Vis Comput (2010) 26: 157-169
DOI 10.1007/s00371-009-0359-8

ORIGINAL ARTICLE

Lazy texture selection based on active learning

Tian Xia - Qing Wu - Chun Chen - Yizhou Yu

Published online: 16 April 2009
© Springer-Verlag 2009

Abstract Interactive selection of desired textures and tex-
tured objects from a video is a challenging problem in video
editing. In this paper, we present a scalable framework that
accurately selects textured objects with only moderate user
interaction. Our method applies the active learning method-
ology, and the user only needs to label minimal initial train-
ing data and subsequent query data. An active learning
algorithm uses these labeled data to obtain an initial clas-
sifier and iteratively improves it until its performance be-
comes satisfactory. A revised graph-cut algorithm based on
the trained classifier has also been developed to improve the
spatial coherence of selected texture regions. We show that
our system is responsive even with videos of a large number
of frames, and it frees the user from extensive labeling work.
A variety of operations, such as color editing, compositing,
and texture cloning, can be then applied to the selected tex-
tures to achieve interesting editing effects.

Keywords Texture descriptors - Segmentation - Supervised
classification - Graph cut - Scribbles

T. Xia (X) - Q. Wu - Y. Yu

Department of Computer Science, University of Illinois,
201 N Goodwin Ave, Urbana, IL, USA

e-mail: tianxia2 @illinois.edu

Q. Wu
e-mail: gingwul @illinois.edu

Y. Yu
e-mail: yyz@illinois.edu

C. Chen

College of Computer Science, Zhejiang University, Hangzhou,
China

e-mail: chenc@zju.edu.cn

1 Introduction

Object selection and cutout from images and videos have
proven to be a vital technology with many applications in
computational photography, image synthesis, and special vi-
sual effects for film making. These applications typically re-
quire pixel-level accuracy. With today’s image processing
and computer vision methods, computers still need human
assistance in successfully performing this task at such a high
level of accuracy. Hence, there has been much work on in-
teractive object selection and cutout [20, 21, 29, 34]. Such
work typically cuts out a single connected object which is
assumed to have a global color distribution model, such as a
mixture of Gaussians.

In this paper, we focus on texture and textured object se-
lection from a video. Here texture refers to a unique local
spatial arrangement of colors, such as the stripes on a zebra.
There are reasons why existing techniques are not suitable
for texture or textured object selection. First, since two dif-
ferent texture patterns may observe the same global color
distribution, a global color distribution model would be in-
herently ambiguous in texture discrimination. Second, tex-
ture regions may be fragmented. Overly emphasizing spatial
coherence to compensate the weakness in color distribution
models would not work well.

We propose to perform interactive texture and textured
object selection using a supervised classifier interactively
trained using active learning. A texture classifier demands
training examples interactively supplied by the user to im-
prove its performance. Instead of the user searching for new
training examples, we adopt the active learning methodol-
ogy [1, 16, 31] which makes the user and the machine coop-
erate to find minimal data sufficient to train a good classifier.
The machine plays a more active role, trying to figure out
which subset of the originally unlabeled data, once labeled,

@ Springer

mailto:tianxia2@illinois.edu
mailto:qingwu1@illinois.edu
mailto:yyz@illinois.edu
mailto:chenc@zju.edu.cn

158

T. Xia et al.

Fig. 1 Texture selection and editing examples. Regions with cloth tex-
tures are first cut out using our texture selection method and then re-
placed with new textures using texture cloning

would be the best training data. Once such data has been
discovered, the user is asked to provide their correct labels.
In this mode, the user only needs to answer a small num-
ber of queries from the machine. Hence user intervention
is much reduced. We have confirmed experimentally that
training data automatically chosen by the machine can in-
deed improve classification performance more significantly
than those chosen by the user. Required by interactive per-
formance, we adopt boosted decision trees as the classifier
whose training sessions can be quickly performed in an in-
teractive rate.

Powerful classification algorithms still require discrimi-
native data. There has been extensive work on texture de-
scriptors in the image processing and computer vision liter-
ature [17, 24]. Instead of a global color distribution model,
we adopt local texture descriptors based on responses to an
oriented filter bank. Such texture descriptors have proven to
be effective in texture discrimination and are actually used
as input to our texture classifier.

The interactively trained texture classifier achieves a high
success rate. In the event of minor classification errors, we
rely on the graph-cut algorithm to remove such errors by
minimizing a revised objective function which effectively
incorporates intermediate results from the classifier. More
specifically, the likelihood function is formulated according
to the confidence value returned by the classifier. In our ex-
periments, such a formulation of the objective function has
proven to be very effective in the refinement of the intended
texture selection.

Our system remains responsive throughout the interac-
tive session, and is not sensitive to an increasing number of
frames in video. With the guaranteed scalability, the user can

@ Springer

now select complicated texture regions and textured objects
throughout the whole video by drawing only a few initial
scribbles followed by a few more to label the query data. Af-
terwards, one can conveniently achieve color editing, com-
positing, and texture cloning operations on the selected re-
gions or objects.

2 Related work

Unlike video texture selection, there is a large body of liter-
ature on image texture classification and segmentation [3, 7,
10, 23, 25, 32]. Since local pixel configurations provide vital
information of a texture, one popular method for texture dis-
crimination is based on filtering which can effectively char-
acterize local patterns. Common filters used for this pur-
pose include first and second derivatives of the Gaussian
[23], Gabor filters [10], and wavelet decomposition [7]. Both
classifier-based [25] and boosting-based [3, 32] techniques
have been developed to automatically perform texture clas-
sification or segmentation. Nevertheless, these methods have
not reached our desired level of accuracy.

Many interactive techniques have been successfully de-
veloped for object cutout from still images [2, 13, 21, 26,
27, 29]. These techniques are primarily designed for im-
age regions with spatial coherence rather than textures with
much less coherence. The Gaussian mixture model com-
monly used for color distribution has been extended to have
discriminative power for textures in [12, 33]. In particular, a
Gaussian mixture model for principal components extracted
from texture description has been adopted in [12]. Neverthe-
less, only three leading principal components were used in
[12]. In comparison, since we adopt a supervised classifier
with a fast training algorithm, it has become possible for us
to have a texture descriptor with more discriminative power
by exploiting at least an order of magnitude more principal
components.

An important inspiration of our technique came from
user-defined scribbles which have been extensively ex-
ploited among aforementioned interactive techniques for
images. As described in [12, 29], it is promising to have
the user explicitly mark only positive or negative points
while the rest of the image is implicitly labeled as the oppo-
site. However, one-sided initial scribbles do not guarantee
to converge if the color distribution of the background and
foreground are somewhat similar. Protiere and Sapiro [27]
proposed a novel segmentation technique that computes for
each pixel a weighted distance to user scribbles, but the al-
gorithm relies on a relatively large number of initial and sub-
sequent scribbles by the user. Our method does not need a
large number of scribbles or deliberate positioning of them,
and both positive and negative scribbles are used in order to
train a more accurate classifier.

Lazy texture selection based on active learning

159

Scribbles have also been utilized in many other topics,
including colorization [15, 18, 22, 28] and local color ad-
justment [19]. Texture descriptors based on Gabor filters
were adopted in [28] to assist level-set propagation. Tex-
ture patch similarity constraints were taken into account
in [22] to solve a labeling problem. Li et al. [19] trains a
boosting-based classifier for edge-aware interpolation. Un-
like the classification method in [15], we perform active
learning directly on the input data and do not need precom-
puted examples from a database. Note that colorization and
segmentation are two related but different problems. While
segmentation demands an accurate object boundary to be
found in support of object cutout and compositing opera-
tions, colorization only alters pixel colors and, in most cases,
does not aim at a precise boundary in pixel resolution.

A certain level of user guidance has been incorporated
with static and dynamic texture editing. Neighborhood-
based self-similarity were exploited in [6] to quickly select
features intended for further editing. However, there was no
supervised classification except a threshold for neighbor-
hood similarity. User guidance has also been exploited in
dynamic texture editing to alter the trajectory [4] or dynam-
ics [9] in the original images.

Video texture classification poses a harder problem. Un-
fortunately, all interactive cutout methods mentioned above
were precisely designed for static images. To our knowl-
edge, no generalization from static image to video is ever
clearly mentioned due to the fact that the user’s workload
may potentially increase in proportion to the number of
video frames. Furthermore, in the relatively little literature
of interactive video object cutout, [20, 34] were not origi-
nally designed for texture or textured object selection. More
importantly, these techniques inevitably suffer from the scal-
ability problem, as they treat the costly 3D graph cut as an
indispensable part of their interactive session. Our method
well handles this problem by freeing the whole interactive
session from the graph cut overhead. A revised graph-cut
algorithm is only needed as a postprocessing step in our
system, hence the interaction is not subject to the growing
number of video frames. This is particularly useful for video
texture selection with moderate user interaction.

3 Overview

During the preprocessing stage, spatially and temporally
nearby pixels sharing similar attributes are grouped into su-
pervoxels. In the special case of a static image, each super-
voxel is actually a superpixel. For each supervoxel, a vector
texture descriptor is obtained by calculating its response to
an oriented filter bank.

During the online user interaction stage, the input video
is presented to the user as a sequence of frames. The user

draws a few scribbles on one frame indicating the desired
texture regions. The supervoxels covered by these initial
scribbles serve as the set of training data on which the first
tentative classifier is trained and applied to the unlabeled
data. The classifier also computes a confidence value for
each of the unlabeled supervoxel. It then chooses a small
number of supervoxels with lowest confidence, and queries
the user for their correct labels. The user’s feedback is used
to obtain an improved version of the classifier, which again
chooses the least confident supervoxels to question the user.
This iterative procedure normally runs for a few times before
the classifier performs sufficiently well on the video.

Usually, the improved classifier is not completely accu-
rate in prediction. It is likely to have minor misclassifica-
tions. In the video, these labeling mistakes are observed
as noisy pixels inside and outside the intended region, for
which further refinement is needed. We refine texture selec-
tion results by breaking supervoxels into pixels and applying
a revised graph-cut algorithm with an innovative weighting
scheme based on the confidence values obtained by our clas-
sifier. For videos, graph cut is applied to all frames as an
offline batch postprocessing step once the online interactive
training session for the classifier is over. For static images,
we include graph cut as an additional step in the interac-
tive training session since graph cut has reached interactive
performance on single images. We alternate classifier train-
ing and graph cut on the input image until convergence. The
whole procedure is demonstrated in Fig. 2.

Though mainly designed for video texture selection, our
system is a perfect fit for image cutout too. For convenience
of presentation, most illustrations shown in the paper are ex-
periments on images. Please refer to supplemental clips for
video selection results.

4 Preprocessing

To make run-time texture selection more efficient and re-
sponsive, we preprocess the video using the algorithm in
[11] so that supervoxels are formed as working units for
following operations. A supervoxel corresponds to a small
group of geometrically close pixels that share similar color
and intensity attributes. Instead of processing every single
pixel within the texture video, we only process a represen-
tative pixel within each supervoxel and let the rest share
the same result. For similar reasons, superpixels have been
found useful in [14, 21]. As in [20, 34], we generalized su-
perpixels to supervoxels so nearby pixels across consecutive
frames are also incorporated to enhance the temporal coher-
ence of the video. We set an upper bound on the number of
pixels within a supervoxel (typically 50) and confine each
supervoxel within a cube to prevent long slivers and spiral-
like shapes.

@ Springer

160

T. Xia et al.

Fig. 2 The texture selection procedure. (a) Initial scribbles. (b) Ten-
tative classification by the first classifier. (¢) Query points (green) and
user provided labels (solid red and cyan). In most cases, a few scrib-
bles are sufficient to have a tangible improvement of the classifier’s
performance. The user can answer the query by covering the uncer-
tain area with positive or negative scribbles. Note that the user does
not have to label all query points. (d) Improved classification after the

The second step of preprocessing is to obtain texture
descriptors for each supervoxel. Oriented filter banks
[17, 24] have proven to be an effective tool to characterize
textures. Our learning algorithm primarily uses local statis-
tics of oriented filter responses to differentiate textures. We
apply 24 Gabor filters [24] at six orientations and four scales
at every pixel, and such filtering is performed for each of
the three color channels separately. Thus, every pixel has a
72-component filter response vector after filtering. We com-
pute the mean and standard deviation of each channel
over all pixels within every supervoxel to obtain a 144-
component vector. Note that the Gabor filters can gather
texture information not only within a supervoxel but also in
areas surrounding the supervoxel because the support region
of the filters extends well beyond the supervoxel.

At the representative pixel of every supervoxel, a color
histogram is also extracted from its 7 x 7 neighborhood. We
used 10 bins for each color channel, and the
30-component histogram vector is then concatenated with
the 144-component vector. It is reduced to a shorter vec-
tor by principal component analysis. This shortened vector,
in juxtaposition with the mean and standard deviation of
each color channel, forms the texture descriptor for every
supervoxel. The inclusion of color information in descrip-
tors effectively alleviates the tendency of blurring the ac-
tual boundary when only texture features are used. In our
experiments, we have used different descriptor lengths for
different examples, normally ranging from 30 to 60. These
descriptors are the data points fed to Algorithm 1 during
interactive training.

@ Springer

(g)

query. (e) and (f) A local classifier is trained to refine the tail (op-
tional). (g) Signed confidence map of the final classification. A con-
tinuous value in [—1, 1] is computed for each pixel. —1 (blue) and 1
(red) indicate the highest confidence in classification, while 0 (green)
implies high uncertainty. (h) Refinement by the revised graph-cut al-
gorithm. Note that our scribbles have rough and irregular boundaries
because they are displayed as the union of covered supervoxels

Algorithm 1 The Query-by-Boosting algorithm

Data: X (unlabeled point set), N (number of trials)
and m (number of query candidates)

begin
Initialize S1 = {(x1,1)} for random x;
for i=1 to N do
Obtain a boosted classifier H; on S;;
Randomly generate a set of m points,
C C X\Si;
Pick a point x* € C' with the minimum
margin:

x* = arg mingec | Zt arhe(x)[;
Query the label at x*, I(x*);
Set Sit1=append(S;, (x*,(x"))).
end
end

Result: the boosted classifier at the last iteration,
Hn.

As an option, we have also experimented with the ori-
ented filter bank in [17], another filter bank known for its
success in texture discrimination, and achieved comparable
results.

5 Active learning based selection

In this section, let us first review the active learning ap-
proach. Suppose that the input data to supervised classifica-
tion consist of a set of tuples, (x1,/1), (X2,02), ..., Xu, ly),
where x; € X denotes one of the data, and /; denotes
the class label of that datum. x; is typically a vector in
a multidimensional space M?. If one is only concerned

Lazy texture selection based on active learning

161

with two classes of data, [; € L = {—1, +1}. Classifica-
tion is then equivalent to finding a boundary surface in this
d-dimensional space so that data with different labels do not
lie on the same side. As we can imagine, data points close
to the boundary play a much more important role in defin-
ing the shape of the boundary than those further away. This
is especially true when data with different labels interlace,
which gives rise to a jagged decision boundary. A precise
definition of the boundary requires a much denser sampling
of the space around the boundary than anywhere else.

Active learning [1, 16, 31] is exactly motivated by this
observation. It suggests a way for the learning algorithm
to proactively choose training data instead of passively re-
ceiving them. Once an initial boundary is defined, it keeps
refining the boundary automatically by sampling more and
more points around it. Obviously, labels for these additional
data points need to be supplied by the user. But how can
the learning algorithm know which points lie close to the
boundary? A typical strategy is to train multiple classifiers
and conduct an internal voting to determine the uncertainty
of a data point. A point is considered close to the decision
boundary when the voting result becomes close to 50-50,
which indicates a high uncertainty.

Algorithm 2 The AdaBoost algorithm
Data: (x1,01),..., (Xn, ln) where x; € X, [; € {—1,1}
begin
Initialize distribution, D1(z2) = 1/m,i =1, ...,n;
for t=1 to T do
Using Dy, train base classifier by : X — {—1,1}
with small error ¢, = Prp,[h(x:) # ;] on

D(,;)
Set Dy 11 (i) = Dt(’)eXP(}?tli}Lt(xi))7
where Z, is a normalization factor,
1y, (1=
and oy = 5 In(=*).
end

end

Result: the final classifier, H(x) = sign (ZL ahy (x))

Active learning needs to work with a fast classification
algorithm to achieve its goal. In this paper, we adopt deci-
sion tree classifiers enhanced with the AdaBoost algorithm
[30] (Algorithm 2). Before binary classification, the classi-
fier first computes a margin, |, o h; (p)|, which is also de-
fined as the confidence. Boosted decision trees can be trained
interactively while achieving a strong discriminative power.
Note that other classifiers with a fast training phase can also
be adopted, such as the soft-margin linear SVM. A method
that integrates boosting with active learning has been devel-
oped in [1]. An outline of the method is shown in Algo-
rithm 1. It assumes the knowledge of the entire pool of un-
labeled data. Since this pool may be very large, during each
iteration, it generates only a random subset of the unlabeled

data, and the uncertainty of each point in the subset is indi-
cated by the margin of the weighted votes cast by all the base
classifiers trained by AdaBoost. The method finally chooses
the point with the highest uncertainty, i.e., minimum confi-
dence, and requests the user to provide its label. The chosen
point along with its label is then appended to the set of train-
ing data.

5.1 Initial feature selection

Run-time texture selection is cast as a binary supervised
classification based on Algorithm 1 with certain revisions.
In the current context, the set of unlabeled data, X, consist
of all supervoxels within the input video. The machine ran-
domly selects an initial video frame to start with and let the
user draw one or more scribbles within that frame to mark
desired features. Texture descriptors at supervoxels touched
by these scribbles (note that a supervoxel might straddle
across several frames) are marked as positive training data.
The user also draws one or more additional scribbles to mark
negative training data. Positive and negative labels are con-
veniently communicated using left and right mouse buttons,
respectively. We apply the K-means algorithm to cluster su-
pervoxels covered by the positive and negative scribbles, re-
spectively, and uniformly sample each cluster. Given both
types of sampled training data, an initial boosted classifier
can be obtained as in Algorithm 2. Unlike Algorithm 1, we
allow multiple initial training data. Note that initial scribbles
do not increase with respect to the number of video frames,
as it is confined to one frame and requires no more scribbles
than a single image does.

5.2 Automatic query

Once an initial classifier has been obtained, as in Algo-
rithm 1, we run multiple subsequent iterations with user
query to refine the initial classifier. Each iteration proceeds
as follows. Instead of generating a random subset of the un-
labeled supervoxels from the entire video as in Algorithm 1,
we only generate query candidates from one randomly cho-
sen video frame. All user interactions within that iteration
will be focused on the data from that frame only because
shuffling among multiple frames would be too distracting. If
the number of supervoxels within that frame is sufficiently
small, all of them become query candidates; otherwise, a
random subset of these supervoxels are generated as query
candidates. The classifier from the previous iteration is ap-
plied to generate confidence values for all query candidates.

This strategy has important advantages. The entire video
consists of a large number of supervoxels, and a random sub-
set of the entire video may fail to include important texture
descriptors that lie close to the decision boundary, making
active learning less effective. On the other hand, supervox-
els from one single video frame provides a much narrowed

@ Springer

T. Xia et al.

(C) result by overriding
scribbles

(f) result by query

(e) query

(d) tentative classifica-
tion

Fig. 3 Initial scribbles shown in (a) are used to train a tentative clas-
sifier, whose classification result is shown in (d). Displayed in green is
the automatic query by the machine. (b) Illustrates the overriding scrib-
ble (in red) based on the classification in (d). It manages to classify the
swimmer but also introduces misclassifications in the background as a
side effect shown in (¢). (e) Shows the user’s feedback (in red) based on
the query in (d). This query significantly improves the accuracy of the
classifier without negatively affecting previously correct labels. (¢) and
(f) are final results after applying graph cut

scope. Sampling within the much smaller pool of supervox-
els significantly increases our chance to choose points close
to the decision boundary as query points.

Our algorithm offers a high degree of flexibility to condi-
tion the training of classifiers. Instead of choosing only one
query point at a time as in Algorithm 1, we allow multiple
query points every iteration to speed up the convergence.
We choose from the candidate pool all points with a margin
smaller than a prescribed threshold (~0.1-0.15) to inquire
the user. Supervoxels covered by these query points are all
shown in a special color. Instead of providing the correct
label to one query point at a time, the user can draw rela-
tively long scribbles to paint multiple query points with the
same label. Painting with labels can be careless because only
query points are affected by the scribbles and the rest of the
supervoxels are masked.

In addition, the user can directly draw overriding scrib-
bles over incorrectly labeled data in addition to labeling the
query data. The input of such overriding scribbles corrects
partial classification errors in previous rounds, if any, and
leads to a more accurate classification in the next round.
Nevertheless, overriding scribbles are applied rather infre-
quently. In practice, the percentage of such scribbles is typ-
ically around 10%.

Once the learning algorithm has obtained the labels of the
query points and possibly overriding scribbles, an improved
classifier is trained using the newly labeled supervoxels in
the current iteration together with a uniformly sampled sub-
set of the labeled supervoxels from previous iterations, and
the procedure is repeated.

@ Springer

e ting -*:*a—,-t_br
(a) initial scribbles (b) override (¢) result by overriding

scribbles

(e) query (f) result by query

(d) tentative classifica-
tion

Fig. 4 In (b), the overriding scribble (in red) on the zebra’s rear part
have well corrected nearby misclassifications. But it eventually leads to
a classifier that fails to recognize similar stripe patterns on the zebra’s
legs in (c). (e) In contrast, by feeding correct labels (in red) to query
points (in green), we manage to build a stable classifier with high ac-
curacy. (c) and (f) are the final results after applying graph cut

5.3 Local classifiers

A video sometimes has a region with abundant texture de-
tails that requires considerably more training data than other
regions do. When this is the case, our algorithm is inefficient
because the candidate query points are randomly (and thus
uniformly) generated and the region in question tends to be
undersampled. We handle the situation by providing the user
with an option to define a 3D rectangular region of interest
within the video, and train a local classifier for the speci-
fied region. The local classifier works exactly the same way
as the global one does, only confined within the user speci-
fied region. Apparently, the detailed region is much smaller
compared to the whole video, resulting in a faster rate of
convergence. It is therefore a good practice to refine regions
of detailed textures with a local classifier after the classifi-
cation for the entire video.

5.4 Validation of active queries

In this section, we demonstrate that active queries at data
points close to the decision boundary can most effectively
and quickly improve the accuracy of the classifier. As a re-
sult, by providing the queries automatically and accelerating
the convergence of the classifier, active learning can tangibly
reduce the amount of user interaction.

We compared the effectiveness of active queries and
overriding scribbles in improving the overall classification
accuracy. In our experiments, we have observed that active
queries in a local image region not only improve the clas-
sification results in that local region but also improve the
decision boundary on a more global scale. For example, in
Figs. 3 and 4, the labels provided to the active query have

Lazy texture selection based on active learning

163

Fig. 5 (a) Illustrates initial scribbles used for training the tentative
classifier. Its classification result is shown in (¢), where regions in green
are displayed as an automatic query by the machine. As we see in (d),
user-supplied labels (in cyan) are only a subset of all query points,
avoiding locations not obvious to the eye. An improved classifier is
then trained, and the new classification is shown in (e). (b) Is the final
result after applying the graph cut to the classification in (e)

succeeded in correcting all misclassifications. Meanwhile,
the improved classification results remain stable meaning
that active queries in one region tend not to negatively affect
previously correct labels in other regions. On the other hand,
overriding scribbles sometimes tend to overemphasize tex-
tures they cover and result in undesirable side effects else-
where, as shown in Fig. 3. In addition, as shown in Fig. 4,
overriding scribbles also exhibit an inability to simultane-
ously correct the erroneous labels of similar patterns that
may not be spatially close.

Because of the ability of active queries in improving clas-
sification accuracy on a global scale, it is not necessary for
the user to provide labels at all query points. In fact, tangible
improvements within an entire image can be achieved with
a very small number of queries. Thus, the user can choose
not to label the query points at ambiguous locations, such as
those close to the boundary of the intended texture region.
As shown in Fig. 5, user-supplied labels at exterior query
points actually improve the classification result at the tex-
ture boundary.

6 Selection refinement

As has been described in previous sections, a classifier
makes the most uncertain decisions on its decision bound-
ary. Another source of misclassification is the presence of
outliers. As each data point (supervoxel) is classified ac-
cording to its own texture descriptor, the relationship among
neighboring supervoxels is not taken into account by the
classifier. The neglect of the spatial coherence across super-
voxels gives rise to occasional outliers in the video. These

observations have motivated us to use the graph-cut algo-
rithm as a selection refinement mechanism at the pixel level.
In addition, a refinement at the pixel level is able to break
misclassified super-voxels that straddle across weak bound-
aries.

6.1 Graph cut

Graph cut [5] has been used as a powerful image segmen-
tation tool in recent years. The underlying idea is to treat
image segmentation as a binary labeling problem. Specif-
ically, the image induces a graph G = (V,), where V is
the set of nodes, and £ is the set of edges. A node corre-
sponds to a pixel in the image. There is an edge between
every pair of neighboring pixels, whose weight (cost) en-
codes the difference of the two pixels. The more they dif-
fer, the smaller the cost. Every pixel also has links to two
virtual nodes, the source representing the foreground and
the sink representing the background. The weight on each
link indicates how likely it is for the pixel to belong to
the foreground and background. The labeling problem is
to assign a unique label /; for each node i € V, ie., [; €
{foreground(=1), background(= 0)}. The solution L = {/;}
can be obtained by minimizing the following objective func-
tion:

E(L)=Y RU)+x Y Bl M
ieV @i,))e€

where R(l;) is a likelihood energy, encoding the cost when
the label of node i is /;, and B(l;,1;) is a prior energy for
boundary penalty, denoting the cost when the labels of ad-
jacent nodes i and j are /; and [}, respectively. If we set the
weight of edge (i, j) to B(l;,[;), the weight of the link be-
tween node i and the source to R(/; = 1), and the weight of
the link between node i and the sink to R(/; = 0), finding
an optimal solution of (1) is equivalent to finding a cut with
minimal cost in the graph. More details can be found in [5]
and [29].

We would like to make use of the interactively trained
texture classifier in the likelihood energy of the graph-cut
algorithm. Since the result returned by a classifier is essen-
tially a complicated nonlinear function of the training ex-
amples, it can be considered as an accurate example-based
parametric model built upon texture descriptors. There-
fore, instead of using a global color distribution to set the
source/sink link cost as in [29], we opted for the signed con-
fidence value, Z, o hy(p), computed in Algorithm 2, to re-
late to the likelihood energy. Specifically, we set

R(; =0) = max(O, — 1nmax(0, 0.5+0.5 Za,h,(p)))
t

@ Springer

T. Xia et al.

(b) Conﬁdence Map . (C) Graphcut

(a) Original Image

Fig. 6 With difficult examples where foreground and background
color distributions are similar, the interactively trained classifier results
in misclassifications at random locations as in (b), where each pixel
is assigned a signed confidence value. (¢) Graph cut based on signed
confidence values computed by the classifier proves to be a powerful
refinement method

and
Rl =1)= maX(O, - lnmax<0, 0.5—0.5 Zath,(p)>>.
t

To maintain spatial coherence and remove classification
outliers, we adopt the conventional scheme of assigning
edge cost where the color difference between adjacent pixels
isused, i.e.,

llei) — c(j)||2>

B(li,lj)=|li—lj|exp(—)
c

where ¢(i) represents the color vector at node i. Figure 6
illustrates the result using the graph-cut method.

6.2 Graph cut integration

Considering the difference in computational cost when the
graph-cut algorithm is respectively applied to a single im-
age and a video, it is integrated with the rest of the texture
selection process in two different schemes.

Since the graph-cut algorithm can achieve interactive per-
formance on a single image, it is interleaved with classifica-
tion and active learning to iteratively refine texture selection
results. More specifically, starting from a tentative classifi-
cation C;, we perform active learning and automatic queries
to obtain an improved classification C;41. A graph based on
Ci41 is then formulated as in Sect. 6.1, followed by a mini-
mum cut. Note that the graph is defined at the pixel level and
all pixels within the same supervoxel receive the same value
related to the likelihood energy. The foreground and back-
ground regions from the minimum cut are then uniformly
sampled. These sample pixels, together with pixels on user
scribbles and query feedbacks, are collectively used as pos-
itive and negative training data, from which a new classifier
is trained (Algorithm 2). In the event a supervoxel is broken
into foreground and background regions by the graph cut,
majority voting is performed on the supervoxel to determine
its new label. This procedure is repeated until convergence.
Note that for images with relatively simple textures, we can
skip the active query step within each iteration and simply

@ Springer

Fig. 7 With initial scribbles illustrated in the first row, our iterative
method can successfully select desired regions without any further user
interaction

alternate between classifier training and graph cut to achieve
satisfactory results (Fig. 7).

However, a graph cut for dozens or even hundreds of
video frames is too computationally expensive to achieve
interactive update rates. Therefore, we take the graph-cut al-
gorithm out of the interactive session and simply apply it
as an offline postprocessing step in video texture selection.
More specifically, once multiple iterations of active learning
have been performed to obtain a satisfactory classifier and
its classification results, the user runs a postprocessing step
where a framewise graph cut is applied at the pixel level
to further refine selected texture regions. Temporal coher-
ence across consecutive frames is secured by the supervoxel
mechanism (Sect. 4) in the classification stage and will not
be adversely affected by the framewise graph cut.

7 Experimental results

We have experimented with a series of video sequences and
static images on a 3.8 GHz Pentium 4 processor. As de-
scribed in Sect. 5, our classifier only requires shallow de-
cision trees of moderate accuracy, whose performance are
later boosted by AdaBoost and active learning. Building
such decision trees (usually three or four levels in depth)
using training data with reduced dimensionality is very fast.
This gives rise to the computational efficiency shown in the
Training column of Table 1, and it normally takes 0.2 to
0.6 seconds to train a completely new classifier for video
sequences and static images after each round of interactive
query and labeling. Because the training time for each clas-
sifier is well below one second, labeling and training stages
have thus been seamlessly integrated and have reached an
overall interactive rate. Because the total amount of train-
ing data collected from initial labeling and subsequent query
sessions does not increase significantly for videos, the time
needed for each round of training does not have obvious dif-
ference between videos and static images.

One major advantage of our video texture selection
method over existing video object selection methods

Lazy texture selection based on active learning

165

Table 1 Timings for video sequences and static images. Performance
measurements were taken on a 3.8 GHz Pentium 4 processor. “Feat.
dim” denotes the dimensionality of texture descriptors; “Prep” denotes
the preprocessing time; “Training” denotes the training time for clas-
sifiers. It has two subcolumns. “Total” means the accumulated training
time for a dataset while “Per query” means the average training time for

a new classifier after each round of query. “User interaction” denotes
the total artist time. Graph cut is performed as offline postprocessing
for videos. However, for static images summarized in the bottom half
of the table, time spent on “Graphcut” indicates the accumulated time
from multiple iterations

Video (or image) Size Feat. Prep Training Graphcut User
dim Total Per query interaction

Flower 352 x 288 x 30 30 15 min 5.1 sec 0.26 sec 12 sec 6 min

Sea plant 328 x 264 x 104 30 54 min 10.8 sec 0.31 sec 1 min 23 min
Smoke 455 x 355 x 33 30 19 min 3.7 sec 0.37 sec 8 sec 5 min

Bubbles 328 x 264 x 32 45 17 min 6.4 sec 0.34 sec 17 sec 10 min
Jaguar 352 x 288 x 35 60 21 min 7.8 sec 0.52 sec 21 sec 13 min
Zebras 321 x 252 x 107 50 65 min 16.5 sec 0.41 sec 1.1 min 30 min
Curtain 396 x 271 x 30 60 22 min 6.9 sec 0.34 sec 18 sec 8 min

Shirt 312 x 222 x 35 60 25 min 7.9 sec 0.37 sec 21 sec 11 min
Monarch butterflies 529 x 347 60 69 sec 3.5 sec 0.37 sec 3.8 sec 67 sec
Fabrics 442 x 349 60 59 sec 3.2 sec 0.31 sec 4.2 sec 50 sec
Dress 326 x 548 40 52 sec 2.2 sec 0.29 sec 3.0 sec 48 sec
Big cat 371 x 350 40 63 sec 3.1 sec 0.43 sec 3.4 sec 78 sec
Group zebras 457 x 297 55 55 sec 2.7 sec 0.38 sec 2.2 sec 96 sec
Fungi 538 x 339 40 64 sec 0.85 sec 0.21 sec - 27 sec

[20, 34] is that ours keeps graph cut out of the interactive
session and only applies it as an offline postprocessing step.
Existing methods integrate graph cut as an indispensable
part of the interactive session, making a prompt response
vulnerable to the growing size of the video data. In contrast,
each iteration of our interactive session only includes fast
training and classification, and exhibits very good response
time and scalability, which are crucial for video editing. It
compares favorably with the performance of each iteration
of existing video object selection methods whose perfor-
mance deteriorates significantly with an increasing number
of video frames due to the graph cut within the interactive
loop. If we discount computation time within each itera-
tion, the total user interaction time of our texture selection
method is comparable to that reported in [20, 34] which was
not originally designed for texture selection.

Our algorithm has two essential components, namely, ac-
tive learning (query) and a supervised classifier on which
active learning is based. We first verify the performance
of the supervised classifier. To leave active learning out
of the pipeline, we adopt the iterative approach mentioned
in Sect. 6.2, alternating classification with graph cut with-
out further user interaction (query) until convergence. As
shown in Fig. 7, our classifier is capable of identifying rel-
atively simple texture patterns without active queries. To
further demonstrate the discriminative power of our texture
classifier, we compare it with state-of-the-art object selec-
tion algorithms. Both GrabCut [29] and P-Channel [12] use

the same iterative framework while relying on the Gaussian
mixture model for texture discrimination. As shown in
Fig. 8, our classifier produces better results than other meth-
ods, especially along object boundaries. Texture discrimi-
nation based on similarity of Gabor filter responses fail to
precisely recognize distinct texture patterns due to its unsu-
pervised nature.

With a powerful base classifier ensured, we then exam-
ine if active learning and query further boost the perfor-
mance on examples with sophisticated textures and scene
composition. We conducted a number of comparisons with
GrabCut [29] which is also allowed to accept additional user
scribbles in between iterations. Using an equivalent num-
ber of scribbles, our active learning based method performs
at least as well as GrabCut in all experiments, and consis-
tently produces better results on examples with scattered
texture regions. As shown in Fig. 9, GrabCut does poorly
in selecting such scattered texture regions because of its
specific graph-cut formulation based on the Gaussian mix-
ture model. Notice that GrabCut needs considerably more
user scribbles in the presence of discrete objects, and it of-
ten mistakes texture variations in the background for the
object boundary. Since the video object selection methods
in [20, 34] are based on the same graph model adopted in
GrabCut, they exhibit the same type of problems with scat-
tered texture regions. Our method handles these situations
well, as demonstrated in this comparison and other exam-
ples throughout the paper and supplemental materials.

@ Springer

166

T. Xia et al.

(a) Gabor filtering (b) GrabCut

Fig. 8 Comparison among multiple object selection methods (se-
lection based on similarity of Gabor filter responses, grabcut [29],
p-channel [12], and our lazy texture selection). The smaller images in

(¢) Principal Channels (d) Our method

the upper right corner show initial scribbles needed for each method.

Our method (the last column) excels in precisely identifying object
boundaries (e.g., paws of the leopard and the mouth of the fish)

(a) Selection using GrabCut. With quite many initial scribbles, the result after the first iteration still tends to have inaccurate boundaries. It yields
a moderate foreground selection after additional heavy user interactions. Obvious misclassifications are indicated in the last image

(b) Results of our lazy texture selection method. The second image displays the initial classification after initial scribbles shown in the first
image. After answering the machine’s query by adding few scribbles (shown in the third image), we achieve a much improved result without
local classifiers

Fig.9 Comparison of interactive texture selection methods

8 Applications

An accurate texture classification makes it possible to do fur-
ther editing in user selected regions. Figure 10 is the result
of color transfer, a simple technique that changes the color
of the selected texture. The user picks a few seeding points
within the textured object, and our system clusters the rest
of the pixels by finding the shortest L, distance to any of
the seeding points in a color space. In a subsequent step, a
color is chosen as the transfer target for each cluster, and
the seeding point is taken as the reference. The difference
between the target and the reference will be the transfer vec-

@ Springer

tor added to every pixel in the cluster. The transfer can be
done in any color space specified by the user. In addition,
we implemented a weighting scheme for pixels residing on
cluster boundaries, i.e., interpolating colors of neighboring
clusters, giving the transferred texture a softer and more nat-
ural look.

Compositing operations, for example, can be conve-
niently applied as shown in Fig. 11. To achieve this, a tri-
map is first constructed from the texture selection result by
expanding a transition region from the texture boundary to-
wards the interior of both foreground and background re-
gions, followed by applying an algorithm, such as the one

Lazy texture selection based on active learning

167

in [8], to estimate the alpha channel of the transition re-
gion.

Texture cloning is another interesting application, in
which we compute a neighborhood-based similarity be-
tween a seeding pixel and every other pixel within the se-
lected region followed by a texture cloning procedure intro-
duced in [6]. The idea is to blend a new texture with the
original one according to opacity values obtained from the
neighborhood-based similarity computation (Fig. 1).

9 Discussions and conclusions

In the making of our system, a few questions are open
to discussion. For now, our system is yet to handle more
intricate and ambiguous texture patterns such as the one
shown in Fig. 12. Hence finding a more powerful classi-
fier that works with a broader range of textures will be an
interesting topic in future study. In our compositing exper-

iments, existing matting techniques could not give satisfac-
tory alpha estimates when applied to boundary areas with
complicated textures such as zebra stripes. In future, we
hope to develop and incorporate into our system a mat-
ting procedure that better handles textured boundary ar-
eas.

In conclusion, we have described a novel interactive ap-
proach to the problem of texture selection and editing across
both spatial and temporal domains. By using a robust classi-
fier in a supervised fashion, our algorithm is able to quickly
distinguish the user-specified textures or textured objects.
Meanwhile, it adopts the idea of active learning and puts
the user in a more laid back position where only modest
marking and labeling work is required. With its achieve-
ments in both solution accuracy and efficiency, our system is
a convenient tool for texture selection and subsequent edit-
ing.

Acknowledgements Four dynamic textures used in this paper,
FLOWER, SEA PLANT, SMOKE, and BUBBLES, are from the DynTex
database at Center for Mathematics and Computer Science (CWI), The
Netherlands. This work was partially supported by National Natural
Science Foundation of China (60728204/F020404).

Fig. 12 Failure example. The greenish color in the signed confidence
map on the right indicates that the classifier is uncertain about the clas-
sification of most of the pixels

Fig. 11 Compositing examples. Texture regions are first extracted as the foreground or background layer, the foreground layer is then composed
with a different background using an estimated alpha channel within a transition region

@ Springer

168

T. Xia et al.

References

10.

15.

16.

20.

21.

22.

23.

24.

. Abe, N., Mamitsuka, H.: Query learning strategies using boosting

and bagging. In: Fifteenth International Conference on Machine
Learning, pp. 1-9 (1998)

Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S., Col-
burn, A., Curless, B., Salesin, D., Cohen, M.: Interactive digital
photomontage. ACM Trans. Graph. 23(3), 294-302 (2004)
Avidan, S.: Spatialboost: Adding spatial reasoning to adaboost. In:
Proceedings of European Conference Computer Vision (ECCV)
(2006)

. Bhat, K., Seitz, S., Hodgins, J., Khosla, P.: Flow-based video syn-

thesis and editing. ACM Trans. Graph. 23(3), 358-361 (2004)
Boykov, Y., Jolly, M.: Interactive graph cuts for optimal boundary
and region segmentation of objects in N-D images. In: Int. Conf.
Computer Vision, vol. I, pp. 105-112 (2001)

Brooks, S., Dodgson, N.: Self-similarity based texture editing. In:
SIGGRAPH 2002 Proceedings, pp. 653-656 (2002)

Chang, T., Kuo, C.: Texture analysis and classification with tree-
structured wavelet transform. IEEE Trans. Image Process. 2, 429—
441 (1993)

Chuang, Y.Y., Curless, B., Salesin, D., Szeliski, R.: A Bayesian
approach to digital matting. In: Proceedings of IEEE Conf. Com-
puter Vision and Pattern Recognition, pp. 264-271 (2001)
Chuang, Y.Y., Goldman, D., Zheng, K., Curless, B., Salesin, D.,
Szeliski, R.: Animating pictures with stochastic motion textures.
ACM Trans. Graph. 24(3), 853-860 (2005)

Dunn, D., Higgins, W., Wakeley, J.: Texture segmentation using
2-d Gabor elementary functions. IEEE Trans. Pattern Anal. Mach.
Intell., 16 (1994)

. Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image

segmentation. Int. J. Comput. Vis. 59(2), 167-181 (2004)
Gavish, L., Wolf, L., Shapira, L., Cohen-Or, D.: Principal-
channels for one-sided object cutout. Tech. rep., Tel-Aviv Univer-
sity (2007)

. Gleicher, M.: Image snapping. In: SIGGRAPH 95 Proceedings,

pp- 183-190 (1995)

Hoiem, D., Efros, A., Hebert, M.: Automatic photo pop-up. ACM
Trans. Graph. 24(3), 577-584 (2005)

Irony, R., Cohen-Or, D., Lischinski, D.: Colorization by example.
In: Eurographics Symposium on Rendering (2005)

Iyengar, V., Apte, C., Zhang, T.: Active learning using adaptive
resampling. In: Sixth ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, pp. 92-98 (2000)

. Leung, T., Malik, J.: Representing and recognizing the visual

appearance of materials using three-dimensional textons. Int. J.
Comput. Vis. 43(1), 29-44 (2001)

. Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimiza-

tion. ACM TOG 23(3), 689-694 (2004)

Li, Y., Adelson, E., Agarwala, A.: ScribbleBoost: adding classifi-
cation to edge-aware interpolation of local image and video adjust-
ments. In: Proceedings of Eurographics Symposium on Rendering
(2008)

Li, Y., Sun, J., Shum, H.Y.: Video object cut and paste. ACM
Trans. Graph. 24(3), 595-600 (2005)

Li, Y., Sun, J., Tang, C.K., Shum, H.Y.: Lazy snapping. ACM
Trans. Graph. 23(3), 303-308 (2004)

Luan, Q., Wen, E.,, Cohen-Or, D., Liang, L., Xu, Y., Shum, H.:
Natural image colorization. In: Eurographics Symposium on Ren-
dering (2007)

Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and texture
analysis for image segmentation. Int. J. Comput. Vis. 43(1), 7-27
(2001)

Manjunath, B., Ma, W.: Texture features for browsing and retrieval
of image data. IEEE Trans. Pattern Anal. Mach. Intell. 18(8), 837—
842 (1996)

@ Springer

25.

26.

27.

28.

29.

30.

32.

33.

34.

Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural im-
age boundaries using brightness and texture. In: Neural Informa-
tion Processing Systems (NIPS) (2002)

Mortensen, E., Barrett, W.: Intelligent scissors for image compo-
sition. In: SIGGRAPH 95 Proceedings, pp. 191-198 (1995)
Protiere, A., Sapiro, G.: Interactive image segmentation via adap-
tive weighted distances. IEEE Trans. Image Process. 16(4), 1046—
1057 (2007)

Qu, Y., Wong, T.T., Heng, P.A.: Manga colorization. ACM TOG
25(3), 1214-1220 (2006)

Rother, C., Blake, A., Kolmogorov, V.: Grabcut—interactive fore-
ground extraction using iterated graph cuts. ACM Trans. Graph.
23(3), 309-314 (2004)

Schapire, R.: The boosting approach to machine learning: an
overview. In: MSRI Workshop on Nonlinear Estimation and Clas-
sification (2002)

. Seung, H., Opper, M., Sompolinsky, H.: Query by committee. In:

5th Annual Workshop on Comput. Learning Theory, pp. 287-294
(1992)

Shotton, J., Winn, J., Rother, C., Criminisi, A.: Textonboost: Joint
appearance, shape and context modeling for multi-class object
recognition and segmentation. In: Proceedings of European Con-
ference Computer Vision (ECCV) (2006)

Wang, J.: Discriminative Gaussian mixtures for interactive image
segmentation. In: IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP 2007, pp. 601-604 (2007)
Wang, J., Bhat, P., Colburn, A., Agrawala, M., Cohen, M.: Inter-
active video cutout. ACM Trans. Graph. 24(3), 585-594 (2005)

Tian Xia received the BE degree
in computer science from Zhejiang
University, China, in 2004 and the
MS degree in computer science

Champaign, in 2006. He is currently
a PhD candidate in computer sci-
| ence at the University of Illinois.
His research interests include com-
puter graphics and vision.

Qing Wu received the BE and ME
degrees in computer science from
Tsinghua University, China, in 1999
and 2001, respectively. He received
the PhD degree in computer sci-
ence from the University of Illinois,
Urbana-Champaign in 2007. He is
now working with Google.

from the University of Illinois, Urbana-

Lazy texture selection based on active learning

169

Chun Chen received the MS and
PhD degrees in computer science
from Zhejiang University, China,
in 1984 and 1990, respectively,
and the BS degree in mathematics
from Xiamen University, China, in
1981. He is currently a professor in
the college of computer science at
Zhejiang University. From 1996 to
1997, he was a visiting scholar in
the department of computer science
at the University of Calgary. He has
authored or co-authored 3 books
and more than 100 research papers.
His research interests include com-

puter vision, image processing, and embedded systems.

Yizhou Yu received the BS degree
in computer science and the MS de-
gree in applied mathematics from
Zhejiang University, China, in 1992
and 1994, respectively, and the PhD
degree in computer science from the
University of California, Berkeley,
in 2000. He is currently an asso-
ciate professor in the Department
of Computer Science, University of
Illinois, Urbana-Champaign. He has
developed techniques in the areas of
computer graphics and computer vi-
sion, including mesh editing based
on differential coordinates, inverse

global illumination, shape from shadow, feature-based texture synthe-
sis, and controllable fluid simulation.

@ Springer

	Lazy texture selection based on active learning
	Abstract
	Introduction
	Related work
	Overview
	Preprocessing
	Active learning based selection
	Initial feature selection
	Automatic query
	Local classifiers
	Validation of active queries

	Selection refinement
	Graph cut
	Graph cut integration

	Experimental results
	Applications
	Discussions and conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

