
In the ACM SIGGRAPH 2004 proceedings (Special Issue of ACM TOG)

Feature Matching and Deformation for Texture Synthesis

Qing Wu Yizhou Yu
University of Illinois at Urbana-Champaign

{qingwu1,yyz}@uiuc.edu

Abstract

One significant problem in patch-based texture synthesis is the pres-
ence of broken features at the boundary of adjacent patches. The
reason is that optimization schemes for patch merging may fail
when neighborhood search cannot find satisfactory candidates in
the sample texture because of an inaccurate similarity measure. In
this paper, we consider both curvilinear features and their deforma-
tion. We develop a novel algorithm to perform feature matching
and alignment by measuring structural similarity. Our technique
extracts a feature map from the sample texture, and produces both
a new feature map and texture map. Texture synthesis guided by
feature maps can significantly reduce the number of feature discon-
tinuities and related artifacts, and gives rise to satisfactory results.

CR Categories: I.3.7 [Computer Graphics]: Three-dimensional
Graphics and Realism—color, shading, shadowing, and texture
I.4.3 [Image Processing]: Enhancement—filtering, registration
I.4.6 [Image Processing]: Segmentation—Edge and feature detec-
tion

Keywords: Image Registration, Oriented Features, Texture Warp-
ing, Distance Transforms

1 Introduction

Texture synthesis has been widely recognized as an important re-
search topic in computer graphics. Recently, neighborhood-based
synthesis methods [Efros and Leung 1999; Wei and Levoy 2000;
Ashikhmin 2001; Liang et al. 2001; Hertzmann et al. 2001; Efros
and Freeman 2001; Zhang et al. 2003; Kwatra et al. 2003], espe-
cially patch-based techniques [Liang et al. 2001; Efros and Freeman
2001; Kwatra et al. 2003], have achieved significant progress. Nev-
ertheless, the presence of broken features at the boundary of two
adjacent patches is still a serious problem, though attempts have
been made to alleviate it [Efros and Freeman 2001; Kwatra et al.
2003].

These neighborhood-based algorithms have two common stages:
1) search in a sample texture for neighborhoods most similar to a
context region; 2) merge a patch or a pixel with the (partially) syn-
thesized output texture. Dynamic programming [Efros and Free-
man 2001] and graph cuts [Kwatra et al. 2003] have been used to
optimize the patch merging stage. One problem with these algo-
rithms is that the optimization schemes for the second stage may
fail to find a smooth transition when the first stage cannot find satis-
factory neighborhoods because of an inaccurate similarity measure.

We propose to perform texture synthesis using both salient fea-
tures and their deformation. Note that not every pixel is equally im-
portant when we measure perceptual similarity. A good perceptual

Figure 1: Texture synthesis with feature maps. From left to right:
sample textures (128x128), feature maps of the sample textures,
synthesized feature maps, output textures (256x256). Shown are
FLOOR and FLOWERS c©1995 MIT VisTex.

measure should account for the fact that the human visual system
is most sensitive to edges, corners, and other high-level features in
textures. We call these high-level features structural information.
Structural similarity should be an important factor during neigh-
borhood search. So far, summed squared differences (SSD) of col-
ors is the most commonly used similarity measure between texture
patches. It is not very good at capturing structural information. A
desirable metric for structural information should estimate the min-
imal accumulated distance between corresponding features.

On the other hand, a small amount of deformation is less no-
ticeable than visual discontinuities. Neighborhood search in tex-
ture synthesis remarkably resembles image registration [Zitova and
Flusser 2003] in computer vision. Rigid template matching is the
simplest of these registration methods. Deformable templates and
elastic matching [Zitova and Flusser 2003] are not uncommon be-
cause object features and shapes may have different levels of dis-
tortion in different images. Deformation has also been considered
for a subclass of textures with near-regular patterns [Liu and Lin
2003]. It is desirable to have deformable models for generic tex-
ture synthesis as well. The visual difference between two texture
neighborhoods should reflect both color differences and shape de-
formations.

Among the large body of image registration techniques, of par-
ticular interest and relevance is chamfer matching [Barrow et al.
1977; Borgefors 1988] which was originally introduced to match
features from two images by means of the minimization of the gen-
eralized distance between them. Inspired by chamfer matching, we
develop a novel feature synthesis algorithm which considers struc-
tural similarity during feature matching and patch deformation dur-
ing feature alignment. We also develop a hybrid method for texture
synthesis by considering both features and colors simultaneously.
In this method, features are used to guide and improve texture syn-
thesis.

1

In the ACM SIGGRAPH 2004 conference proceedings

Context Region

D C

G

A

F

E B

C

C
C

C 1

2
3

0

(a) (b)

Figure 2: (a) The L-shaped context region of a patch ABCD be-
ing inserted into the output feature map. (b) The orientations of
tangents are quantized into four intervals.

2 Curvilinear Feature Matching and
Synthesis

Curvilinear thin features, such as edges and ridges, provide the
overall structural layout of textures. The set of curvilinear features
of a texture can be represented as a binary image, which is called
the feature map of the original texture. In this section, we introduce
a simple but effective algorithm that synthesizes a new feature map
from an existing one. Without loss of generality, we present this al-
gorithm in the context of patch-based synthesis. Curvilinear feature
detection will be addressed in Section 2.3. Examples of input and
synthesized feature maps are given in Fig. 1.

2.1 Curvilinear Feature Matching

We consider two factors when performing feature matching: differ-
ences in both position and tangent orientation. Position is important
since a smaller difference in position between matching features in-
dicates a smaller gap between them. Consistent tangent orientation
is critical to guarantee desirable geometric continuity and, there-
fore, visual smoothness between matching features.

Consider inserting a new patch in the output feature map. This
patch has a causal L-shaped context region in the already synthe-
sized region (Fig. 2(a)). The set of feature pixel locations in the
context region is represented as {fout

i }m
i=1. We simply translate

the context region to all feasible locations in the input feature map
when searching for a best match. The context region has an overlap-
ping region in the input feature map. Its location is specified by the
translation vector, T = (∆x, ∆y), of the context region. The set
of features in this overlapping region is represented as {f in

j }n
j=1.

A matching cost between the two sets of aforementioned fea-
tures typically requires the shortest distance between each feature,
fout
i , in the first set and all the features in the second set. The fea-

ture in the second set that actually achieves this shortest distance
can be defined as the corresponding feature of fout

i . We use a non-
parametric mapping Wf to represent such a correspondence. Since
our feature matching cost actually considers differences in tangent
vectors in addition to Euclidean distance, directly computing Wf

needs O(mn) time. To avoid such an expensive computation, we
only seek an approximate solution for Wf through a quantization of
tangent orientation. The discrete quantization levels serve as ”buck-
ets”, making it much faster to search for features with a desired ori-
entation. A distance transform can be performed for features falling
into the same quantization level. Such distance transforms make it
possible to locate the nearest feature with a desired orientation in a
constant amount of time.

The orientations of the tangents at {fout
i }m

i=1 are uniformly
quantized into four intervals (Fig. 2(b)). Each interval involves
two opposite directions. Depending on which interval its tangent
belongs to, we classify a feature pixel into one of four groups,
{Cout

l }3
l=0. We index the groups such that two adjacent groups

3

2L

LL2

1L

1L

T
out

out

in

in in

Figure 3: The edges, Lout
1 and Lout

2 (dashed), in the context region
are being matched against the edges, Lin

1 , Lin
2 and Lin

3 (solid), in
the overlapping region of the input feature map. Pixels on edges
Lout

1 and Lout
2 should be matched to those on Lin

1 and Lin
3 , respec-

tively, because the tangents of Lin
2 are not consistent with those of

Lout
2 even though it is closer to Lout

2 than Lin
3 .

have adjacent orientation intervals. Cout
0 and Cout

3 are consid-
ered adjacent. Similarly, the orientation-based classification for
{f in

j }n
j=1 is denoted as {Cin

l }3
l=0.

Consider a feature fout
i which has been classified into Cout

li
. To

maintain tangent consistency, only features in Cin
li

, Cin
li−1 or Cin

li+1

are allowed as candidates for Wf (fout
i). fout

i has a nearest feature
in each of these three groups. These nearest features are denoted
as f in

i0 , f in
i−1 and f in

i1 , respectively, where 1 ≤ i−1, i0, i1 ≤ n. Our
new distance metric between a pair of feature pixels is defined as

gdist(fout
i , f in

j) = ‖fout
i − f in

j ‖2 + τ‖vout
i − vin

j ‖2 (1)

where vout
i and vin

i represent the tangents at fout
i and f in

i , respec-
tively, and τ indicates the importance of tangent consistency. In our
approximate solution, Wf (fout

i) satisfies the following condition,
gdist(fout

i , Wf (fout
i)) = mink∈{−1,0,1} gdist(fout

i , f in
ik

). Fig. 3
illustrates the necessity of considering tangent consistency. For fea-
ture matching, we simply set τ = 0.1 although further fine-tuning
is possible.

To facilitate feature alignment, it is desirable to have a one-
to-one mapping. Therefore, we define another quantity Bf over
{f in

j }n
j=1 to measure the bijectivity of the mapping Wf . Bf (f in

j)

represents the number of different features in {fout
i }m

i=1 that are
mapped to the same feature f in

j . The matching cost between the
two sets of features is defined to be dependent on the amount of
distortion introduced by Wf and the bijectivity of Wf . It is formu-
lated as

1

m

∑

i

gdist(fout
i , Wf (fout

i)) + β
1

n

∑

j

|Bf (f in
j) − 1| (2)

where β is a positive weight designed to adjust the relative impor-
tance between the two terms. In all experiments, we use β = 0.3 if
distance is measured in pixels. The translation vector T that mini-
mizes the above matching cost indicates the optimal matching patch
in the input feature map. At the end, we enforce a one-to-one map-
ping by removing extraneous corresponding features from the con-
text region.

We precompute four distance transforms for the input feature
map with a distinct transform for features in each of the four groups.
Such distance transforms can be efficiently computed using the
level set method [Sethian 1999]. At every pixel of the distance
maps, we also store a pointer which points to the closest feature
pixel. Meanwhile, every feature pixel in the input feature map has
a counter indicating the number of features to which it corresponds
in the current context region. With these data structures, evaluating
the above matching cost between a pair of overlapping regions has a
linear time complexity with respect to the number of feature pixels,
which are often very sparse in the image plane.

2

In the ACM SIGGRAPH 2004 conference proceedings

Input Feature Map Graphcut Quilting Texton Mask

Figure 4: Comparison of our algorithm with Graphcut, Image Quilting and Texton Masks. The second column shows the results from our
method. The graphcut result of the first example is courtesy of the authors of [Kwatra et al. 2003]; the results for the last two were generated
using our own implementation. The quilting results for the first two examples were generated from our implementation of [Efros and Freeman
2001]; the result for the last one is courtesy of Efros and Freeman. The results using texton masks were from our implementation of [Zhang
et al. 2003]. The samples shown are EGGS, PATTERN(c©Branko Grünbaum and G.C. Shephard) and ROCK c©1995 MIT VisTex. The PATTERN
sample shown here is a slightly skewed version of an original periodic tiling. See additional comparisons in the DVD-ROM.

2.2 Feature Alignment Using Deformation

Even with the feature matching cost defined in the previous sec-
tion, feature misalignments may remain especially when the input
texture is aperiodic and contains no exact copies of the context re-
gion. Directly merging the optimal matching patch with the output
feature map would produce discontinuities that may not be removed
by the techniques in [Efros and Freeman 2001; Kwatra et al. 2003].
As an optional step, we explicitly remove feature misalignment by
introducing a small amount of deformation in the image plane. This
can be conveniently accomplished by deforming the matching patch
using a smooth warping function.

We first compute a new feature mapping, W ′
f , to obtain a sparse

feature correspondence between the context region and the opti-
mal matching patch found in the previous section: (xi,x

′
i), i =

1, 2, ..., m. This mapping is in general different from the mapping,
Wf , obtained during feature matching. In the current context, the
mapping W ′

f is computed using the same matching cost as in (2) but
with τ in (1) set to 10 to emphasize tangents. A warping function
should smoothly deform the optimal matching patch while moving
each feature x′

i in this patch to the location of its corresponding fea-
ture xi in the context region. Note that the optimal matching patch
has four borders. To prevent the accumulation of deformations, we
require that the pixels on the bottom and right borders be fixed dur-
ing warping. These fixed pixels are also considered as constraints
that the warping function should satisfy.

Obtaining the warping function is equivalent to scattered data

interpolation. We apply two commonly used interpolation tech-
niques: thin-plate splines (TPS) [Meinguet 1979; Turk and O’Brien
1999] and Shepard’s method [Hoschek and Lasser 1993]. Thin-
plate splines have the minimal bending energy among all inter-
polants satisfying the warp constraints. However, computing the
thin-plate spline requires solving a linear system which may be oc-
casionally ill-conditioned. Therefore, given a sparse feature cor-
respondence, we first apply thin-plate spline interpolation. If the
resulting warping function cannot satisfy the warp constraints, we
switch to Shepard’s method instead.

2.3 Feature Detection

In this paper, we only consider easy-to-detect features, such as
edges and ridges. For edge detection, we first apply bilateral fil-
tering [Tomasi and Manduchi 1998] to sharpen the edges. In the
bilateral filter, the scale of the closeness function σd is always set
to 2.0, and the scale of the similarity function σr is always set to
10 out of 256 greyscale levels. We then use finite differences along
the two image axes as a simple gradient estimator to obtain an edge
response at every pixel. This is followed by a two-pass classifi-
cation. In the first pass, a global high threshold is used to detect
strong edges which are usually broken into small pieces. In the
second pass, a spatially varying lower threshold is used to detect
weaker edges in the neighborhood of each strong edge. Unlike the
lower threshold in the Canny detector [Canny 1986], it is locally
dependent on the edge responses of the pixels detected in the first

3

In the ACM SIGGRAPH 2004 conference proceedings

pass. In practice, we choose a fixed ratio α. The lower threshold
for a neighborhood surrounding a strong edge with response R is
set to αR. The second pass can effectively connect broken strong
edges. For ridge detection, we apply the Laplacian filter after bilat-
eral filtering. Once there is a filter response at every pixel, the same
two-stage classification for edges is also applied to ridges. For the
results shown in this paper, α is always set to 0.3. The global high
threshold is first estimated automatically using a fixed percentile of
the highest filter response in the entire image. It can then be ad-
justed interactively by the user to improve the results.

Since the detected edges or ridges may have a multi-pixel width,
we further apply a revised thinning algorithm which removes pix-
els with weak filter responses first while preserving the connectiv-
ity of the features. The resulting features always have one-pixel
width. Detailed discussions on thinning algorithms can be found in
[Pavlidis 1982]. At each detected feature pixel, we store its color
and smoothed tangent as its attributes.

3 Feature-Guided Texture Synthesis

Our feature map synthesis is complementary to existing patch-
based texture synthesis algorithms [Liang et al. 2001; Efros and
Freeman 2001; Kwatra et al. 2003]. To incorporate feature maps
into texture synthesis, we designed a hybrid method that generates
a new texture and its feature map simultaneously given an input tex-
ture and its feature map. Every time we need to insert a new patch,
we consider feature matching and color matching simultaneously.
We apply the matching cost in (2) for features, and SSD for col-
ors. The total matching cost is a weighted average between these
two. Once a matching patch is chosen from the sample texture, it is
deformed according to Section 2.2. Before merging the matching
patch with the partial output texture, we apply graph cuts [Kwatra
et al. 2003] to further improve the transition at the patch boundary.

Fig. 1 shows synthesis examples along with feature maps. As
shown in the second row of Fig. 1, stochastic feature maps can
also generate decent synthesis results. A comparison between our
method and three other state-of-the-art algorithms is given in Fig.
4. It demonstrates that our method does very well at maintaining
the continuity of structural features as well as the shapes of individ-
ual objects in the textures without merging them. More synthesis
examples are given in Fig. 5, where the resolution of the output
textures is 256x256. The running time for texture synthesis is less
than two minutes on a 2GHz Pentium IV processor for sample and
output textures at a resolution 128x128 and 256x256, respectively.
The patch size is chosen between 32x32 and 64x64; the relative
weight between feature and SSD color matching costs is always set
to 0.5. For certain sample textures (FLOOR and FLOWERS in Fig.
1, LEAVES and WATER in Fig. 5), their rotated or reflected versions
are also presented as input to our program to provide more texture
variations.

4 Discussion

In this paper, we introduced a novel feature-based synthesis method
that extends previous texture synthesis techniques through the use
of local curvilinear feature matching and texture warping. When
such oriented features are absent, our technique reverts back to the
behavior of previously published color-based methods. Unlike tex-
ton mask extraction [Zhang et al. 2003] which needs manual inter-
vention, it is easier to automatically obtain our feature maps. The
feature map of a sample texture can also be improved with user
interaction. Most importantly, new feature maps are synthesized
using a novel matching criterion custom-designed for curvilinear
features. This criterion is capable of guiding texture synthesis to
produce better results.

Figure 5: More texture synthesis results. The smaller images are
the sample textures. Shown are LEAVES c©Paul Bourke, ARABIC
TEXT, BAMBOO c©1995 MIT VisTex, and WATER.

Acknowledgments

We wish to thank the authors of [Kwatra et al. 2003] and [Efros and
Freeman 2001] for sharing their results, Stephen Zelinka for proof-
reading, and the anonymous reviewers for their valuable comments.
This work was funded by NSF (CCR-0132970).

References
ASHIKHMIN, M. 2001. Synthesizing natural textures. In ACM Symposium on Inter-

active 3D Graphics, 217–226.

BARROW, H., TENENBAUM, J., BOLLES, R., AND WOLF, H. 1977. Parametric
correspondence and chamfer matching: Two new techniques for image matching.
In Proc. 5th Intl. Joint Conf. on Art. Intell., 659–663.

BORGEFORS, G. 1988. Hierarchical chamfer matching: a parametric edge matching
algorithm. IEEE Trans. Pattern Analysis and Machine Intelligence 10, 849–865.

CANNY, J. 1986. A computational approach to edge detection. IEEE Trans. Pat. Anal.
Mach. Intell. 8, 6, 679–698.

EFROS, A., AND FREEMAN, W. 2001. Image quilting for texture synthesis and
transfer. In SIGGRAPH’01, 341–346.

EFROS, A., AND LEUNG, T. 1999. Texture synthesis by non-parametric sampling. In
Intl. Conf. Computer Vision, 1033–1038.

HERTZMANN, A., JACOBS, C., OLIVER, N., CURLESS, B., AND SALESIN, D. 2001.
Image analogies. In SIGGRAPH’01, 327–340.

HOSCHEK, J., AND LASSER, D. 1993. Fundamentals of Computer Aided Geometric
Design. AK Peters, Ltd.

KWATRA, V., SCHODL, A., ESSA, I., TURK, G., AND BOBICK, A. 2003. Graphcut
textures: Image and video synthesis using graph cuts. In SIGGRAPH’03, 277–286.

LIANG, L., LIU, C., XU, Y., GUO, B., AND SHUM, H.-Y. 2001. Real-time texture
synthesis using patch-based sampling. ACM Trans. Graphics 20, 3, 127–150.

LIU, Y., AND LIN, W.-C. 2003. Deformable texture: the irregular-regular-irregular
cycle. In The 3rd intl. workshop on texture analysis and synthesis, 65–70.

MEINGUET, J. 1979. Multivariate interpolation at arbitrary points made simple. J.
Applied Math. Physics 5, 439–468.

PAVLIDIS, T. 1982. Algorithms for Graphics and Image Processing. Computer Sci-
ence Press.

SETHIAN, J. 1999. Level Set Methods and Fast Marching Methods. Cambridge
University Press.

TOMASI, C., AND MANDUCHI, R. 1998. Bilateral filtering for gray and color images.
In Proc. Intl. Conf. on Computer Vision, 836–846.

TURK, G., AND O’BRIEN, J. 1999. Shape transformation using variational implicit
functions. In SIGGRAPH 99 Conference Proceedings, 335–342.

WEI, L.-Y., AND LEVOY, M. 2000. Fast texture synthesis using tree-structured vector
quantization. In Proceedings of Siggraph, 479–488.

ZHANG, J., ZHOU, K., VELHO, L., GUO, B., AND SHUM, H.-Y. 2003. Synthesis of
progressively-variant textures on arbitrary surfaces. In SIGGRAPH’03, 295–302.

ZITOVA, B., AND FLUSSER, J. 2003. Image registration methods: a survey. Image
and Vision Computing 21, 977–1000.

4

