the deforma-
tions from original training examples after regression while SAD
fails to accurately fit the training examples with the same number
of bones. Since SAD uniformly places proxy bones on the mesh,
its skinning results are less optimal.

To demonstrate the scalability of our method, we have tested
the performance of our system with an increasing number of proxy
bones and training examples. As shown in Figure 13, our system
can still achieve more than 100 fps even for the extreme case of
650 bones with the Poisson-based translation solver, which has a
quadratic dependence on the number of bones. In Figure 14, we
demonstrate the performance of our system by generating the de-
formations for a group of 15 pairs of pants on the fly at 35 fps.

Ground Truth SAD Our Method

Figure 12: A comparison of fitting quality between our method and
SAD [Kavan et al. 2007b]. Our method generates more accurate
and natural results.

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

Bones/Training Examples

Fr
am

es
 /

se
c

Varying Training Examples with Poisson
Varying Bones without Poisson
Varying Bones with Poisson

Figure 13: Performance plots of our method with or without the
Poisson-based translation solver, using an increasing number of
bones and training examples. For plots with a varying number of
bones, we use 38 training examples for the regression model. For
the plot with a varying number of training examples, we use 100
proxy bones.

8 Conclusions and Future Work
We have presented an intuitive and powerful user interface to simul-
taneously control the deformation of an entire deformable surface
with a minimal number of control points. Our contributions in-
clude a novel deformation regression method based on kernel CCA,
a Poisson-based translation solving technique, and an efficient GPU
implementation. Our run-time algorithm can achieve a few hundred
frames per second even for large datasets with hundreds of exam-
ples. Comparisons show our method can achieve better results than
existing ones on challenging tasks such as handle-based facial ani-
mation.

There exist a few limitations in our method that need further
research. First, the control points need to be specified before re-
gression and fixed in subsequent animations. However, our cur-
rent regression implementation only took less than 30 seconds in
all of our experiments. With further optimization, it is possible to
change control points and rebuild the regression model at run-time.
Second, the predicted deformations are not always localized when
moving control points. This is undesirable when precise control is
necessary. However, in typical data-driven animations, the move-
ments of control points are not independent but highly correlated.
Therefore, such a limitation would not create serious problems in
practice. Finally, since our method is data-driven, the quality of
predicted deformations depend on training examples. As shown in
Figure 15, when examples are completely missing in certain direc-
tions, our system can only generate a simple shear. This can be

Figure 14: A group of 15 pairs of pants are animated simultane-
ously at 35 FPS. Deformations for individual pairs are generated
independently in real time.

8

Published in ACM Transactions on Graphics (Special Issue for SIGGRAPH 2008)

(a) (b) (c) (d)

Figure 15: Our data-driven method depends on training examples
in (a) to produce an extreme new deformation in (b), which demon-
strates a strong extrapolation capability. However, if examples are
completely missing in the perpendicular direction, the predicted de-
formation becomes a simple shear as shown in (c), which can be
improved by inserting an extra training example in that direction as
shown in (d).

alleviated by adding extra examples in those directions. Since our
system is highly scalable with respect to the number of training ex-
amples, adding a few extra examples would not hurt performance
in practice.

Acknowledgments
We would like to thank the anonymous reviewers for valuable com-
ments and the authors of [Sumner and Popović 2004; Zhang et al.
2004; Shi et al. 2006; White et al. 2007] for sharing the mesh se-
quences used in our experiments. The second author was supported
by the Korea Research Foundation Grant funded by the Korean
Government (MOEHRD) (KRF-2007-357-D00213).

References
ANGUELOV, D., SRINIVASAN, P., KOLLER, D., THRUN, S.,

RODGERS, J., AND DAVIS, J. 2005. Scape: shape comple-
tion and animation of people. ACM Transactions on Graphics
24, 3, 408–416.

CHAI, J., AND HODGINS, J. 2005. Performance animation from
low-dimensional control signals. ACM TOG 24, 3, 686–696.

DENG, Z., CHIANG, P.-Y., FOX, P., AND NEUMANN, U. 2006.
Animating blendshape faces by cross-mapping motion capture
data. In I3D ’06: Proceedings of the 2006 symposium on Inter-
active 3D graphics and games, 43–48.

DER, K., SUMNER, R., AND POPOVIĆ, J. 2006. Inverse kine-
matics for reduced deformable models. ACM Transactions on
Graphics 25, 3, 1174–1179.

DONTCHEVA, M., YNGVE, G., AND POPIVIC, Z. 2003. Layered
acting for character animation. ACM TOG 22, 3, 409–416.

GROCHOW, K., MARTIN, S., HERTZMANN, A., AND POPIVIC,
Z. 2004. Style-based inverse kinematics. ACM TOG 23, 3,
520–529.

HOTELLING, H. 1936. Relations between two sets of variates.
Biometrika 28, 321–377.

JAMES, D., AND TWIGG, C. 2005. Skinning mesh animations.
ACM Transactions on Graphics 24, 3, 399–407.

JOSHI, P., TIEN, W., DESBRUN, M., AND PIGHIN, F. 2003.
Learning controls for blend shape based realistic facial anima-
tion. In Proceedings of the 2003 Eurographics/SIGGRAPH sym-
posium on computer animation, 162–174.

KAVAN, L., COLLINS, S., ZARA, J., AND O’SULLIVAN, C. 2007.
Skinning with dual quaternions. In I3D ’07: Proceedings of the
2007 symposium on Interactive 3D graphics and games, 39–46.

KAVAN, L., MCDONNELL, R., DOBBYN, S., ZARA, J., AND
O’SULLIVAN, C. 2007. Skinning arbitrary deformations. In
I3D ’07: Proceedings of the 2007 symposium on Interactive 3D
graphics and games, 53–60.

KIRCHER, S., AND GARLAND, M. 2006. Editing arbitrarily de-
forming surface animations. ACM Transactions on Graphics 25,
3, 1098–1107.

LAU, M., CHAI, J., XU, Y.-Q., AND SHUM, H.-Y. 2007. Face
poser: Interactive modeling of 3d facial expressions using model
priors. In ACM SIGGRAPH / Eurographics Symposium on Com-
puter Animation (SCA 2007), 161–170.

MAGNENAT-THALMANN, N., LAPERRIRE, R., AND THAL-
MANN, D. 1988. Joint-dependent local deformations for hand
animation and object grasping. In Graphics Interface, 26–33.

MELZER, T., REITERA, M., AND BISCHOFB, H. 2003. Appear-
ance models based on kernel canonical correlation analysis. Pat-
tern Recognition 36, 9, 1961–1971.

MEYER, M., AND ANDERSON, J. 2007. Key point subspace ac-
celeration and soft caching. ACM Transactions on Graphics 26,
3, 74.1–74.8.

MOHR, A., AND GLEICHER, M. 2003. Building efficient, accurate
character skins from examples. ACM Transactions on Graphics
22, 3, 562–568.

NVIDIA CUDA. Compute unified device architecture (cuda).
http://developer.nvidia.com/object/cuda.html.

PARK, S., AND HODGINS, J. 2006. Capturing and animating skin
deformation in human motion. ACM Transactions on Graphics
25, 3, 881–889.

SHI, L., YU, Y., BELL, N., AND FENG, W.-W. 2006. A fast
multigrid algorithm for mesh deformation. ACM Transactions
on Graphics 25, 3, 1108–1117.

SUMNER, R., AND POPOVIĆ, J. 2004. Deformation transfer for
triangle meshes. ACM Transactions on Graphics 23, 3, 397–403.

SUMNER, R., ZWICKER, M., GOTSMAN, C., AND POPOVIĆ, J.
2005. Mesh-based inverse kinematics. ACM Transactions on
Graphics 24, 3, 488–495.

WANG, R., PULLI, K., AND POPOVIĆ, J. 2007. Real-time
enveloping with rotational regression. ACM Transactions on
Graphics 26, 3, 73.1–73.9.

WEBER, O., SORKINE, O., LIPMAN, Y., AND GOTSMAN, C.
2007. Context-aware skeletal shape deformation. Computer
Graphics Forum (Eurographics 2007) 26, 3, 265–274.

WHITE, R., CRANE, K., AND FORSYTH, D. 2007. Capturing and
animating occluded cloth. ACM Transactions on Graphics 26, 3,
34.1–34.8.

XU, W., ZHOU, K., YU, Y., TAN, Q., PENG, Q., AND GUO, B.
2007. Gradient domain editing of deforming mesh sequences.
ACM Transactions on Graphics 26, 3, 84.1–84.10.

YU, Y., ZHOU, K., XU, D., SHI, X., BAO, H., GUO, B., AND
SHUM, H.-Y. 2004. Mesh editing with poisson-based gradi-
ent field manipulation. ACM Transactions on Graphics (special
issue for SIGGRAPH 2004) 23, 3, 641–648.

ZHANG, L., SNAVELY, N., CURLESS, B., AND SEITZ, S. M.
2004. Spacetime faces: High-resolution capture for modeling
and animation. ACM Transactions on Graphics 23, 3, 548–558.

9

