
Appears in ACM Transactions on Graphics (Special Issue for SIGGRAPH 2005)

Out-of-Core Tensor Approximation of
Multi-Dimensional Matrices of Visual Data

Hongcheng Wang Qing Wu Lin Shi Yizhou Yu Narendra Ahuja

University of Illinois at Urbana-Champaign

Abstract

Tensor approximation is necessary to obtain compact multilinear
models for multi-dimensional visual datasets. Traditionally, each
multi-dimensional data item is represented as a vector. Such a
scheme flattens the data and partially destroys the internal structures
established throughout the multiple dimensions. In this paper, we
retain the original dimensionality of the data items to more effec-
tively exploit existing spatial redundancy and allow more efficient
computation. Since the size of visual datasets can easily exceed
the memory capacity of a single machine, we also present an out-
of-core algorithm for higher-order tensor approximation. The basic
idea is to partition a tensor into smaller blocks and perform tensor-
related operations blockwise. We have successfully applied our
techniques to three graphics-related data-driven models, including
6D bidirectional texture functions, 7D dynamic BTFs and 4D vol-
ume simulation sequences. Experimental results indicate that our
techniques can not only process out-of-core data, but also achieve
higher compression ratios and quality than previous methods.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration; I.3.7 [Computer Graphics]: Three-dimensional Graphics
and Realism—color, shading, shadowing, and texture

Keywords: Multilinear Models, Spatial Coherence, Block-Based
Partitioning, Bidirectional Texture Functions, Volume Simulations

1 Introduction

With the advent of data-driven models, such as light fields [Levoy
and Hanrahan 1996], bidirectional texture functions (BTFs) [Dana
et al. 1999], and reflectance fields, graphics researchers have been
striving for powerful representation and compression methods to
cope with the enormous amounts of data involved. Multilinear
models based on tensor approximation have caught researchers’
attention recently. Such models can not only reduce the amount
of data and dimensionality, but also learn a compact multilinear
representation. In practice, they have proven to be more effective
than traditional dimensionality reduction methods, such as princi-
pal component analysis (PCA).

In multilinear modeling of multi-dimensional, multi-modal data,
a crucial problem is determining the order of the tensor. For exam-
ple, given a collection of images as the input dataset, one typical
strategy is to convert each image into a large column vector with
a length equal to the number of pixels. This length is fixed during

Figure 1: A virtual scene with a cube mapped with a SPONGE BTF
and a vase mapped with a LICHEN BTF. There is a point light source
near the ”sponge”.

subsequent tensor approximation. Such a strategy is actually sub-
optimal because it ignores the large amount of redundancy due to
spatial coherence within every multi-dimensional data item. This is
obvious for images as adjacent rows or columns of an image often
exhibit similar color patterns. In this paper, we propose to formu-
late higher-order tensors to exploit spatial coherence available in
individual multi-dimensional data items, such as 2D images and
3D volumes. As a result, subsequent tensor approximation can also
remove the spatial redundancy in these data and give rise to a much
more compact representation.

Since the most important motivation of tensor approximation is
to produce a compact representation from a huge amount of redun-
dant data, it becomes particularly meaningful when the original data
cannot fit into the main memory of a single machine. Virtual mem-
ory cannot help much because the largest possible (virtual) mem-
ory capacity of a computer with a 32-bit architecture is only around
4GB and multi-dimensional datasets larger than that are not uncom-
mon. Out-of-core processing capability is therefore much desired.
Such a technique is useful even when the virtual memory allows ad-
dressing of the entire data but, in practice, the small physical mem-
ory will cause extensive swapping. Typically, application-specific
data partitioning and swapping can give far better performance. We
present an efficient out-of-core algorithm for tensor approximation.
It is based on a simple block-based partition. With such an algo-
rithm, we are able to process datasets larger than 10GB on a PC
with less than 1GB memory.

We have successfully applied our new tensor approximation
techniques to three multi-dimensional data-driven models, includ-
ing 6D bidirectional texture functions, 7D temporally varying BTFs
(dynamic BTFs) and 4D volume simulation sequences. Learned
multilinear models for these multi-dimensional datasets become
sufficiently small and can fit into the main memory of a single ma-
chine for rendering or visualization.

1

Appears in ACM Transactions on Graphics (Special Issue for SIGGRAPH 2005)

2 Background and Related Work

2.1 Related Work

A traditional dimensionality reduction technique is principle com-
ponent analysis (PCA), which has been widely used and extended
in computer graphics, including for surface light field represen-
tation [Nishino et al. 1999; Chen et al. 2002], BTF representa-
tion [Koudelka et al. 2003; Sattler et al. 2003; Liu et al. 2004],
reflectance modeling [Matusik et al. 2003], deformation database
compression [James and Fatahalian 2003], and many other applica-
tions. PCA is used to find a set of mutually orthogonal basis func-
tions which capture the largest variation in the training data. It is
typically computed through singular value decomposition (SVD).
For large datasets, incremental or out-of-core algorithms [Rabani
and Toledo 2001; Brand 2002] have been developed for SVD.

Multilinear algebra has recently received much attention in com-
puter vision and signal processing. N-mode SVD was discussed
in [Lathauwer et al. 2000a], and has been used in computer vision
applications such as face recognition [Vasilescu and Terzopoulos
2002] and facial expression decomposition [Wang and Ahuja 2003].
Multilinear modeling has been further applied to bidirectional tex-
ture functions in [Furukawa et al. 2002; Vasilescu and Terzopoulos
2004] where compact BTF models were built for image-based ren-
dering using a higher-order tensor approximation algorithm, such as
the one in [Lathauwer et al. 2000b]. Nevertheless, it was mentioned
in [Vasilescu and Terzopoulos 2004] that, for the same compres-
sion ratio, the Root Mean Squared Error (RMSE) of their tensor
approximation is higher than PCA.

All these PCA- or tensor-based techniques adopt the image-as-
vector representation by concatenating image rows into a single
vector. One inherent problem of this representation is that the spa-
tial redundancy within each image matrix is not fully utilized, and
some information on local spatial relationships is lost. Realizing the
problem of image-as-vector formulation, some researchers in com-
puter vision and machine learning have recently begun to treat an
image as a matrix [Shashua and Levin 2001; Yang et al. 2004; Ye
2004]. Although these methods are reasonably effective on collec-
tions of 2D images, it is hard to generalize these methods to higher-
dimensional datasets such as a collection of 3D volumes. In addi-
tion, the decompositions adopted in these methods are not as pow-
erful as the decomposition in [Lathauwer et al. 2000b]. The method
we present in this paper is based on [Lathauwer et al. 2000b], and
can be applied to multi-modal datasets of arbitrarily high dimen-
sions.

2.2 Rank-(��� ��� ���� ��) Approximation of High-
Order Tensors

Overview of Multilinear Algebra. In the notation we use, ma-
trices are denoted by bold capitals (���� � � �), and tensors by cal-
ligraphic letters (���� � � �).

A tensor is a higher order generalization of a vector (1st-order
tensor) and a matrix (2nd-order tensor). An � th-order tensor
is denoted as: � � ������������� . An element of � is de-
noted as ������������� , where � � �� � ��. A mode-� vec-
tor is a column vector consisting of the following set of elements
of �: �������������� �

��
����, where the index �� varies while the

others have fixed values. Unfolding a tensor � along the nth
mode is denoted as uf(�, n), which results in a matrix, ���� �

������������������������� �, consisting of all the mode-� vectors.
The mode-� product of a tensor � and a matrix � ������ , de-
noted by � 	� �, is defined as a tensor with entries: �� 	�
���������������������� �

�
��

������������� . The scalar product

of two tensors ��� � ������������� is defined as:
���� �

�
��

�
��
� � �
�
��

���������� ���������� . The Frobenius norm of a

tensor � � ������������� is then defined as ��� �
�

����.

The �-rank of �, denoted by 	� �
�������, is the dimension
of the vector space spanned by the mode-� vectors. Refer to [Lath-
auwer et al. 2000a] for more details on multilinear algebra.

N-mode SVD [Lathauwer et al. 2000a] performs regular SVD on
every matrix ���� resulted from unfolding the �th mode of tensor
�. Each such regular SVD returns a mode-� basis matrix, ����.
As a result, � can be expressed as the product: � � 	��

���	�

�
��� 	 � � � 	� �

���, where, is an �� 	 �� 	 � � � 	 �� core
tensor, and ���� � ��

���
� �

���
� � � ��

���
��

� is a unitary ��� 	 ���
basis matrix, the columns of which span the ��-dimensional vector
space where the mode-� vectors belong.

Rank-(�� 	�� ���� 	�) Approximation. Given a real Nth-
order tensor � � ������������� , rank-(�� 	�� ���� 	�) approx-
imation of � is formulated as finding a lower-rank tensor �� �
������������� with Rank�� ��� � 	� � Rank����, Rank�� ��� �
	� � Rank����, ..., Rank� � ��� � 	� � Rank� ���, such that
the following least-squares cost function is minimized:

�� � ���	
�
��

����� ��
���
�

� (1)

The desired tensor is represented as:

�� � � 	� �
��� 	� �

��� 	 � � � 	� �
���� (2)

where ���� � ������ , ���� � ������ , � � �, ���� � ������

and � � ������������� . �
��� has orthonormal columns for

� � � � � . When 	�� 	�� � � � � 	� are sufficiently small, the
core tensor � and the basis matrices, ���������� � � � �����, to-
gether give rise to a compact approximation of the original tensor
�. In this paper, we seek such compact approximations for multi-
dimensional visual data.

Given basis matrices, ���������� � � � �����, � can be obtained
as � � �	��

���� 	��
���� � � �	� �

���� . Therefore, only the
basis matrices are the unknowns in this optimization problem. The
Alternative Least Square (ALS) is used in [Tucker 1966; Kroonen-
berg and de Leeuw 1980; Lathauwer et al. 2000b] to find a (locally)
optimal solution of (1). In each iterative step, it optimizes only
one of the basis matrices, while keeping others fixed. For exam-
ple, with ����� � � � ��������������� � � � ����� fixed, we project
tensor � onto the �	�� � � � � 	���� 	���� � � � � 	� � - dimensional

space, i.e., ����
��� � � 	� �

����

��� 	 � � � 	��� �
������

��� 	���

�
������

� 	� � �	��
����

� . Then the columns of���� can be found

as the first 	� columns of the left singular matrix of ������
���� ��

using singular value decomposition. These steps are summarized in
Algorithm 1.

One implementation issue is the initialization of the algorithm.
In the algorithm presented in [Lathauwer et al. 2000b] as well as
in [Vasilescu and Terzopoulos 2004], the values of ���� (� �
� � �) were initialized with the truncated basis matrices ob-
tained from N-mode SVD. However, the computation of N-mode
SVD is expensive in terms of both space and time complexity,
and is cumbersome for out-of-core calculation. Instead, we use
�

���
� �

�
���

�	
, where ��� is the 	�		� identity matrix,

or����
� � uniformly distributed random numbers (though columns

are not necessarily orthonormal). Empirically, we have not seen any
major difference in the results obtained using these initializations
vs. those obtained from N-mode SVD. Our initializations are much
simpler and faster to compute.

2

Appears in ACM Transactions on Graphics (Special Issue for SIGGRAPH 2005)

Algorithm 1: Rank-(�� 	�� � � � � 	�) Tensor Approximation
Data: Given � and 	�� 	�� � � � � 	�

Result: Find �
� �� � � � �� and �.

Initialize��
�
� � ������ , � � � � � ;

while � ���� do
��
���
��� � ���	� �

����

� 		�
�	��

� � � � 	� �
����

� � ��;

�
���
��� � �� �� ��

���
���� 	��;

��
���
��� � ���	� �

����

��� 		�
�	��

� � � � 	� �
����

� � ��;

�
���
��� � �� �� ��

���
���� 	��;

� � �

��
���
��� �

���	��
����

��� 	��
����

��� � � � 	�� � ���
������

��� � ��;

�
���
��� � �� �� ��

���
���� 	��;

� � �	� �
����

��� 	� �
����

��� 	 � � � 	� �
����

��� ;

��������
� � ����

� � �� ����

end

3 Out-of-Core Higher-Order Tensor Ap-
proximation

In this section we develop an out-of-core tensor approximation al-
gorithm. The input to our algorithm is a multi-dimensional multi-
modal dataset. Each data item in the dataset is assumed to be de-
fined on a multi-dimensional rectangular region, such as a 2D rect-
angular image or a 3D volume grid. The output from our algo-
rithm is a rank-(�� 	�� � � � � 	�) tensor approximation, including
a core tensor � � ������������� and the truncated basis matri-
ces, ���������� � � � �����, if the input dataset is converted to an
� th-order tensor, � � ������������� .

There are three intermediate steps our algorithm needs to per-
form before generating an output: first, an effective tensor repre-
sentation should be chosen for the input dataset so that spatial as
well as other redundancies can be removed in later stages; second,
the resulting tensor needs to be partitioned into sufficiently small
blocks stored on the hard disks so that each block can fit into the
main memory of a single machine; third, Algorithm 1 needs to be
adapted so that it can take the blocks of the original tensor, and still
output the correct approximation as if the tensor for the original
dataset had not been partitioned.

3.1 Tensor Construction

As mentioned previously, each input data item is already multi-
dimensional. Thus, a basic element, such as a pixel, in the data
item has two direct neighbors along each dimension. Since real data
exhibit spatial coherence unlike pure noise, the difference between
an element and its neighbors are typically not substantial. Adja-
cent rows or columns of elements are often similar. To exploit this
type of spatial redundancy in tensor approximation, we preserve the
original neighborhood structure when converting the input dataset
into a tensor. As a result, each data item is considered as a subtensor
of the tensor representing the entire dataset. For example, every 2D
image in an image database is already treated as a second-order sub-
tensor, and every 3D volume in a volume database is considered as
a third-order subtensor. For simple image ensembles without spe-
cific modes, we use third-order tensors, �������� � ��������� ,
where �� 	 �� is the dimensionality of each image, and �	 is the
number of images. However, if an image ensemble has two other

	�

T

=

� �
���� ����

Figure 2: Block-based mode-� product between a 3rd-order tensor

� and its transposed basis matrix����� . � is vertically partitioned
into three segments (dashed blue) while ���� is vertically parti-
tioned into three (dashed blue) and horizontally partitioned into two
segments (solid gold). In the resulting tensor ����, there are only
two vertical segments (solid gold). Each block in ���� is obtained
using (3).

modes, such as lighting directions and viewing directions for a BTF,
it should be represented as a fourth-order tensor.

Although our tensor construction scheme retains the original di-
mensionality of images or volumes, it actually implicitly encodes
the covariance between any pair of elements (pixels or voxels) in
the image or volume space. Let us consider the aforementioned im-
age ensemble which has �	 images with a resolution �� 	 ��. If we
represent each image as a vector as in PCA, the entire image ensem-
ble is represented as a matrix � � ���������� . On the other hand,
if we represent each image as a matrix, we need to factorize three
unfolded matrices, i.e. ���� � ����������, ���� � ����������,
and ��	� � ����������. Note that ��	� is actually the transpose
of �. Suppose �� is an eigenvector of the covariance matrix of �.
Then ��	��� is actually an eigenvector of the covariance matrix
of ��	�. Because of this relationship between ��	� and �, our ap-
proach indirectly encodes the covariance between an arbitrary pair
of pixels in the image plane. More importantly, our scheme also en-
codes row and column covariances by factorizing ���� and ����.

Another major advantage of this tensor construction is that the
size of the basis matrices for tensor approximation becomes much
smaller because an image or volume is not converted to a vector
any more. Smaller basis matrices make corresponding SVD in Al-
gorithm 1 computationally much more tractable.

3.2 Block-Based Tensor Partitioning

In this section, we consider a tensor � as an � -dimensional array
with size �� along the �-th index. Suppose� needs to be partitioned
into � blocks. We require that each block remains as an � th-
order subtensor. Thus, we partition the ranges of �’s indices. If
the range of the �-th (� � � � �) index is evenly partitioned into
�� segments, each segment has an approximate size of �������.
For notational simplicity, we assume ����� is an integer. Then
each block is a tensor itself in ���������������������� . As long
as � �

�
� ��, the specific values of �������� are flexible and

should be determined according to the values of ��������. If a
block consists of elements occupying the ��-th �� � � � �� � �
�� � ��� segment along the �-th index of �, we denote that block
as �
������������ �.

Converting the input dataset of our algorithm from its original
format into this block-structured tensor format is straightforward,
and needs to be performed as a preprocessing step. The resulting
blocks should be saved into separate files on hard disks to allow
efficient random access to all of �’s elements, which is required by
Algorithm 1.

Once tensor � has been partitioned, the basis matrices,

3

Appears in ACM Transactions on Graphics (Special Issue for SIGGRAPH 2005)

�
��������� � � � �����, should be partitioned accordingly as fol-

lows. Since���� � ������ , the range of its first index, ��, should
still be partitioned into �� segments. If the range of its second in-
dex, 	�, is partitioned into �� segments, then �� should satisfy
	���� � �����, to ensure that the blocks do not increase their
size after mode-� products so that they can still fit into the mem-
ory. We use ����

���� to denote the block of ���� that occupies the
�-th segment along its first index and �-th segment along its second
index. Such block-based partitioning of tensors and basis matrices
is visualized in Fig. 2.

3.3 Block-Based Tensor Approximation

Our block-based out-of-core algorithm was designed by adapting
Algorithm 1 to operate on the block structures of the input tensor
and the basis matrices. The blocks of the input tensor are stored
on hard disks. Since the basis matrices are fairly small, all the
blocks of the basis matrices stay in memory all the time. There
are two essential operations in Algorithm 1 that can pose poten-
tial difficulties for an out-of-core algorithm: the first one is com-
puting a sequence of consecutive mode-� tensor-matrix products

like �	� �
����

� 		 �
�	��

� � � � 	� �
����

� ; the second is running
SVD on an out-of-core matrix with a large number of columns, such
as �� �� ��

���
���� 	�� where ��

���
��� has not been truncated, and the

number of its columns is 	� 	 		 	 � � � 	 	� . In the following,
we will focus on designing out-of-core steps for these two types of
operations.

Our out-of-core implementation of a mode-� tensor-matrix prod-
uct was inspired by block-based matrix-matrix multiplications. As
shown in Fig. 2, the outcome of the mode-� product between a
tensor �, with ��	��	� � �	��	� � �	�� blocks, and a trans-
posed basis matrix ����� , with �� 	 �� blocks, is still a tensor
����, but with �� 	 �� 	 � � � 	�� 	 � � � 	 �� blocks. We com-
pute the blocks of ���� sequentially. The block of ���� denoted by
�

���

������������������� � is computed as follows.

�
���

������������������� � �

���

����

�
������������������� � 	� �
����

������
�

(3)
where each blockwise mode-� product, such as

�
������������������� � 	� �
����

������
, is computed by loading

the block �
������������������� � into the memory, and performing the
product in-core; the summation loop

���
���� is implemented by

adding the result of �
������������������� � 	� �
����

������
to another

block representing the partial sum. The partial sum resides in the
memory until the summation loop has been completed. It is then
saved to the hard disk. The number of disk I/O’s is �� � � for
computing ����

������������������� �. Since ���� has ������ blocks,
the total number of disk I/O’s is ������ � �����. Once we
know how to implement one mode-� product, implementing a
sequence of consecutive mode-� products becomes straightforward
by adding an outer loop.

Performing SVD on an out-of-core matrix � � ���� can either
follow an incremental algorithm, such as the one in [Brand 2002],
or an out-of-core algorithm, such as the one in [Rabani and Toledo
2001]. Nevertheless, there exists a simple strategy that can avoid
the invocations of such algorithms most of the time. In our con-
text, � is an unfolded tensor, which means that � � � because �
represents the size of one dimension while � is the product of the
sizes of multiple dimensions. Suppose the SVD of � is ���	 .
To avoid the large value of �, we exploit the fact that the SVD of

Figure 3: Basis images created from the basis matrices, ���� and
�
��� in (4). Each image is the tensor product of a pair of column

vectors from these two matrices.

��
	 is ����

	
. Note that in Algorithm 1, we only need a sub-

set of the column vectors from the left singular matrix, �, of �.
Therefore, once we have obtained � from the SVD of ��	 , it is
not necessary to compute� anymore. Furthermore, due to our ten-
sor construction scheme (Section 3.1), the size of ��	 � ���� is
small. In our experiments, the value of � is usually only up to a few
hundred. Thus, the SVD of ��	 can be computed in-core. How-
ever, before SVD, the matrix product ��	 needs to be computed
blockwise since � is large and out-of-core.

4 Applications

We apply the out-of-core tensor approximation algorithm devel-
oped in the previous section to three different data-driven models
to demonstrate the usefulness of this algorithm.

4.1 BTF modeling and compression

The bidirectional texture function or BTF captures the appearance
of extended textured surfaces. A BTF is defined as a six dimen-
sional function with a 2D texture associated with every possible
combination of illumination and view directions which account for
the other four dimensions. When the illumination or view direc-
tion changes continuously, the observed 2D texture also changes
smoothly, which suggests redundancy in the illumination and view
spaces in addition to the spatial redundancy in the 2D texture im-
age. Recent work on BTFs focuses on acquisition, representation,
rendering and synthesis [Dana et al. 1999; Leung and Malik 1999;
Liu et al. 2001; Furukawa et al. 2002; Tong et al. 2002; Han and
Perlin 2003; Koudelka et al. 2003; Sattler et al. 2003; Vasilescu and
Terzopoulos 2004; Yu and Chang 2005].

Since the BTF is originally represented as a large collection of
images, we compute a high-order tensor with reduced ranks as a
compact generative model, which captures the essential charac-
teristics while removing the redundancies. As mentioned in Sec-
tion 3.1, we organize a BTF as a fourth-order tensor, ��	� �
���������	��
		����
�� , where ���� and ���� are the numbers of
rows and columns of each image, and ����� and ����� are the num-
bers of illumination and view directions, respectively. Although the
view or illumination space is two-dimensional, we do not retain the
two dimensions because unlike the number of pixels in an image
row or column, the number of view or lighting directions along each
dimension is quite small, typically below 40. It is hard to achieve
a high compression ratio on such a small set. When the samplings

4

Appears in ACM Transactions on Graphics (Special Issue for SIGGRAPH 2005)

(a)

(b)

Figure 4: (a) A second set of basis images obtained by transforming
the basis images in Fig. 3 by the core tensor ��	� . These are
basis images for the view and illumination modes. (b) Examples of
reconstructed images.

of such directions become much denser, retaining the original two
dimensions would likely achieve better compression ratios.

To remove redundancy and produce a compact representation,
we use another fourth-order tenser ���	� with reduced ranks to ap-
proximate ��	� as in Section 2.2. The new tensor is represented
as:

���	� � ��	� 	� �
��� 	� �

��� 		 �
���� 	� �

����� (4)

where ���� � ���������� , ���� � ����	����	 , ����� �
��
		����
		�� , �

���� � ��
����
�� , and ��	� �
���������	��
		����
�� . 	���� 	���� 	���� and 	���� spec-
ify the reduced ranks (columns) of the four basis matrices for the
four modes. The reduced ranks are provided by the user to control
the approximation error in (1). The smaller they are, more compact
the resulting new tensor is. Given the reduced ranks, the out-of-core
tensor approximation algorithm in Section 3.3 is applied to solve for
the reduced basis matrices and the core tensor, ��	� . The reduced
basis matrices and the core tensor together comprise the compact
representation.

The process of reconstructing a BTF image from our 4th-order
tensor is outlined in Figs. 3 and 4. As shown in Fig. 3, if we
take one column vector �� from �

��� and another column vec-
tor �� from �

���, the tensor between them, ���	� , defines a basis
image. All such basis images together interact with the core ten-
sor, ��	� , to produce a different set of basis images, shown in
Fig. 4(a), for different view and illumination directions. Math-
ematically, the second set of basis images are obtained by per-
forming ��	� � ��	� 	� �

��� 	� �
��� where ��	� �

���������	��
		����
�� . Then, if we take a pair of row vec-
tors, � and 	, from�

���� and����� , respectively, the BTF image
associated with the corresponding illumination and view directions
can be reconstructed by performing ��	� 		 �

	 	� 	
	 . Fig. 4(b)

shows reconstructed BTF images of LEGO.
Our tensor representation has clear advantages compared to the

one used in [Vasilescu and Terzopoulos 2004]. First, by represent-
ing an image as a second-order subtensor, the redundancies between

10
1

10
2

10
3

10

15

20

25

30

35

40

45

50

55

Compression Ratio (in Logrithm)

R
M

S
E

Our Method
Modified TensorTexture
PCA
TensorTexture

10
1

10
2

10
3

0

5

10

15

20

25

Compression Ratio (in Logrithm)

R
M

S
E

Our Method
Modified TensorTexture
PCA
TensorTexture

Figure 5: Comparisons of RMS errors obtained for different com-
pression ratios by PCA (black diamonds), TensorTexture (black
squares), modified TensorTexture (blue triangles), and our method
(red circles). The top diagram shows the errors for a LICHEN BTF,
and the bottom one shows the errors for a VELVET BTF.

adjacent rows and columns can be removed and much higher com-
pression ratios can be achieved. Second, the resulting basis matri-
ces���� and ���� in (4) are much smaller than the matrix ������
in [Vasilescu and Terzopoulos 2004], and therefore much less ex-
pensive to compute. Third, because there are more basis matrices,
each of them does not need to be truncated as much to achieve the
same compression ratio.

Fig. 6 and 7 compare our tensor representation against PCA and
TensorTexture [Vasilescu and Terzopoulos 2004] using the captured
BTFs from [Koudelka et al. 2003]. For the convenience of compar-
ison, we actually used 45 views and 60 illumination directions from
each BTF, and the image resolution is 192x192. It can be easily ver-
ified that processing each color channel separately does not affect
tensor approximation results. For each channel, our scheme con-
structs a 4th-order tensor with size 192x192x45x60; TensorTexture
adopts a 3rd-order tensor with size 36864x45x60; PCA organizes
the data into a matrix of size 36864x2700. Note that TensorTexture
only compresses the view and illumination modes while maintain-
ing the original image resolution. We also did experiments on a

5

Appears in ACM Transactions on Graphics (Special Issue for SIGGRAPH 2005)

(a) Original (b) PCA (c) TensorTexture (d) Our Method
1.88 RMS Error 4.21 RMS Error 1.87 RMS Error

(e) Modified TensorTexture (f) TensorTexture (g) Our Method
2.19 RMS Error 5.71 RMS Error 1.92 RMS Error

Figure 6: A comparison of reconstructed images from PCA, TensorTexture and our tensor representation. The original VELVET BTF has
45 views and 60 illumination directions, and the image resolution is 192x192. A compression ratio of 12, which is equivalent to 91.7%
compression, is used for all the methods. (a) Original image. (b) PCA. (c)&(f) TensorTexture. There are 15 views and 15 illums for (c), and
25 views and 9 illums for (f). TensorTexture does not perform spatial compression. (e) Modified TensorTexture with spatial compression.
There are 30 views and 30 illums, but the spatial resolution is compressed to 96x96. (d)&(g) Our method. There are 30 views and 30 illums
for (d), and 45 views and 20 illums for (g). The spatial resolution is compressed to 96x96 in both.

modified version of TensorTexture, which compresses the spatial
resolution as well. The only difference between our scheme and
modified TensorTexture is that our scheme considers an image as
a 2nd-order subtensor while modified TensorTexture considers an
image as a vector.

Fig. 5 shows comparisons of RMS errors obtained by the afore-
mentioned methods for different compression ratios. Our method
consistently produces the least RMS error in all scenarios. It should
be noted that PCA produces comparable results for the VELVET
sample at small compression ratios. The RMS errors for our method
were obtained using the same reduced ranks for both view and illu-
mination. The results can be further improved if we tune the ranks
of these two modes separately. The RMS errors for TensorTexture
were obtained by choosing the minimum error among three cases
where the rank for view is greater than, equal, or less than the rank
for illumination, respectively. The RMS error is actually not a good
error metric for the VELVET BTF shown in Fig. 6 since the velvet
surface has tiny light-colored dots which tend not to affect RMS
significantly. Nevertheless, these dots are preserved surprisingly
well by our method.

It can be easily verified that the reconstructed images from our
tensor representation produces the best results both visually and nu-
merically among the methods we have tested. Visually, our method
faithfully preserves high-resolution details during compression. In
terms of RMS error, our scheme is the only one that generates an
error lower than PCA. The same conclusions hold for all the BTFs
we have tested. In the worst case, our result is still slightly better
than PCA. In general, as long as there are a relatively large number
of image rows and columns and there is redundancy among them,
our subtensor representation can achieve a significant improvement
because only a small set of basis vectors are necessary to approx-
imate all the rows and columns. We did not use our out-of-core
technique (Section 3.3) on these examples because they are suffi-
ciently small. However, this has no bearing on the results obtained
as our out-of-core algorithm only manages memory usage and does
not affect the quality of tensor approximation.

In a separate set of experiments, our out-of-core algorithm has

been successfully applied to the complete BTFs in [Koudelka et al.
2003]. These BTFs have 90 view directions and 120 illumination
directions. Our out-of-core algorithm performed significantly better
than the PCA-based compression step in [Koudelka et al. 2003].
For the VELVET BTF, the RMS error of the PCA-based compression
in [Koudelka et al. 2003] is 4.02 if 150 basis vectors are used while
the RMS error of our tensor-based algorithm is only 2.24 if the
same compression ratio is achieved. Just as the PCA coefficients
can be encoded with JPEG [Koudelka et al. 2003], the coefficients
in our core tensor ���� can also be further encoded to boost the
compression ratio. However, this encoding step is left as our future
work.

Fig. 1 shows a synthetic image of a scene with two BTF-mapped
objects. The BTFs are represented as compressed tensors.

4.2 Dynamic BTF modeling and compression

A conventional BTF describes the appearance of a static surface re-
gion while there are many deforming surfaces. We define a dynamic
BTF by associating a potentially distinct BTF with any instant in
time. Such a dynamic BTF describes the dynamic appearance of
a surface with changing geometric or photometric properties. With
the additional temporal axis, a dynamic BTF is a seven-dimensional
function that demands a compact representation. There has been
previous work on rendering deformable objects using a static BTF
[Furukawa et al. 2002] or reflectance field [Weyrich et al. 2005].
The basic idea is to resample the static BTF according to the defor-
mation. Our dynamic BTF is different in that the BTFs associated
with different times are not simply the warped versions of a static
BTF. They are true changing BTFs of the underlying dynamic sur-
face.

We organize a dynamic BTF as a fifth-order tensor, ���	� �
���������	��
		����
�����
�� , using the same notation as in
Section 4.1 and ���� is the number of time samples (frames). By
running the out-of-core algorithm in Section 3.3, we can obtain a
new tensor ����	� which best approximates ���	� . The new

6

Appears in ACM Transactions on Graphics (Special Issue for SIGGRAPH 2005)

(a) Original (b) PCA (c) TensorTexture (d) Our Method
9.06 RMS Error 22.56 RMS Error 8.22 RMS Error

(e) Modified TensorTexture (f) TensorTexture (g) Our Method
10.66 RMS Error 23.34 RMS Error 9.02 RMS Error

Figure 7: A comparison of reconstructed images from PCA, TensorTexture and our tensor representation. The original LEGO BTF has
45 views and 60 illumination directions, and the image resolution is 192x192. A compression ratio of 48, which is equivalent to 97.9%
compression, is used for all the methods. (a) Original image. (b) PCA. (c)&(f) TensorTexture. There are 7 views and 8 illums for (c), and 14
views and 4 illums for (f). TensorTexture does not perform spatial compression. (e) Modified TensorTexture with spatial compression. There
are 30 views and 30 illums, but the spatial resolution is compressed to 48x48. (d)&(g) Our method. There are 30 views and 30 illums for (d),
and 45 views and 20 illums for (g). The spatial resolution is compressed to 48x48 in both.

Figure 8: A water pool mapped with a dynamic BTF in tensor rep-
resentation. This image shows the appearance of the pool during
sunset.

tensor is formulated as:

����	� � ���	�	��
���	��

���		�
����	��

����	�
����
(5)

where ���� � ���
�����
�� , and 	��� is the reduced rank for
the temporal mode.

We have applied our out-of-core tensor approximation to a syn-
thetically generated dynamic BTF which specifies the appearances
of the dynamic water surface in a pool. 240 frames of the dynamic
water surface were first generated from a computational fluid sim-
ulator based on [Enright et al. 2002]. Then for the water surface
in each simulated frame, we use a ray tracer to synthetically render
a set of BTF images for all combinations of 28 views and 28 illu-
mination directions. The maximum resolution of the image region
covering the pool is 180x300. It took nine 2.4GHz PCs more than
one week to precompute all the images. The total amount of data is
about 30GB. The size of the initial 5th-order tensor for each color
channel of this dynamic BTF is 180x300x28x28x240. Our out-of-

core algorithm divided each of these huge tensors into 72 blocks
and successfully compressed it down to 75x150x28x14x80. It took
a 3.4GHz Intel processor with 2GB memory around 60 hours to
finish the computation.

Once we have this compressed tensor, it takes only 2 seconds
to reconstruct an image for the pool given an arbitrary time and
an arbitrary pair of view and illumination directions. This perfor-
mance is achieved by software rendering on the same Intel 3.4GHz
processor. It can be potentially improved by GPU-based rendering
which is left for future research. Given the compressed tensor with
all the information, we can extract interesting subtensors. If we fix
the illumination and view directions and vary time, we are simply
playing back a conventional fluid animation. If we fix the time only,
we obtain a BTF for the water surface at a specific instant. If we
fix the view only, we can play back the fluid animation with a si-
multaneously changing lighting condition. Fig. 8 shows one frame
of an animation generated in this way. Complete animations gener-
ated from the compressed tensor can be found in the accompanying
video. Note that the interpolation scheme for the view and illumi-
nation directions [Vasilescu and Terzopoulos 2004] can be applied
to time as well. Thus, we can play back different portions of the
water motion at different speeds. Animations with varying speeds
can also be found in the video.

4.3 Temporal volume data compression

Many computer animation and simulation techniques generate data
in a three-dimensional volume grid. The generated volume data
is actually four-dimensional with the volume grid accounting for
three dimensions and the time being the fourth. The size of such
datasets is enormous, and needs compression, especially when a
grid resolution is high. Although much work has been performed on
compressing static 3D volume data using mathematical tools, such
as DCT and wavelet decomposition [Yeo and Liu 1995; Rodler
1999; Nguyen and Saupe 2001], techniques for compressing 4D
dynamic volume data as a whole are still under development.

7

Appears in ACM Transactions on Graphics (Special Issue for SIGGRAPH 2005)

(a) Original (b) 94.4% compression (c) 95.8% compression (d) 97.8% compression
0.0066 RMS Error 0.0083 RMS Error 0.014 RMS Error

(e) Origianl (f) 93.8% compression (g) 95.3% compression (h) 96.9% compression
0.0681 RMS Error 0.0696 RMS Error 0.0699 RMS Error

Figure 9: Tensor approximation of volumetric smoke simulations. (a) An original smoke simulation with 480 temporal frames and a volume
resolution of 128x128x128. The smoke density values fall between the interval, [0, 1.065]. The spatial resolution is compressed to 64x64x64
in (b)-(d). The temporal resolution is compressed to 200 in (b), 150 in (c) and 80 in (d). Each out-of-core compression divided the original
tensor into 32 blocks and took 11.3 hours on a 2.4GHz processor with 784MB RAM. (e) Another smoke simulation with 320 temporal frames
and a volume resolution of 100x100x100. The smoke density values fall between the interval, [0, 5.688]. The spatial resolution is compressed
to 50x50x50 in (f)-(h). The temporal resolution is compressed to 160 in (f), 120 in (g) and 80 in (h). Each out-of-core compression divided
the original tensor into 32 blocks and took 2.2 hours on a 2.4GHz processor with 784MB RAM.

We apply tensor-based approximation again to dynamic vol-
ume data to obtain a compressed representation. Initially, the
original data is organized as a fourth-order tensor, ���� �
������ ������
�� , where � , �! and �" represent the grid res-
olution along each dimension of the volume, and ���� is the num-
ber of simulated frames. To remove redundancy, we use another
fourth-order tenser ����� with reduced ranks to approximate ����
as in Section 2.2. The new tensor is represented as:

����� � ���� 	� �
 	� �

! 		 �
" 	� �

���� (6)

where � � ������ , �! � ��� ��� , �" � ������ ,
�
��� � ���
�����
�� , and ���� � ������ ������
�� .

	 � 	! � 	" and 	��� specify the reduced ranks (columns) of
the four basis matrices for the four modes. Without decomposing
the three dimensions of a volume using three basis matrices as sug-
gested in Section 3.1, we would have to convert each volume into
an extremely long vector, which is infeasible.

We have successfully applied our out-of-core tensor approxima-
tion to multiple smoke simulation sequences each of which has be-
tween 2.5GB and 10GB of original data. They were originally gen-
erated from a controllable smoke simulator in [Shi and Yu 2005].
Our out-of-core algorithm was run on a PC with only 784MB mem-
ory. In each simulated frame, there is a 3D smoke density distribu-
tion of the uniform volume grid. We store such density distribu-
tions on disks using double-precision floating point numbers. They
typically have smooth spatial variations and strong temporal coher-
ence, creating much spatial and temporal redundancy. Results for
two smoke sequences are shown in Fig. 9 where the images are
synthetically rendered using smoke density distributions obtained
after tensor-based compression and decompression. These images
are quite similar to the images rendered from the original smoke
density distributions.

5 Discussions

We presented an out-of-core algorithm for higher-order tensor ap-
proximation. The basic idea is to partition a tensor into smaller
blocks and perform tensor-related operations blockwise. An addi-
tional feature of this algorithm is that it effectively exploits the spa-
tial redundancy of multi-dimensional data item to achieve higher
compression ratios.

With the increasing popularity of data-driven models in graphics,
such an out-of-core algorithm becomes indispensable for extracting
compact representations. Although we presented three applications
here, the promise of this algorithm extends far beyond that. In fu-
ture, we would like to consider additional applications, such as light
fields, complete reflectance fields and other physically simulated
data. It is also possible to use this algorithm for data with irreg-
ular connectivity, such as meshes, by parameterizing them onto a
rectangular domain [Gu et al. 2002]. We would like to explore the
prospects of using GPUs to perform tensor reconstruction and mul-
tilinear image rendering. We also plan to further design an effi-
cient encoder based on tensor approximation for multi-dimensional
datasets. Currently, the reduced ranks of the approximating tensor
are specified by the user. It would be helpful if they can be automat-
ically and efficiently found given a desired RMS error threshold.

Acknowledgments

We wish to thank the authors of [Koudelka et al. 2003] for sharing
their BTF database, and the anonymous reviewers for their valu-
able comments. This work was partially supported by National
Science Foundation (CCR-0132970) and Office of Naval Research
(N00014-03-1-0107). The first author was supported by UIUC CSE
fellowship.

8

Appears in ACM Transactions on Graphics (Special Issue for SIGGRAPH 2005)

References

BRAND, M. 2002. Incremental singular value decomposition of
uncertain data with missing values. In Proc. European Confer-
ence on Computer Vision (Vol. I), 707–720.

CHEN, W.-C., BOUGUET, J.-Y., CHU, M., AND GRZESZCZUK,
R. 2002. Light field mapping: Efficient representation and
hardware rendering of surface light fields. ACM Transactions
on Graphics 21, 3, 447–456.

DANA, K. J., VAN GINNEKEN, B., NAYAR, S. K., AND KOEN-
DERINK, J. J. 1999. Reflectance and texture of real world sur-
faces. ACM Transactions on Graphics 18, 1, 1–34.

ENRIGHT, D., MARSCHNER, S., AND FEDKIW, R. 2002. Anima-
tion and rendering of complex water surfaces. ACM Transactions
on Graphics 21, 3, 736–744.

FURUKAWA, R., KAWASAKI, H., IKEUCHI, K., AND SAKAUCHI,
M. 2002. Appearance based object modeling using texture
database: Acquisition, compression, and rendering. In 13th Eu-
rographics Workshop on Rendering, 257–265.

GU, X., GORTLER, S., AND HOPPE, H. 2002. Geometry images.
ACM Transactions on Graphics 21, 3, 355–361.

HAN, J., AND PERLIN, K. 2003. Measuring bidirectional texture
reflectance with a kaleidoscope. ACM Transactions on Graphics
22, 3, 741–748.

JAMES, D., AND FATAHALIAN, K. 2003. Precomputing interactive
dynamic deformable scenes. ACM TOG 22, 3, 879–887.

KOUDELKA, M., MAGDA, S., BELHUMEUR, P., AND KRIEG-
MAN, D. 2003. Acquisition, compression, and synthesis of
bidirectional texture functions. In 3rd Intl. Workshop on Texture
Analysis and Synthesis, 59–64.

KROONENBERG, P., AND DE LEEUW, J. 1980. Principal compo-
nent analysis of three-mode data by means of alternating least
squares algorithms. Psychometrika 45, 324–1342.

LATHAUWER, L. D., DE MOOR, B., AND VANDEWALLE, J. 2000.
A multilinear singular value decomposition. SIAM J. Matrix
Analysis and Applications 21, 4, 1253–1278.

LATHAUWER, L. D., DE MOOR, B., AND VANDEWALLE, J. 2000.
On the best rank-1 and rank-(�� 	�� ���� 	�) approximation of
higher-order tensors. SIAM J. Matrix Analysis and Applications
21, 4, 1324–1342.

LEUNG, T., AND MALIK, J. 1999. Recognizing surfaces using
three dimensional textons. In Intl. Conf. Computer Vision.

LEVOY, M., AND HANRAHAN, P. 1996. Light field rendering.
In Computer Graphics Proceedings, Annual Conference Series,
31–42.

LIU, X., YU, Y., AND SHUM, H.-Y. 2001. Synthesizing bidirec-
tional texture functions for real-world surfaces. In Proceedings
of SIGGRAPH, 97–106.

LIU, X., HU, Y., ZHANG, J., TONG, X., GUO, B., AND SHUM,
H.-Y. 2004. Synthesis and rendering of bidirectional texture
functions on arbitrary surfaces. IEEE Trans. Visualization and
Computer Graphics 10, 3, 278–289.

MATUSIK, W., PFISTER, H., BRAND, M., AND MCMILLAN, L.
2003. A data-driven reflectance model. ACM Transactions on
Graphics 22, 3, 759–769.

NGUYEN, K., AND SAUPE, D. 2001. Rapid high quality compres-
sion of volume data for visualization. Compuer Graphics Forum
20, 3, 49–56.

NISHINO, K., SATO, Y., AND IKEUCHI, K. 1999. Eigen-texture
method: appearance compression based on 3d model. In Pro-
ceedings of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR’99), 618–624.

RABANI, E., AND TOLEDO, S. 2001. Out-of-core svd and qr
decompositions. In Proceedings of the 10th SIAM Conference
on Parallel Processing for Scientific Computing.

RODLER, F. 1999. Wavelet based 3d compression with fast ran-
dom access for very large volume data. In Proceedings of the
7th Pacific Conference on Computer Graphics and Applications,
108–117.

SATTLER, M., SARLETTE, R., AND KLEIN, R. 2003. Efficient
and realistic visualization of cloth. In Proc. Eurographics Sym-
posium on Rendering, 167–177.

SHASHUA, A., AND LEVIN, A. 2001. Linear image regression
and classification using the tensor-rank principle. In IEEE Conf.
Computer Vision and Pattern Recognition.

SHI, L., AND YU, Y. 2005. Controllable smoke animation with
guiding objects. ACM Transactions on Graphics 24, 1, 140–164.

TONG, X., ZHANG, J., LIU, L., WANG, X., GUO, B., AND
SHUM, H.-Y. 2002. Synthesis of bidirectional texture func-
tions on arbitrary surfaces. In SIGGRAPH 2002 Proceedings,
665–672.

TUCKER, L. 1966. Some mathematical notes on three-mode factor
analysis. Psychometrika 31, 279–311.

VASILESCU, M. A. O., AND TERZOPOULOS, D. 2002. Multi-
linear analysis of image ensembles: Tensorfaces. In European
Conference on Computer Vision, 447–460.

VASILESCU, M., AND TERZOPOULOS, D. 2004. Tensortex-
tures: Multilinear image-based rendering. ACM Transactions
on Graphics 23, 3, 334–340.

WANG, H., AND AHUJA, N. 2003. Facial expression decomposi-
tion. In Int. Conf. on Computer Vision, 958–965.

WEYRICH, T., PFISTER, H., AND GROSS, M. 2005. Rendering
deformable surface reflectance fields. IEEE Trans. Visualization
and Computer Graphics 11, 1, 48–58.

YANG, J., ZHANG, D., FRANGI, A., AND YANG, J. 2004. Two-
dimensional pca: A new approach to appearance-based face rep-
resentation and recognition. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 26, 1 (January).

YE, J. 2004. Generalized low rank approximations of matrices. In
International Conference on Machine Learning, ICML’04.

YEO, B.-L., AND LIU, B. 1995. Volume rendering of dct-based
compressed 3d scalar data. IEEE Trans. Visualization and Com-
puter Graphics 1, 1, 29–43.

YU, Y., AND CHANG, J. 2005. Shadow graphs and 3d texture
reconstruction. International Journal of Computer Vision 62,
1/2, 35–60.

9

