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Abstract

Modeling and Editing Real Scenes with Image-based Techniques

by

Yizhou Yu

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Jitendra Malik

Image-based modeling and rendering techniques greatly advanced the level of photore-

alism in computer graphics. They were originally proposed to accelerate rendering with the

ability to vary viewpoint only. This thesis focuses on capturing and modeling real scenes

for novel visual interactions such as varying lighting condition and scene configuration in

addition to viewpoint. This work can lead to applications such as virtual navigation of a

real scene, interaction with the scene, novel scene composition, interior lighting design,

and augmented reality.

This thesis has two important parts. The first part includes the techniques to extract an

object-level representation of a real scene which can be rendered with modifications to the

existing spatial configuration. The key components here involve automatic algorithms to

segment the geometry from range images into distinct surfaces, and register texture from

radiance images with the geometry. The top-down segmentation algorithm uses a pairwise

similarity measurement to recursively partition a point set into a binary tree with individual

surfaces as leaves. Our image registration technique can automatically find the camera
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poses for arbitrary position and orientation relative to the geometry.

The second part includes the inverse global illumination technique which refers to re-

covering reflectance models of various materials present in a real mutual illumination en-

vironment. The method’s input is a geometric model of the scene and a set of calibrated

photographs taken with known light source positions. The result is a lighting-independent

model of the scene’s geometry and reflectance properties, which can be rendered under

novel lighting conditions using traditional graphics methods. The underlying philosophy

is using low-parameter BRDF models and solving optimization problems to recover the

parameters. Synthetic images rendered using recovered BRDF models are comparable to

real photographs.

Complementary to the above two parts, this thesis also presents a technique for recov-

ering illumination conditions of outdoor scenes, algorithms for texture map synthesis from

real photographs and texture map compression for efficient conventional texture-mapping,

and a visibility algorithm for projective texture-mapping.

————————————————–

Professor Jitendra Malik

Dissertation Committee Chair
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Chapter 1

Introduction

Computer graphics started with the display of data on hardcopy plotters and cathode ray

tube(CRT) screens soon after the introduction of computers themselves. The invention

of raster display systems revolutionized the field by providing more efficient, systematic

and convenient avenues to manipulate data for displaying. Frame buffers adopted by such

systems can be seen as the earliest connection between graphics and images.

During the past decades, researchers in graphics developed many techniques to synthe-

size images and animation. Research directions in graphics include geometry modeling,

reflectance modeling, light transport simulation and motion modeling. The procedure to

create synthetic images and animation has multiple steps. First, we need to use some mod-

eling software to build the geometry of a virtual scene whose components could be either

polygonal or curved surfaces(NURBS). This is followed by assigning reflectance models

to each surface. Geometry and reflectance provide a static lighting-independent model of

a scene. Motion can be added on top of this to vary scene configurations by keyframing or

physical simulation. The final stage is rendering which generates an image for each frame
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based on the configuration for that particular frame. It is light that reveals the form and

material of objects. Therefore, the most important part of rendering is lighting simulation

where light interacts with surface geometry and reflectance to produce the final appearance

of a scene.

One of the major goals of graphics is photorealism. However, most synthetic images for

this purpose still do not look realistic enough. It takes significant manual efforts to fine-tune

the geometry, reflectance and motion to make them look more photorealistic. Around early

1990’s, a new research trend called image-based rendering(IBR) emerged as an alternative

to traditional graphics. It was originally proposed to render real complex scenes from

novel viewpoints only using a set of photographs, but without explicit geometry [5]. It

was also exploited for accelerating rendering [32] because the performance of image based

rendering is solely determined by the resolution of the output image and independent of

the scene complexity. Since then, considerable amount of work has been done along this

direction [30, 6, 36, 50, 32, 19, 12, 13, 45, 48, 39]. Some of the work is different from

the rest by recovering geometry explicitly. It is based on previous work on stereopsis and

structure-from-motion [15] in computer vision. Thus, image-based rendering was extended

to image-based modeling and rendering (IBMR).

Since IBMR makes use of data from photographs of the real world, novel images gen-

erated afterwards certainly have more photorealism (Fig. 1.1). But what about the other

aspects ? In traditional graphics, a user can edit the scene configuration, lighting, and

motion until he/she obtains satisfying synthetic images. However, in IBMR, a real envi-

ronment is usually captured as a whole. The spatial configuration of the digital copy of the

scene becomes static and reflects the state of the real scene at the moment of data acqui-
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sition. We cannot move the captured objects around because objects are not represented

independently to one another. The lighting condition for the scene is also fixed in the pho-

tographs. It is not obvious how to change the lighting and synthetically render new images

of the scene under novel illumination. In summary, photorealism has been gained at the

expense of manipulability.

The research presented here tries to fix the above-mentioned problems with previous

IBMR work, merge the advantages from both traditional graphics and IBMR so that we can

not only capture and display reality on a computer screen, but also extend reality to create a

novel scene with photorealistic quality. Recovering underlying geometric and photometric

models of a real scene for novel image synthesis has been the philosophy of this research

(Fig. 1.2). The major contributions of this research include algorithms that allow the

spatial configurations(Fig. 1.3) and lighting conditions(Fig. 1.4) of a real scene to be varied

digitally. The basic idea about changing scene configuration is to find object boundaries

and represent objects independently. The underlying idea for changing lighting is to recover

low-parameter reflectance models of the multiple surfaces in a scene simultaneously so

that we can plug in novel illumination and re-render the scene. The presented techniques

allow synthetic images to be comparable to real photographs. The applications of such

techniques include virtual navigation of a real scene, interaction with the scene, novel scene

composition, interior lighting design, and augmented reality. Obviously, they also have

many applications in the movie and computer game industries.
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Figure 1.1: The top image is a synthetic image rendered from traditional graphics. The

geometry and reflectance are hand-crafted. Lighting simulation generates highlights on the

walls and soft shadows on the floor. The bottom image is a synthetic image from image-

based modeling and rendering. The geometry and texture are recovered from range and

radiance images. The bottom image looks more realistic.
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Figure 1.2: The underlying philosophy

Figure 1.3: The left image shows a real room in its original configuration. The right one

shows a synthetic image of the same room in a novel configuration with a couch upside

down sitting on the ceiling.

Figure 1.4: A synthetic sunrise to sunset sequence for a clock tower—-The Campanile.
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Chapter 2

Modeling Objects from Range Images

2.1 Introduction

An object is made up of a collection of surfaces which in turn have geometric properties

such as size and shape as well as photometric properties such as color and texture. Editing

operations should be performed at object level, which requires us to give each object geo-

metric and photometric representations that are independent of the rest of the scene. Since

a scene is usually acquired as a whole, this kind of object-level information is not directly

available from the captured geometry or from photographs.

We need to segment the scene into objects. In this chapter, we use a laser range finder

to acquire a discrete representation of the geometry, a point cloud. Each point in the cloud

has a 3D position, an estimated normal orientation of the underlying surface at that point,

and a returned laser intensity value. These cues give adequate information to distinguish

points that belong to different objects. Therefore, we do segmentation on the point cloud

before a mesh is actually built. Our technique is an extension of a 2D image segmentation
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algorithm using spectral graph theory. The result is a binary tree with individual surfaces

as leaves. We first oversegment the scene into a set of coherent surfaces and then ask the

user to interactively group surfaces into semantically meaningful objects.

Addressing this problem adds much more flexibility to geometric data capture, cleans

the obstacles in extracting individual objects from range images, and allows humans to

interactively manipulate them. It makes it easier to build an object library based on the real

world, which can be composed to form novel scenes using the objects for rendering and

animation.

2.1.1 Overview

Point

Meshes

Images

Texture

Images
Range

Point
Cloud

Groups

Meshes

Maps

Objects

Radiance
Images

Segmentation

Pose Estimation

Reconstruction

Registration

Calibrated

Simplified

Figure 2.1: Multiple stages in our range and radiance data processing procedure

The input to our pipeline is a set of range and radiance images(Fig. 2.1). The range

images are registered together first to give a unified point cloud. The segmentation algo-
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rithm is then run on the point cloud, breaking it into groups. With some user interaction,

we can assemble these groups into objects. We then build a mesh for each object and run

mesh simplification to reduce its complexity. The part of the pipeline for radiance images

includes camera pose estimation and texture map synthesis which will be introduced in the

next chapter.

From this process, we can see that range data segmentation can be useful in multiple

stages. Fitting smooth parametric surfaces to individual objects is much easier after seg-

mentation, and memory capacity becomes less of a limitation if we only reconstruct a mesh

for one object at a time. Mesh simplification is improved since we do not intend to sim-

plify over segmentation boundary. Segmentation into surfaces with approximately uniform

specularities would aid in recovering specular reflectance models of the surfaces.

2.2 Previous Work

The work I present here has been made possible by previous work in geometry acquisition,

mesh reconstruction and simplification, 2D image registration and segmentation, and range

image registration and segmentation.

Recent work in laser range scanning has made it possible to recover accurate geometry

of real-world scenes. [2] introduced the iterative closest point(ICP) algorithm to register

multiple range images. [41] addressed the same problem for large data sets. A number of

robust techniques for merging multiple range images into complex models are now avail-

able [7, 53, 9, 54, 39]. [23, 14, 1] also introduced techniques to a more general problem

which is mesh reconstruction from unorganized points. The reconstructed meshes from
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the above techniques usually have huge amount of complexity, which makes rendering in-

efficient. There is a large amount of work on obtaining simplified meshes with minimal

deviation in shape [24, 16, 8, 33].

Techniques have been developed recently for texture-mapping recovered geometry[12,

110, 37]. Some image-based rendering work has been introduced to implicitly make use of

recovered depth information in addition to images[36, 45, 39]. [10] proposed a technique

to integrate virtual objects with real environments. However, manipulating real objects in

real scenes is a more difficult problem that requires extra data processing power.

Research in segmentation is most related. There has been much work on range image

segmentation in the computer vision and graphics community [3, 22, 29, 38, 43, 52, 31, 26].

Most of these techniques consider every range image as a rectangular array of points with

3D positions. Due to the similarity between range images and 2D images, most of the im-

age segmentation techniques, such as edge detection, region growing and pixel clustering,

can be applied to range image segmentation[26]. The major cues used include the depth

value and normal orientation at each pixel. Most of previous work in this area was for

fitting surface primitives, such as planar and quadric patches, and generalized cylinders.

Therefore, statistical tests are often incorporated into the segmentation algorithms to ver-

ify whether a particular surface primitive can fit well to a group of pixels, and determine

whether region split or merge should be considered. This type of algorithm works well

on range images of mechanical CAD models which consist of planar and simple curved

surfaces.

However, most real objects have unknown free-form shapes, such as statues and cur-

tains. To extract objects from a real scene, we are more interested in a segmentation al-
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gorithm that is independent of any surface primitive. Region growing approaches based

on local split and merge decisions are not very appropriate, either, because the decisions

made are local, which is suboptimal in finding object boundaries. We need some top-down

algorithm to make global decisions. On the other hand, we may need multiple range im-

ages from different angles to capture a complex model. A segmentation algorithm, that

can work on multiple registered range images simultaneously, is more interesting. In this

situation, the order of points defined by the rectangular array in a single image is lost. We

need new techniques to solve this more complicated problem. In the 2D image segmenta-

tion literature, some recent spectral graph theory-based algorithms [47, 40, 35] appeared

to perform better than other techniques. They make decisions on where to partition the

data using global information. We will extend the normalized cut framework in [47] to 3D

range image segmentation in the next section.

[34] proposes a technique for segmenting surface meshes by generalizing morpholog-

ical watersheds. It is not directly relevant to the problem we are looking into because we

consider segmentation as a very fundamental data processing stage which should happen

at least in parallel to mesh reconstruction, not after. Effective segmentation of points into

groups should be able to benefit mesh reconstruction.

2.3 Range Data Segmentation

The input data to this problem is a 3D point cloud created by merging the points from

multiple registered range images. In addition to 3D position, each point has two associated

attributes, a normal orientation estimated from neighboring pixels in the scan image, and a
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returned laser intensity value which depends mostly on the surface reflectance correspond-

ing to the wavelength of the laser beam. The output of this module is a partition of the

point cloud, treated as a set, into subsets such that each subset defines a complete object.

The subsets are mutually exclusive, and their union is the complete set.

We achieve this goal in two steps. For the first step, we developed an automatic algo-

rithm to partition the points into surface regions, each of which has approximately uniform

geometric and photometric properties represented by 3D locations, surface normals and

returned laser intensities. In the second step, we interactively group surface regions into

individual objects such that each object can be treated separately but points in the same

object are treated in the same way. Note that surfaces in the same object may have very

different surface properties. To give an example, suppose one of the objects in the scene

is a cube resting on a table. The first step would return 5 surfaces; the user is responsible

for indicating that all these surfaces belong to one object. Considerable semantic knowl-

edge can be involved in judging whether an object is merely resting on another or is rigidly

attached and is thus part of the same object; at this stage we think it prudent to leave this

judgment to a user.

In the rest of the section, we introduce the algorithm for automatic segmentation of

the point set into surface regions. This is done by generalizing the normalized cut algo-

rithm [47] to range data. There are three key issues to consider here. Namely, a) what is the

appropriate similarity measure for range data; b) precisely what is the criterion to partition

the graph; and c) what is the technique to obtain approximate solutions for large datasets.
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2.3.1 Normalized Cut Framework

We introduce some details of the normalized cut algorithm[47] here. A graph � � �����

is defined on the input data. In our context, the nodes represent local clusters derived from

the point cloud with the associated attributes. An edge in �, ��� �� with �� � � � , has

a weight ���� �� defined by the similarity between the location and attributes of the two

nodes defining the edge. The idea is to partition the nodes into two subsets, 	 and 
, such

that the following disassociation measure, the normalized cut, is minimized.

��
��	�
� �
�
��	�
�

�����	� � �
�
�
��	�
�

�����
� � �
(2.1)

where �
��	�
� �
�

������� ��
� �� is the total connection from nodes in 	 to nodes in


; �����	� � � �
�

������� ���� �� is the total connection from nodes in 	 to all nodes

in the graph; and �����
� � � is similarly defined. This measure works much better than

�
��	�
� because it favors relatively balanced subregions instead of cutting small sets of

isolated nodes in the graph.

To compute the optimal partition based on the above measure is NP-hard. However

Shi and Malik show that a good approximation can be obtained by relaxing the discrete

version of the problem to a continuous one which can be solved using eigendecomposition

techniques. Let � be the indicator vector of a partition. Each element of � takes two discrete

values to indicate whether a particular node in the graph belongs to 	 or 
. If � is relaxed

to take on continuous real values, it can be shown that the optimal solution can be obtained

by solving the generalized eigenvalue system,
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�� �� �� � ��� (2.2)

where � is a diagonal matrix with ���� �� �
�

	 ���� ��, � is the weight matrix with

� ��� �� � ���� ��. The eigenvector corresponding to the second smallest eigenvalue is

the optimal indicator vector in real space. A suboptimal partition can be obtained by first

allowing � to take on continuous real values, solving the above generalized eigenvalue sys-

tem for �, and then searching a certain number of discrete values for the best threshold to

partition the real-valued elements of � into two subgroups. The two resulting subregions

from this partition can be recursively considered for further subdivision. To improve ef-

ficiency, the complete graph defined by the data is usually simplified to only have edges

that connect two nearby nodes. This algorithm can be used to solve different segmentation

problems by choosing different edge weight� �
� �� [46, 35].

2.3.2 Setting Up the Graph

Since we have multiple high-resolution scans, solving the graph partition problem on the

original point set is impractical. For example, we have a dataset for a large room with

nineteen 800x800 scans. For comparison, note that in the application of normalized cut to

image segmentation, Shi and Malik considered 200x200 images. Thus we group nearby 1

points into clusters such that each cluster is a node. All the points within the same cluster

1To accelerate nearest point lookup, we set up a two dimensional grid on a virtual plane with its normal

set to the average normal orientation of all the input points. Each cell in the grid has a list of points that are

projected into it. To look up points that nearby a certain point, we only need to check the points around the

cell which that point is actually projected into.
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have similar normal orientations and laser intensities. Clustering is actually carried out

incrementally to minimize memory consumption. Only one of the original range scans

remains in memory every time. Part of its points get integrated into existing clusters, while

others create new clusters. The number of nodes after initial clustering is reduced to about

40,000 for the room dataset. We use the averaged spatial location, normal and returned

laser intensity of each cluster as the attributes of its corresponding node in the graph. Here

the returned laser intensity is a better cue than color from photographs because it is a better

approximation of surface albedo which is lighting independent. Thus we do not need to

worry about oversegmentation due to shadows and shading effects in photographs. Local

edges are set up among clusters that are within a certain distance of one another. We also

set up random long-range connections among clusters to help use global context [47]. The

number of random edges incident to each node is fixed. In this way, the adjacency matrix

of the graph is sparse, which makes it possible to solve the problem efficiently.

The weight ��
� �� over an edge �
� �� is the product of a similarity term ��
� �� and

a proximity term � �
� �� both of which are in the form of a Gaussian distribution. ��
� ��

is a local measure of how likely the points (or clusters) are to belong to the same surface.

��
� �� is close to 1 for points which are likely to belong together, and close to 0 for points

which are likely to belong to separate objects, as judged purely from local evidence.

��
� �� � ��������� ��
� ������
� (2.3)

where �����
� �� could be either the angular difference in normal orientation or the scalar

difference in laser intensity.
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The proximity term over an edge �
� �� is used to model the fact that nearby points are

more likely to belong to the same surface. Both similarity and proximity are well known

Gestalt grouping factors.

� �
� �� � �����������
� �������� (2.4)

where �����
� �� is some distance measure. The parameters �
 and �� should be set ac-

cording to the noise level in the input data. Small values tend to produce oversegmented

results.

Surfaces and objects at different depth should be separated in segmentation. To en-

hance the difference caused by depth discontinuity, we define an anisotropic distance met-

ric �����
� �� as follows. First we define a tangential plane at each of the points 
 and �

given the normals and positions. Let the vectors 
� and 

 be the projections of the vec-

tor
�

� onto the normal and tangential plane, respectively, at point 
. Then ������
� �� �

�
� � ��
���� � ��

����� where ��� �� is some adjustment parameter to magnify the dif-

ference along the normal direction and shrink the difference along the tangential direction.

This parameter can make sure to separate surfaces at different depth. ������
� �� can be

defined similarly. Finally,

�����
� �� ��	 �������
� ��� ������
� ���! (2.5)

2.3.3 Criterion for Graph Partition

Let us first look at the region shown in Fig. 2.2 where two subregions	 and 
 are adjacent

to each other. Surface attributes are uniform within the same subregion but different across
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A B

Figure 2.2: Two regions 	 and 
 are adjacent. A correct graph partition should happen at

their border, not in the middle of 	.

subregions. Although the correct partition should happen at the boundary between 	 and


, normalized cut with local connections tends to partition the region in the middle of 	

because subregion 	 is quite thin in the middle and the normalized cut value in Eq.(2.1) is

very small there. In the context of image segmentation, this can be justified as a segmenta-

tion of the image into ’parts’, but we felt that this was not too important a consideration for

us. We therefore introduce a slight modification of the segmentation criterion by defining

the normalized weighted average cut.

��	�
��	�
� ��"��
�	�
��	�
�

�	�����	�	�
�
�	�
��	�
�

�	�����
�
�
� (2.6)

where �	�
��	�
� �

�
�������

������� ������
�������

� �����
, �	�����	�	� �

�
�����

������� ������
�����

� �����
, and

�	�����
�
� is similarly defined. It is quite easy to figure out that in Fig. 2.2, nor-

malized weighted average cut is minimized at the boundary between 	 and 
. This new

measure does not favor balanced subregions as normalized cut, so it is not appropriate as

the basic criterion to be used for segmentation; but by setting a threshold on the minimum

weighted average cut we can reduce the chance of splitting in the middle of region 	.
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Algorithmically we proceed as follows. For the currently considered region, first solve

the sparse eigensystem Eq.(2.2) using Lanczos algorithm [18] to come up with a candidate

partition, then check the normalized weighted average cut along the candidate boundary.

If both normalized weighted average cut and normalized cut are below the threshold #���,

split the region and consider the two subregions in turn; otherwise, stop recursion on the

considered region.

2.3.4 The Complete Algorithm

We have two postprocessing steps, boundary improvement and fine segmentation, which

are aimed at getting high quality segmentations, in spite of the fact that we could not process

the original dataset directly in Eq.(2.2) because of its large size.

After a region is split into two subregions, we have an initial boundary between them.

In practice, this boundary may deviate a little from the real surface boundary. To improve

its localization, we exploit the linear order on the nodes in the original region according

to the magnitude of their corresponding elements in the second smallest eigenvector of

Eq.(2.2). A local segmentation problem is solved at each point cluster close to the initial

boundary. At each of these clusters, collect all clusters in its neighborhood and set up a

complete graph among them since the size of graph is small. Then search for the node that

best partition the linear order into two parts under normalized cut criterion. Every cluster

near the initial boundary may be included into multiple local segmentations. Each local

segmentation assigns the cluster to one side of the boundary or other. We use majority

voting to decide which side of the boundary it should belong to. Once we have determined
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the membership of all clusters, the final boundary also becomes clear.

To reduce the impact of the initial point clustering(which is suboptimal as it is local) at

the beginning of the algorithm, we introduce an additional step at the end of the algorithm

to refine segmentation results. Based on the previous segmentation, it reads in all points

belonging to one group at a time, cluster them at a finer scale, and run segmentation on the

new clusters once again.

The spirit of both these post-processing steps is a coarse-to-fine refinement, something

that has been tried quite extensively in various computer vision settings.

The whole segmentation algorithm is summarized as follows.

� Coarse Segmentation

– Clustering Group all points into clusters such that points in the same cluster are

within a prescribed radius from its centroid, and have close normal orientation

and laser intensity.

– Cluster Segmentation

� Recursive segmentation based on normal continuity and proximity.

� Recursive segmentation based on continuity in returned laser intensity and

proximity.

� Stopping Criterion Both the normalized cut value and weighted average

cut value are below a threshold.

� Boundary Improvement Once the stopping criterion is satisfied, apply

local optimal segmentation and voting at each boundary cluster to improve

boundaries.
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� Fine Segmentation Based on coarse segmentation results, every time only read all

points that belong to one group; set smaller radius for clustering and smaller � value

in proximity term; and repeat the same steps in coarse segmentation on them.

2.4 Mesh Reconstruction and Simplification

Given the segmentation results on a point cloud, we can recognize the points that belong to

an object and build a mesh or fit surfaces for that object. Although these are not the focus

of this chapter, we introduce the techniques we use to perform these tasks here.

There are two different methods to build a mesh for an individual object. The first

method tries to extract all the points that belong to the object. This is actually a set of

unorganized points since the scan order inherent in a range image is lost. We can then build

a mesh using the algorithm in [23] or [1]. In practice, we use the crust algorithm in [1].

The crust algorithm works well for objects of which we have dense samples. However,

our range images are not dense enough for objects that have fine details. So we try to make

use of the scan order in a range image and build nearest neighbor connections. In each

of the original range images, we first mark the points that belong to the object, and then

build a connection between two points if they are direct neighbors and both are marked. So

we can extract a partial mesh from each range image that covers the object and put them

together to represent the geometry of the object. It is possible to apply the algorithms in

[53] and [9] to merge these partial meshes and come up with a single mesh.

Once we have the meshes for individual objects, we continue to simplify them to im-

prove rendering performance. Most of the previous algorithms on mesh simplification can
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be applied. In practice, we use the technique presented in [16];

While it is much less time-consuming to scan multiple objects simultaneously in an en-

vironment, there is little information for back-facing surfaces and surfaces that are heavily

occluded. For the same reason, these surfaces are less visible and therefore less important.

We interactively insert some simple polygons to model these back-facing and occluded

surfaces.

2.5 Results

Our algorithms have been tested on a complete real scene—a large reading room—as well

as on individual laser range scans. We took 19 800 by 800 scans of the reading room and

also scanned a piano from three positions in a separate setting with Cyra Technologies’

time-of-flight laser scanner. Most visible surfaces were covered at centimeter accuracy.

We arranged 50 Cyra’s targets on the walls, the ceiling and floor for scan registration.

The scans were registered together by using Cyra’s software to locate targets in each scan

and set up correspondences among different scans.

2.5.1 Geometry Segmentation and Reconstruction

Since there is noise and outliers in the scans, we filter the scans before sending them to our

segmentation algorithm which runs on a Pentium II 450MHz PC. For the reading room,

our segmentation code produced 393 groups in four hours which were further grouped

into 95 objects and surfaces within two hours of user interaction. The result is shown in

Fig. 2.3(c)-(d) with different colors for different groups. All the curtains and furniture,
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including lamps, tables, couches, dressers, and chairs, are correctly segmented out. Before

user interaction, the number of groups per object ranges from 2 to 20 with an average of

4. The walls are oversegmented into multiple pieces and we did not grouped them together

interactively because we do not have the need to manipulate a complete piece of wall. Fig.

2.3(a) and (b) also gives the segmentation results for a different but simpler room and a

single facade. In Fig. 2.3(a), a person was sitting in the next room while it was scanned.

We can see his head and torso are correctly segmented out from the rest of the environment.

Fig. 2.3(b) shows that our anisotropic distance metric in Eq. 2.5 can effectively separate

layers at different depth.

Most of the meshes, including the piano, were reconstructed using the crust algorithm[1].

Antique tables and chairs as well as curtains were reconstructed using nearest neighbor

connections. Fig. 2.4 shows an image of the meshes which include lamps, tables, curtains,

couches as well as the ceiling and walls. To demonstrate that we really have extracted

individual objects, Fig. 2.5 shows the individual models of an antique table, a chair and

the piano. The chandelier under the center of the ceiling and the floor were segmented out

automatically and removed interactively, and a single plane is fit to the floor.

2.5.2 Scene Editing

Our ultimate goal is object manipulation. Fig. 2.6 shows two comparisons to demonstrate

our ability to do scene editing. The images on the left are re-renderings of the original

scene from a novel viewpoint by texture-mapping the reconstructed geometric models. The

images on the right show synthetically composed scenes. In Fig. 2.6(b), a couch is moved
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and replicated to places near the fireplace, a piano inserted and placed near where the couch

was. In Fig. 2.6(d), we can see two lamps flying in the air.

22



(a) (b)

(c)

(d)

Figure 2.3: The segmentation results on three datasets. (a) a simple room with portals; (b)
Albert Hall facade. (a) and (b) show the segmentation results directly from our automatic
algorithm. Each dot represents one point cluster. Clusters in the same group are shown
with the same color. (c) and (d) a large reading room with furniture and curtains, (c) and
(d) show the segmentation results after the user interactively grouped surfaces into objects.
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Figure 2.4: The reconstructed meshes with targets(green) and recovered camera poses(red

and blue) for the reading room. There is a separate mesh for each group.

(a) (b) (c)

Figure 2.5: Geometric models of three objects. The meshes were built after their corre-

sponding points were segmented out from the range images using our segmentation algo-

rithm. (a) An antique table, (b) a piano, (c) an antique chair.
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(a) (b)

(c) (d)

Figure 2.6: (a)&(c) Synthetic images with objects in their original positions rendered using

texture-mapping. (b)&(d) Synthetic images with object insertion and relocation. A piano

is added to the room, a couch and two lamps moved and replicated.

25



Chapter 3

Texture-Mapping Real Scenes from

Photographs

3.1 Basics on Camera Pose Estimation

In this chapter, we are concerned about attaching texture information from photographs

onto recovered geometry to improve photorealism. The geometry is represented as a trian-

gular mesh which may be recovered either from photographs or from laser range images.

There is a world coordinate system where the geometry resides. First of all, we need to

align photographs with the geometry, i.e. we need to recover camera poses, including ro-

tation and translation, in the world coordinate system. Here we assume that we know the

internal parameters of the camera, such as focal length and radial distortion, with which we

can convert the real camera into an ideal pinhole camera [15].

Both rotation and translation have 3 degrees of freedom. The translation is represented

as a vector # . There are multiple ways to represent rotation, such as matrix, quaternion and
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exponential coordinates [103]. The most compact representation is exponential coordinates

which are used here. The exponential coordinates for a rotation also have 3 components,

� � � �� �� �� 	�. The direction of this vector gives the rotation axis; the magnitude of

this vector gives the angle $ � ��� by which we need to rotate around the axis. This vector

has a corresponding matrix,


� �

�
���������

� ��� ��

�� � ���

��� �� �

�
���������

(3.1)

. With this matrix, exponential coordinates can be converted into a rotation matrix % by

Rodrigues’ formula

% � � �
 � " �

�

��� �
������ �

��

���� ��� ��������� (3.2)

To obtain a unique solution to the 6 parameters of a camera pose, we need at least 4

pairs of corresponding points between the photograph and the geometry. With only 3 pairs

of corresponding points, it is possible to have 4 feasible solutions. Corresponding points

can be either feature points or calibration objects. Feature points can be either interactively

selected or automatically detected. Correspondences between points in photographs and

points in the geometry can also be either interactively selected or automatically obtained.

Combinatorial search may be used to find correspondences automatically. For example,

if 4 feature points are detected in a photograph, we can try to match them with all possible

combinations of 4 feature points in the 3D geometry. For every combination, recover a

camera pose and obtain an error which reflects how well the image points match the 3D
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points. If there were no coincidental combinations with the same error value, the one

with the smallest error should give the correct correspondences. In the section 3.3, I will

introduce a novel and efficient technique to automatically search for the correspondences.

Once the correspondences are obtained, camera pose parameters can be solved by using

a least-squares procedure. We use the following objective function for least squares.

	
�

�"�� � &���� �
	
�

�"�� � &���� (3.3)

where �"��� "��� are the detected(or selected) image coordinates of a 3D point, and �&�� � &���

are the projected image coordinates of the same 3D point using the current pose parameters

of the camera, i.e.

&� � � �%��� � # �� (3.4)

where &� is the 2D image plane projection of the 3D point ��, � is the perspective trans-

formation, % is the rotation matrix and # is the translation vector. We assume here that

the correspondence between these two pairs of coordinates is known. Therefore, their

difference should be minimized. To minimize the above summation, we could either ap-

ply gradient-based optimization techniques or nongradient-based techniques such as the

down-hill Simplex method in [99]. In case of gradient-based optimization, gradient can be

approximately estimated using numerical differentiation with respect to each parameter.

It is possible to decouple the rotation and translation parameters and solve them in two

steps. Three rotation parameters should be solved first. Assume there are a pair of 3D

points �� and ��(Fig. 3.1). Their corresponding image points are detected to be at "� and
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Figure 3.1: �� and �� are two 3D points. "� and "� are their projections on the image plane.

The vector � is perpendicular to the vector ' which is the normal to the plane passing

through "�, "� and the camera position.

"�, respectively. There is a plane passing through "�, "�, and the origin of the local camera

coordinate system which is the camera position itself. Assume the normal to this plane is

', and the vector between �� and �� is � . It can be easily verified that

� �% ' � � (3.5)

where % is the rotation matrix converted from exponential coordinates. So one pair of 3D

points gives one constraint like this. With multiple pairs, we can set up a least-squares

problem to solve the 3 exponential coordinates.

If the translation vector is also unknown, the translation part can be solved using least-

squares and constraints like the following once the rotation part is estimated.
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�# � ��� �% ' � � (3.6)

where only vector # (camera position) is unknown.

3.2 Background and Related Work

The mathematical foundation for pose estimation from points, lines and curves has been

extensively studied. Estimation techniques based only on point correspondences from four

or more points can be found in [27] and [15, 20]. Haralick, et.al. [21] provides a review

of many 3-point techniques with a careful analysis of their stability. Qiang, et.al. [42]

develops an analytic least squares technique for pose estimation from points, lines and

ellipse-circle pairs. These methods all assume a known correspondence between geometry

and image features, which often requires extensive user involvement.

Several techniques have been developed for automatic detection of features in the im-

age and the geometry and finding their correspondences. Most of these techniques are

applicable to discrete geometric objects whose shape is known exactly. Huttenlocher and

Ullman [28], find corners and run a combinatorial search to find matches. Wunsch and

Hirzinger [55] propose another method based on the iterative closest point algorithm [2].

These methods, however, are very restrictive to the types of models they can handle, re-

stricting themselves to simple CAD objects.

A compromise solution is to ask the user to suggest an initial pose by, for example,

selecting a few point correspondences, and then using object silhouettes to refine the esti-

mation. Neugebauer and Klein [37] uses this technique in addition to aligning the texture
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maps on the surface. They require an exact model and numerous photographs of the object,

conditions we are not guaranteed.

3.3 Image Registration

The material presented in this section was done jointly with Andras Ferencz.

To calculate the pose for arbitrary rotation and translation, we need to know correspon-

dences between features in the image and the geometry. Automatically discovering suitable

features (such as lines and corners) in general scenes and matching them is extremely diffi-

cult and currently no reliable methods exist. Another possibility is to ask the user to supply

the features. However, this is very labor intensive and often not very accurate (users tend

to label features with an accuracy of a few pixels at best, and their performance diminishes

after the first dozen images). An alternative is to place unique calibration objects in the

scene that are identifiable from both laser range data and images. With an ample number

of such features in each image, the pose can be determined automatically and accurately

without user intervention. The disadvantage of this method is that more planning must

go into scene capture, ensuring that enough calibration objects are visible from each im-

age, and that these artificial objects must then be removed from the scene. However, these

limitations seem much less severe than the disadvantages of the other options.

Cyra Technologies’ laser scanner, that we used for this project, can achieve best per-

formance in registering multiple scans by using calibration targets taped to surfaces. We

use these same targets to determine the camera pose. While these targets are specifically

designed for this scanner, our techniques can be applied in general when calibration tar-
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gets can be placed in the scene. These targets are flat square green patches with a white

circular area in the middle. They are designed to be easily identifiable from both laser

range and image data, while being small to cover as little of the surface as possible. These

constraints, combined with a wide variety of lighting situations that inevitably changes the

apparent cover of any object, prevent us from adding a unique identifier to each target.

Thus for each image, finding the pose involves locating the targets in the image, finding

the correspondences between these targets and known targets in the geometry, and finally

calculating the six parameters of rotation and translation for the camera.

3.3.1 Finding Targets in Images

To find the targets in an image we first sweep target templates (white circles with green bor-

ders) of several scales over the image, using sum of squared distances (SSD) as a metric.

As the circular targets actually project to elliptical patches in the image, template match-

ing (with a liberal threshold) is only effective at locating candidate target locations (since

ellipsoids centered at a point have three degrees of freedom, prohibitively many templates

would be needed to accurately find targets using only template matching). To verify can-

didate regions, we attempt to fit an ellipse to the central white region, and evaluate the

match, again using SSD. This is equivalent to matching against the best possible elliptical

template. Since the ellipse is found using a region of the image, not just a few pixels, the

amount of redundancy enables us to estimate the parameters of the ellipse to sub-pixel ac-

curacy. Conveniently, this technique provides five parameters for each target, which can be

used to greatly reduce the combinatorial search for target correspondences.
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3.3.2 Finding Target Correspondences

Once targets in the image have been identified, we must find their correspondence to known

target locations in the geometry. This can be posed as a combinatorial search problem: pick

correspondences for enough targets to generate an overdetermined set of constraints, solve

for the best pose and test the error. If the error is within a threshold, which, in turn, is based

on the expected accuracy of the point locations, accept the conjecture. If we only use the

location of the center of the ellipses ���� ���, without any initial guess three correspondences

is enough to find the six parameters of the pose to within four ambiguous locations, while

four resolves the ambiguity and generates an overdetermined system. Unfortunately, this

simple combinatorial search thus takes (�'�� time, where ' is the number of targets in the

geometry. Since a large scene may require a hundred or more targets (we used 66 for our

room model), this search could be prohibitively expensive.

As noted above, we fit an ellipse to each target, yielding three additional parameters:

major axis ��, minor axis )�, and rotation of the major axis to the vertical *�. Given a

target in the geometry and an associated normal vector, we can compute the projection of

the circle onto an arbitrary image plane giving ��, )�, *�. Let #
 and #� be the position

and normal of target # in the geometry, and +
 the camera location. For computational

convenience we only consider image planes perpendicular to the vector , � +
 � #
 (i.e.

where the target is at the center of the image). For targets not located at the center of the

image, we reproject them onto such a plane and compute ��, )� and *� relative to this new

plane (this needs to be done only once for each image target). Let +�
 be the up vector for

this new image plane, - be the physical radius of the inner circle of the targets, and � the
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focal length of the camera. Given these, ��, )�, *� are computed by:

�� �
-

�,� � �

)� � �� � �, � #��

*� � ������
#� 	,
�#� 	,� � +�
 � ��.'�

where

��.' � �#� � +�
���#� � +�
�!

Thus 2 target correspondences provide 10 parameters, which is enough to solve for a

unique camera pose in the general case. We do this by anchoring the image target cen-

ters to their counterparts in the geometry, constraining the 6-dimensional system to a 2-

dimensional manifold. We then minimize the function

�	
���

�
����� � ����� � �)�� � )���� �



�*�� � *��� � ���� � )��� � ���� � )���

�

��
�
�

using a standard least squares optimizer. As this optimization is typically prone to a small

number of local minima, we run it from multiple initial positions. A detailed treatment of

pose estimation from circle/ellipse pairs can be found in [42].

Since this system with 10 equations and 6 unknowns is overdetermined, each solution

returns an error that can be used to weed out most bad correspondences immediately. Oth-

erwise, we use this initial guess for the pose to find a small set (typically less than 3) of

candidate correspondences for each remaining image target. We try these one at a time,

solving the optimization for a new pose given three targets, and using the remaining targets

to confirm or reject the solution.
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While this still has a worst-case running time of (�'��, for any practical arrangement

of targets (without many targets clumped together) we expect the running time to be ��'��.

As reported in the results section, this is the observed behavior, which is much faster than

previous algorithms.

3.3.3 Recovering Camera Pose

Once we find an acceptable set of correspondences, we fine tune the pose by solving a final

least squares optimization, over all 6 parameters, using the previous estimate as an initial

position. This optimization minimizes the function:

�	
���

���� � ����� � ���� � �����

where ����� ���� is the location of the projected center of target t in the image. (We do not

attempt to fit �, ), * in this function, for these vary much more slowly than the projection

of the center points, so they become irrelevant when enough targets are available).

3.3.4 Results

To evaluate our camera pose estimation technique, we look at three aspects: a) the amount

of user intervention, b) the accuracy of the resulting pose, and c) the computational cost

of our algorithm. We ran our automatic algorithm on 62 images with four or more targets

visible. In these images, the automatic target detector found 90% of the visible targets,

while finding four false matches. These errors were easily correctable by prompting the

user to localize the search. Poses were estimated correctly for 58 of the 62 images. The

remaining 4 coincidentally lined up with an erroneous set of targets in the geometry. These
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errors could also be easily corrected interactively by supplying one pair of correspondences.

The amount of user intervention was approximately 15 minutes.

We found the accuracy of our estimated pose to be very high, typically within one pixel.

An example of this is shown in Fig. 3.2 where a sample image is texture-mapped onto the

geometry and the resulting surfaces are displayed from a different viewing direction (black

areas in Fig. 3.2(c) indicate backfacing or occluded areas in the geometry) . Note the object

boundaries in the image line up with geometric discontinuities in the scene.

As expected, our algorithm runs in(�'�� time for real-world inputs. For fifty targets in

the geometry, the running time was 5.8 seconds, while for 100 targets, the algorithm took

21 seconds.

From those calibrated camera poses and simplified meshes , we synthetically composed

22 1024 by 512 texture maps that are used to render the original as well as the altered scene.
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(a) (b)

(c)

Figure 3.2: (a) A real photograph with targets located; (b) The scan cloud viewed from

the recovered camera pose; (c) Low-resolution texture-mapping using a single photograph.

Note the edge alignment between the image and the geometry.
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3.4 Texture Map Synthesis and Compression

From photographs that have been aligned with the geometry, we wish to manufacture spe-

cialized texture maps, images broken up into triangular patches. The naive approach would

allocate a fixed sized triangle in the texture map for each 3D triangle in the mesh and ob-

tain texture coordinates for each vertex of the 3D triangle(Fig. 3.4). However this would

be very costly, both in terms of memory and rendering speed.

M

T
P Q

Figure 3.3: Texture Map Synthesis Assume 3D triangle # is covered by two photographs

� and ,. We allocate a triangular texture patch in texture map image� corresponding to

# , and populate it with a weighted average of the projected areas of # in photographs �

and ,.

Our standard texture map creation scheme is as follows. Since each triangle in a mesh

may be covered by multiple photographs, we actually synthesize one texture patch (a trian-

gular shaped region) for each triangle to remove the redundancy. This texture patch is an

appropriately weighted average of the projected areas of the triangle in all photographs(Fig.

3.3). The weight for each original area from photographs is set in such a way that the weight

becomes smaller when the triangle is viewed from a grazing angle or its projected area is

close to the boundaries of the photograph to obtain both good resolution and smooth tran-
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Figure 3.4: An example of synthesized texture maps packed with triangular texture patches

sition among different photographs. Visibility is determined using Z-buffer for each pixel

of each original area to make sure only correct colors get averaged. We use the scheme in

[49] to place the synthetic triangular texture patches into texture maps, and therefore obtain

texture coordinates. The basic idea to place texture patches can be considered as a general-

ization of memory allocation in operating systems to 2D situation where we initially have a

set of unused rectangular texture maps. All the texture patches are first sorted in decreasing

order in terms of their size. Every two subsequent texture patches are put together pairwise

to form rectangular patches. Then they are inserted into the blank texture maps in that order.

First-fit strategy is used to find an unallocated rectangular area in the maps for each pair.

When texture-mapping using OpenGL APIs, we use the GL NEAREST option instead of

GL LINEAR to prevent averaging and interpolation across texture patch boundaries.

At first, the size of each triangular texture patch is determined by the maximum number

of pixels mapped onto it from any image. Thus, all else being equal, bigger triangles in

the mesh will be allocated a bigger patch. But we run into problems with this approach,
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because it generates too many and too big triangles. Graphics hardware has a limited

amount of texture memory. If we cannot pack all texture information into that amount

of space, we have to compose multiple texture maps and swap texture memory multiple

times for each frame. Swapping texture memory is quite expensive (our SGI (� needs 0.04

second to load a 1024x512 image).

(a) (b)

Figure 3.5: (a) An original photograph; (b) the result of applying the derivative of the

Gaussian to the image in (a). Areas with edges are allocated with more pixels during

texture map synthesis.

One way that the above texture patch allocation method is wasteful is that it picks

sizes for texture patches without considering the amount of variation in the photographs.

However, we need fewer texture map image pixels (texels) to represent smooth areas than

to encode highly varying regions. By using an information measure on the image, we can

better decide the size of each texture patch. We use the response of an edge detection

operator (the derivative of the Gaussian) as our information measure, and apply it to all

original photographs (Fig. 3.5). For each texture patch, we use the maximum response at

its corresponding pixels in the photographs to determine the number of texels it actually
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needs to keep the original color variations on the triangle. Thus smooth regions where the

operator does not respond, are allocated few texels.

Additional savings can be achieved by reusing texture patches for multiple 3D triangles,

when the texture over these triangles look similar. For example, if the walls in a room are all

white, it is possible to represent the shading variations on the walls with a small number of

texture patches even if the number of triangles for the walls is quite large. This requires that

we cluster the texture patches from the previous section and set the same texture coordinates

to all triangles in the same cluster.

We first quantize the edge length(number of texels along each edge) of every texture

patch to be a power of 2. If a texture patch has N texels on each edge, it has ��� � ����

pixels in total, and can be considered as a vector of length ��� � ����. The K-mean

algorithm (Lloyd algorithm) in vector quantization [104] can then be used to cluster all the

texture patches with the same size. Because of Mach Band effect, slight color difference

along the edge shared by two 3D triangles may be rather obvious. The K-mean algorithm

adopts summed square difference as its objective function. We change it into a weighted

summed square difference and use a larger weight for difference on edge texels to alleviate

this effect. Given an error tolerance, we need to run a binary search to find the minimum

number of clusters that can achieve that error. This process is quite time-consuming since

each step of the binary search needs to run the K-mean algorithm whose complexity is

(�'/�� where ' is the number of initial vectors,/ is the number of clusters, and � is the

dimensionality of each vector. This complexity becomes(�'��� when/ is a large fraction

of '. We found out that a two-level scheme can optimize the performance by first grouping

the ' vectors into


' clusters and then running the binary search on the vectors belonging
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to each cluster which in turn splits into multiple clusters.

We have applied our texture map synthesis and texture patch resizing techniques to 45

high resolution images of a large room and obtained 20 1024 by 512 texture maps. Then we

used our texture patch clustering algorithm on the 20 texture maps to obtain 5 new texture

maps. The resulting compressed texture maps can still achieve good visual quality with a

compression ratio of 4 (Fig. 3.6).

(a) (b)

(c) (d)

Figure 3.6: A comparison (a)-(b) Two synthetic images of a real room rendered with

the original set of 20 texture maps; (c)-(d) two synthetic images rendered from the same

viewpoints with the compressed set of 5 texture maps. The two pairs of images look similar.
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3.5 Visibility Processing for Projective Texture-Mapping

In the previous sections, I have introduced techniques to conventional texture-mapping

with texture coordinates. However, projective texture-mapping is an alternative way to map

photographs onto recovered geometry. Projective texture mapping was first introduced in

[56] and now has been implemented in OpenGL graphics package on SGI machines. In

order to do projective texture mapping, the user needs to specify a virtual camera position

and orientation, a virtual image plane with the textures. The texture is then cast onto a

geometric model using the camera position as the center of projection.

For every image, we only want to map this image onto the polygons visible from the

camera position where we took this image. We should not erroneously map it onto those

occluded polygons. The current hardware implementation of projective texture mapping on

SGI workstations cannot do this in hardware. It let the texture pierce through the geometry

and get mapped onto all backfacing and occluded polygons on the path of the ray(Fig.

3.8(a)). So parts of the geometry that are occluded in the original image still receive legible

texture coordinates and are incorrectly texture mapped instead of remaining in shadow.

This indicates we need to obtain visibility information before texture-mapping.

We could solve this visibility problem in image-space using ray tracing or item buffer.

But that means if we want to render a large number of frames for an animation or do a real-

time demonstration, we need to compute visibility in image-space for each frame, which

would be impractically slow. Hardware texture-mapping can be done in real-time if all the

visibility information is known, which means we need a visibility preprocessing step in

object-space to fully exploit the hardware performance. For any sequence of animation,
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this object-space preprocessing needs to be done only once. It also allows the view point

to be changed dynamically during a real-time demonstration.

What we need to do is to decide in which photographs a particular polygon from the

geometric model is visible. If a polygon is partially visible in a photograph, we should clip

it so that each resulting polygon is either totally visible or totally invisible. We only need

to map the photograph to the visible ones. After this visibility processing, we can correctly

and efficiently assign radiance values from the photographs to the visible polygons.

This algorithm is operated in both image space and object space. It is summarized as

follows.

1. Give each original polygon an id number. If a polygon is subdivided later, all the

smaller polygons generated share the same original id number.

2. If there are intersecting polygons, subdivide them along the intersecting line.

3. Clip the polygons against all image boundaries and user-specified planar polygons so

that any resulting polygon is either totally inside or totally outside the desired texture

regions.

4. Set each camera position as the viewpoint in turn, and render the original large poly-

gons from the geometric model using their id numbers as their colors and Z-buffer

hardware.

5. At each camera position, scan-convert each frontfacing polygon in software so we

can know which pixels are covered by it. If at some covered pixel location, the

retrieved polygon id from the color buffer is different from the id of the polygon cur-
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rently under consideration, a potentially occluding polygon is found and it is tested

in object-space whether it is really an occluding polygon.

6. Clip each polygon with its list of occluders in object-space.

7. Associate with each polygon a list of photographs to which it is totally visible.

Clipping in object-space does not take much time because we use the original large

polygons in the hardware Z-buffering step, which results in a very small set of occluders

for each polygon. So this algorithm has nearly the speed of image-space algorithms and

the accuracy of object-space algorithms as long as the original polygons in the model are

all larger than a pixel. Using identification(id) numbers to retrieve objects from Z-buffer is

similar to the item buffer technique introduced in [59].

There are some variants of this algorithm. First, we can replace scan conversion with

object-space uniform sampling. On each polygon, draw uniform samples and project these

sample points onto the image plane to check if there are any occluding polygons. But scan-

conversion is obviously faster. Second, under some circumstances, we need some data

structure to maintain the connectivity of the polygons and T intersections are not allowed.

The objective of this algorithm is to minimize the number of polygons resulted from

clipping to accelerate texture mapping at a later stage while safely detect all occluding

polygons so that texture mapping are done correctly. To achieve this goal, the following

two techniques are introduced, conservative testing and shallow clipping.

From the hardware Z-buffering results, we want to safely detect all occluding poly-

gons. We donot want to miss any occluding polygons. But if a nonoccluding polygon is

erroneously reported, that is fine because we can do object-space testing to verify if it is
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really an occluding polygon and get rid of it if it is not.

Camera
B

A

Figure 3.7: Our algorithm does shallow clipping in the sense that if polygon 	 occludes

polygon 
, we only use 	 to clip 
, and any polygons behind 
 are unaffected.

Our algorithm does shallow clipping in the sense that if polygon 	 occludes polygon


, we only use 	 to clip 
, and any polygons behind 
 are unaffected(Fig. 3.7). Only

partially visible polygons are clipped. Those totally invisible ones are left intact. This is

the major reason that our algorithm can minimize the number of resulting polygons.

By experiments, we found most polygons resulting from clipping are tiny polygons. To

further reduce the number of polygons, we set a threshold on the size of polygons. If the

object-space area of a polygon is below the threshold, it is not subdivided any more and is

assigned a constant color based on the textures on its surrounding polygons. If a polygon

is very small, it is not noticeable whether it has a texture on it or just a constant color. The

rendered images can still maintain good quality.

To demonstrate our algorithm’s efficiency in polygon clipping, we compare it with a

pure object-space algorithm which is a modified version of Weiler-Atherton hidden surface

removal algorithm [58, 105]. Since we have more than one camera positions in our situa-

tion, we apply Weiler-Atherton algorithm repeatedly at each camera position and the input
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data for the processing at each camera position is the output data from the processing at the

previous camera position.

The comparison was performed on two data sets. One is a very detailed model of a bell

tower(Fig. 3.8(b)). The other is a coarse model of a university campus, including both the

buildings and the terrain(Fig. 3.8(c)). These two models were recovered by the system in

[12]. The number of polygons in the original models and the number of camera views used

for visibility processing are shown in Table 3.1.

For fair comparison, in both algorithms we only process those frontfacing polygons

falling into field of view at each camera position. The visibility processing results for the

two models are shown in Fig. 3.9. The number of polygons generated after visibility pro-

cessing are compared in Table 3.2-3.3 where our algorithm is named Hybrid. The compar-

ison is done for three thresholds on polygon size. Any polygon smaller than the threshold

is no longer subdivided. From these results, we can see our algorithm is significantly better

in the number of polygons generated.

Model I Model II

# polygons 2409 660

# views 24 10

Table 3.1: Statistics for two geometric data sets: number of polygons and number of camera

positions for visibility processing.

So far, we have successfully used this algorithm to process data in two applications. The

first is for view-dependent projective texture-mapping [110](Fig. 3.10). This application

has produced a fly-by animation for UC Berkeley campus [109]. Since our algorithm gener-
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Th = 0.0001 Th = 0.001 Th = 0.01

Hybrid 19018 7511 3584

WA 62556 12461 4779

Th = 0.0001 Th = 0.001 Th = 0.01

Hybrid 112.14s 81.15s 61.47

WA 875.40s 234.97 175.53

Table 3.2: Comparison between the Hybrid and Weiler-Atherton(WA) algorithms on Model

I with three different thresholds on polygon size. The first half shows the number of poly-

gons generated. The second half shows the running time in seconds on a SGI (� worksta-

tion.

ates much less polygons than previous algorithms, we are able to produce a corresponding

real-time(60Hz) demonstration on SGI Onyx2 InfiniteReality Engine. The second applica-

tion uses visibility processing to assign correct radiance values from photographs to their

corresponding geometric surfaces and then recover the reflectance of the surfaces [111].

Thus we are able to re-render the model under novel lighting conditions such as a novel

solar position for an outdoor scene.
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Th = 0.0001 Th = 0.001 Th = 0.01

Hybrid 5623 5541 5255

WA 10194 9878 8675

Th = 0.0001 Th = 0.001 Th = 0.01

Hybrid 14.36s 14.63s 13.96s

WA 22.85s 21.60s 18.64s

Table 3.3: Comparison between the Hybrid and Weiler-Atherton(WA) algorithms on Model

II with three different thresholds on polygon size. The first half shows the number of

polygons generated. The second half shows the running time in seconds on a SGI (�

workstation.

(a) (b) (c)

Figure 3.8: (a)Viewing the model from a viewpoint far from the original produces artifacts

unless proper visibility pre-processing is performed, (b)A detailed bell tower model, (c)A

model for a university campus, including both the buildings and the terrain.
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(a) (b)

Figure 3.9: Visibility results for a bell tower model with 24 camera positions and for a

university campus model with 10 camera positions. The color of each polygon encodes the

number of camera positions from which it is visible: white= 0, red= 1, green= 2, blue= 3,

yellow= 4, cyan= 5, magenta= 6 and unsaturated colors for larger numbers.

(a) (b)

Figure 3.10: Two re-rendered images of the university campus at two novel view points.

The textures are actually from different photographs, but they seamlessly cover the geom-

etry using visibility processing.
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Chapter 4

Inverse Global Illumination

4.1 Introduction

Computer graphics is being increasingly used to visualize real objects and environments.

Applications in entertainment, architecture, interior design, virtual reality, and digital mu-

seums often require that aspects of the real world be rendered realistically from novel view-

points and/or under novel illumination. For example, one would want to see how a room in

a house would look like with different lighting, or how a statue would look at various times

of day in a different wing of a museum. Lastly, one might want to realistically render a film

location in different lighting, and add in digital props and characters, with the expectation

that the rendered results would be the same as what would have happened had it all been

for real.

Whether it is changing the geometry or changing the lighting, generating a new render-

ing requires re-computing the interaction of light with the surfaces in the scene. Computing

this interaction requires knowing the reflectance properties (diffuse color, shininess, etc.) of
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each surface. Unfortunately, such reflectance property information is not directly available

from the scene geometry or from photographs. Considerable work (e.g. [80, 71, 66, 44, 73])

has been done to estimate reflectance properties of real surfaces in laboratory settings from

a dense set of measurements. However, reflectance properties of real scenes are usually

spatially varying, and typically change with use and age, making a priori laboratory mea-

surements impractical. It would clearly be preferable to estimate the reflectance properties

of an entire scene at once, with the surfaces being illuminated in situ rather than as isolated

samples, and from a relatively sparse set of photographs. This is difficult for two reasons.

The first is that we wish to use only a sparse set of photographs of the scene, rather

than exhaustively photographing every point of every surface from a dense set of angles.

With such a set of photographs, we can expect to observe each surface point from only a

small number of angles. As a result, there will be too little data to determine fully general

bi-directional reflectance distribution functions (BRDFs) for each surface. We address this

problem in two ways. First, we limit ourselves to recovering low-parameter reflectance

models of the surfaces in the scene. Second, we assume that the scene can be decomposed

into areas with related reflectance properties. Specifically, we allow the diffuse reflectance,

or albedo, of the object to vary arbitrarily over any surface; the estimated albedo is com-

puted as an image called an albedo map1. In contrast, we require that the directional re-

flectance properties (such as specular reflectance and roughness) remain constant over each

area. In this work, such areas are specified as part of the geometry recovery process.

The second problem we face is that in a real scene, surfaces will exhibit mutual illumi-

1The commonly used term texture map is sometimes used to refer to this same concept. However, texture

maps are also sometimes used to store surface radiance information, which is not lighting-independent.
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nation. Thus, the light that any particular surface receives will arrive not just from the light

sources, but also from the rest of the environment through indirect illumination. As a re-

sult, the incident radiance of an observed surface is a complex function of the light sources,

the geometry of the scene, and the as-yet-undetermined reflectance properties of all of the

scene’s surfaces. In this work, we use radiance data from photographs and image-based

rendering to estimate the incident radiances of surfaces in the scene. This allows us to

estimate the reflectance properties of the surfaces in the scene via an iterative optimization

procedure, which allows us to re-estimate the incident radiances. We refer to this procedure

as inverse global illumination.

Addressing these two problems makes it possible to robustly recover reflectance param-

eters from the limited radiance information present in a sparse set of photographs, and the

accommodations made are appropriate for a wide variety of real scenes. Even when they

are not met, the algorithm will compute the reflectance property parameters that best fit the

observed image data, which in many cases can still yield a visually acceptable result.

The input to our algorithm is a geometric model of the scene, a set of radiance maps

taken under known direct illumination, and a partitioning of the scene into areas of similar

non-diffuse reflectance properties. The algorithm outputs a set of high-resolution albedo

maps for the surfaces in the scene along with their specular reflectance properties, yield-

ing a traditional material-based model. This output is readily used as input to traditional

rendering algorithms to realistically render the scene under arbitrary lighting conditions.

Moreover, modifications to the scene’s lighting and geometry and the addition of synthetic

objects is easily accomplished using conventional modeling methods.
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Figure 4.1: Overview of the Method This figure shows the relationship between global

illumination and inverse global illumination. Global illumination uses geometry, lighting,

and reflectance properties to compute radiance maps (i.e. rendered images), and inverse

global illumination uses geometry, lighting, and radiance maps to determine reflectance

properties.

4.2 Background and Related Work

The work presented here has been made possible by previous work in BRDF modeling,

measurement and recovery, geometry acquisition, image-based rendering, and global illu-

mination.

In graphics, there is a long history of modeling surface reflectance properties using a

small number of parameters. Recent efforts in this direction include models introduced in

[69, 80, 76, 89]. These models have been shown to yield reasonable approximations to the

reflectance properties of many real materials, and they have been used to produce realistic

renderings.

On the other hand, considerable recent work has presented methods for measuring and

recovering the reflectance properties of materials using imaging devices. [80] and [71] pre-
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sented techniques and apparatus for measuring reflectance properties, including anisotropic

reflection. [66] measured directional reflectance properties of textured objects. [44] and

[73] showed that diffuse and specular reflectance properties could be recovered from mul-

tiple photographs of an object under direct illumination. [67, 72] used a model of the scene

and forward radiosity to estimate diffuse albedos to interactively modify the scene and its

lighting. Although mutual illumination has been considered in the problem of shape from

shading [74], it has not yet been fully considered for recovering non-diffuse reflectance

properties in real environments. A survey of some of the methods is in Marschner [73].

Certain work has shown that changing the lighting in a scene does not necessarily re-

quire knowledge of the surface reflectance properties – taking linear combinations of a

large set of basis images [75, 82] can yield images with novel lighting conditions.

Work in global illumination (e.g. [68, 70, 78, 108]) has produced algorithms and soft-

ware to realistically simulate light transport in synthetic scenes. In this work we leverage

the hierarchical subdivision technique [63, 64] to efficiently compute surface irradiance.

The renderings shown here were produced using Gregory Ward Larson’s RADIANCE sys-

tem [81].

Photographs taken by a camera involve nonlinearities from the imaging process, and do

not have the full dynamic range of real world radiance distributions. In this work we use

the high dynamic range technique in [11] to solve these problems.
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4.3 Inverse Radiosity

Most real surfaces exhibit specular as well as diffuse reflection. Recovering both diffuse

and specular reflectance models simultaneously in a mutual illumination environment is

complicated. In this section, we consider a simplified situation where all surfaces in an

environment are pure diffuse (Lambertian). In this case, the global illumination problem

simplifies considerably and can be treated in the radiosity framework [77]. We define

inverse radiosity as recovering the diffuse albedo at each surface patch in the environment,

provided that the geometry, the lighting conditions and the radiance distribution in the

scene are known. In the next section we will discuss another simple case — recovering

more general reflectance models with specularity considering only direct illumination —

and we address the full problem in Section 4.5.

In the radiosity framework [77], the surfaces in the environment are broken into a finite

number of patches. The partitioning is assumed to be fine enough that the radiosity and

diffuse albedo of each patch can be treated as constant. For each such patch,


� � �� � 0�
	
	


	1�	 (4.1)

where 
�, ��, and 0� are the radiosity, emission, and diffuse albedo, respectively, of patch

�, and 1�	 is the form-factor between patches � and �. The form-factor 1�	 is the proportion

of the total power leaving patch � that is received by patch �. It can be shown that this

is a purely geometric quantity which can be computed from the known geometry of the

environment [77].

We take photographs of the surfaces, including the light sources, to capture the radiance

distribution. Since Lambertian surfaces have uniform directional radiance distributions,
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one camera position is sufficient for each surface. Then 
� and �� in Eqn. (4.1) become

known. Form-factors 1�	 can be derived from the known geometry. Once these are done,

0� � �
� � �����
�

	 
	1�	�. The solution to inverse radiosity is so simple because the

photographs capture the final solution of the underlying light transport among surfaces.

4.4 Recovering Parameterized BRDFs from Direct Illumi-

nation

N N NH
H H

Light
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2 3
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(a) (b) (c)

Figure 4.2: (a) The lighting and viewing directions at different points on a surface are

different with respect to a fixed light source and a fixed viewpoint. This fact can be used to

recover a low-parameter BRDF model for the surface from a single image. ��’s and 2�’s

are the normals and halfway vectors between lighting and viewing directions at different

locations on the surface. We can infer that the surface point with normal �� is close to

the center of the highlight, and the point with normal �� is relatively far away from the

center. (b) An example of an isotropic specular highlight, (c) An example of an anisotropic

specular highlight.

Before tackling the general case of reflectance recovery from photographs of mutually

illuminated surfaces with diffuse and specular components, we study another special case.
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Consider a single surface of uniform BRDF which is illuminated by a point light source in

known position and photographed by a camera, also in a known geometric position with

respect to the surface(Fig. 4.2). Every pixel in the radiance image provides a measurement

of radiance 3� of the corresponding surface point �� in the direction of the camera, and the

known light source position lets us calculate the irradiance "� incident on that point.

Our objective is to use these data �3�� "�� to estimate the BRDF of the surface. Since

the BRDF is a function of four variables (azimuth and elevation of incident and viewing di-

rections) it is obvious that the 2-dimensional set of measurements for a single camera/light

source pairing is inadequate to do this in general. However for many materials it is pos-

sible to approximate the BRDF adequately by a parameterized BRDF model with a small

number of parameters (e.g. Ward [80], Lafortune [89], He [69] etc). We use Ward’s param-

eterization in which the BRDF is modeled as the sum of a diffuse term ��
�

and a specular

term 0�4�����. Here 0� and 0� are the diffuse and specular reflectance of the surface,

respectively, and 4����� is a function of vector �, the azimuth and elevation of the in-

cident and viewing directions, and parameterized by �, the surface roughness vector. For

anisotropic surfaces � has 3 components; for isotropic surfaces � has only one component

and reduces to a scalar. The precise functional form of 4����� in the two cases may be

found in Appendix A.

This leads us to the following equation for each surface point ��,

3� � �
0�
5

� 0�4�������"� (4.2)

where 3�, "� and�� are known, and the parameters 0�,0�, � are unknowns to be estimated.

Depending on whether we are using an isotropic or anisotropic model for the specular
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term we have a total of 3 or 5 unknown parameters, while there are as many constraining

equations as the number of pixels in the radiance image of the surface patch. By solving a

nonlinear optimization problem (see Appendix A for details), we can find the best estimate

of 0�,0�, �.

There are two important subtleties in the treatment of this optimization problem. One

is that we need to solve a weighted least squares problem, otherwise the larger values from

the highlight (with correspondingly larger noise in radiance measurements) cause a bias in

parameter estimation. The second is the use of color information which needs to be done

differently for dielectrics and metals. Both of these issues are discussed in Appendix A.

To obtain an obvious global minimum for this optimization problem and achieve robust

parameter recovery, the radiance image should cover the area that has a specular highlight

as well as some area with very low specular component. If the highlight is missing, we do

not have enough information for recovering specular parameters, and can only consider the

surface to be diffuse.

4.5 Recovering Parameterized BRDFs in a Mutual Illumi-

nation Environment

We are now ready to study the general case when the environment consists of a number of

surfaces and light sources with the surface reflectances allowed to have both diffuse and

specular components.

Consider a point �� on a surface patch seen by camera +� (Fig. 4.3). The radiance from
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Figure 4.3: Patch 		 is in the radiance image captured by camera +�. The specular

component at 		 in the direction of sample point �� is different from that in the direction

of camera +�. The difference is denoted by ��.

�� in the direction of the camera is the reflection of the incident light contributed by all the

light sources as well as all the surrounding surfaces. Eqn. (4.2) generalizes to

3���� � ����� � 0�
�

	 3����
1����

�0�
�

	 3����
4������

�

(4.3)

where 3���� is the radiance value in the direction of camera +� at some sample point ��

on the surface, ����� is the emission in the direction of camera +�, 3����
is the radiance

value along the direction from patch 		 to point �� on the surface, 1����
is the analytical

point-to-patch form-factor [65] between sample point �� and patch 		 , and 0�4������
is

the specular term evaluated at �� for a viewpoint at camera +� and a light source position

at patch 		. The arguments, � and�, of 4 have been dropped to simplify notation.

As before, our objective is to estimate 0�, 0�, and specular roughness parameters �. Of
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the other variables in Eqn. (4.3), ����� � � for nonsources, and 3���� can be measured

directly from the radiance image at camera +�. In general, the radiances 3����
cannot be

measured directly but have to be estimated iteratively. Suppose patch		 in the environment

appears in another radiance image taken by camera +�(Fig. 4.3). Only if we assume 		

is Lambertian, does 3����
in Eqn. (4.3) equal 3�	��

, the radiance from 		 to camera +�.

Otherwise, the diffuse components will be equal, but the specular components will differ.

3����
� 3�	��

����	����
(4.4)

Here ���	����
� �����

� ��	��
is the difference between the specular components �����

and ��	��
of the radiances in the two directions. To compute the specular differences

���	����
, we need the BRDF of 		, which is initially unknown. The estimation of ��

(Section 4.5.1) therefore has to be part of an iterative framework. Assuming that the domi-

nant component of reflectance is diffuse, we can initialize the iterative process with �� � �

(this sets 3����
� 3�	��

).

To recover BRDF parameters for all the surfaces, we need radiance images covering

the whole scene. Each surface patch needs to be assigned a camera from which its radiance

image is selected. At least one specular highlight on each surface needs to be visible in the

set of images, or we will not be able to recover its specular reflectance and roughness pa-

rameters. Each sample point gives an equation similar to Eqn. (4.3). From these equations,

we can set up a weighted least-squares problem for each surface as in Appendix 1. During

optimization, we need to gather irradiance at each sample point from the surface patches in

the environment. One efficient way of doing this is to subdivide each surface into a hier-

archy of patches [63, 64] and link different sample points to patches at different levels in
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the hierarchy. The solid angles subtended by the linked patches at the sample points should

always be less than a prescribed threshold. There is a radiance value from the patch to the

sample point and a �� associated with each hierarchical link.

For each sample point, we build hierarchical links to a large number of patches, and

gather irradiance from these links. The amount of memory and computation involved in

this process limits the number of samples for each highlight area. To make a reasonable

tradeoff, we note that irradiance from indirect illumination caused by surrounding surfaces

generally has little high-frequency spatial variation. Because of this, it makes sense to draw

two sets of samples, one sparse set, and one dense set 2. For the samples in the sparse set,

we build hierarchical links and gather irradiance from the environment as usual. For the

samples in the dense set, only their irradiance from light sources is computed explicitly,

their irradiance from indirect illumination is computed by interpolation.

We are now ready to state the complete inverse global illumination algorithm. First

detect all specular highlight blobs falling inside the radiance images using knowledge of

the positions of the light sources, the camera poses, and the geometry (Fig. 4.4). Set the

initial �� associated with each hierarchical link to zero. We can then recover an initial

estimate of the BRDF parameters for each surface independently by solving a series of

nonlinear optimization problems. The estimated specular parameters are used to update

all ��’s and 3����
’s associated with the hierarchical links. With the updated incident

2We choose the two sets of samples as follows. We first find the center of the highlight area in the image

plane and rotate a straight line around this center to a number of different positions. The dense set of samples

is the set of points on the surface corresponding to all the pixels on these lines. We choose the sparse set of

samples on each line by separating two consecutive samples by some fixed distance in the object space.
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For each camera position C

For each polygon T

For each light source O

Obtain the intersection P between plane of T and line CO’

(O’ and O are symmetric about T);

Check if P falls inside polygon T;

Check if there is any occlusion between P and O;

Check if there is any occlusion between C and any point

in a local neighborhood of P;

/* A highlight area is detected if P passed all the above tests.*/

End

Figure 4.4: The specular highlight detection algorithm.

radiances, we can go back and re-estimate the BRDF parameters again. This optimization

and update process is iterated several times to obtain the final solution of the BRDFs for all

surfaces. The overall algorithm is shown in Fig. 4.6.

4.5.1 Estimation of ��

Suppose there is a hierarchical link 6����
between a sample point �� and a patch 		 which

is visible to a camera +� (Fig. 4.5). The �� for 6����
is defined to be the difference of

the specular component in directions 7		�� and 7		+�. To estimate this difference, we need

to obtain the specular component along these two directions given the BRDF parameters

of patch 		 . A one-bounce approximation of �� for link 6����
can be obtained by using
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Figure 4.5: Random rays are traced around the two cones to obtain a one-bounce approxi-

mation of ��.

Monte Carlo ray-tracing [80]. Because of off-specular components, multiple rays should be

traced and the direction of the rays is randomized around the mirror directions of 7		�� and

7		+�, respectively. For each possible ray direction, the probability density of shooting a ray

in that direction is proportional to 4������ where � encodes the incident and outgoing

directions. Intuitively, most of the rays fall inside the two cones ,����
and ,�	��

centered

at the two mirror directions. The width of each cone depends on the specular roughness

parameters �� of patch 		 . The radiance along each ray is obtained from the patch hit by

the ray. Suppose 3�
���
and 3��	��

are the average radiance values of the rays around

the two cones, respectively, and 0���
is the specular reflectance of patch 		 . Because

the average value of Monte Carlo sampling approximates the total irradiance modulated

by 4������, �� can simply be estimated as 0���
�3�
���

� 3��	��
�. This calculation

could be extended to have multiple bounces by using path tracing [70]; we found that the

one-bounce approximation was adequate for our purposes.
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4.5.2 Practical Issues

We do not have a formal characterization of the conditions under which the inverse global

illumination algorithm converges, or of error bounds on the recovered BRDF parameter

values. In practice, we found it worked well (Section 4.7). Here we give some heuristic

advice on how to acquire images to obtain good performance.

� Use multiple light sources. A specular highlight directly caused by one of the light

sources should be captured on each surface. Having multiple light sources increases

the probability that this can be achieved, and lets the whole scene receive more uni-

form illumination. This also increases the relative contribution of the diffuse com-

ponent at any particular sample point ��, and supports the �� � � initialization,

since highlights from different sources will usually occur at different locations on

the surface.

� Use concentrated light sources. If the incoming radiance distribution is not very

directional, the specular highlights will be quite extended and it will be difficult to

distinguish the specular component from the diffuse one.

4.6 Recovering Diffuse Albedo Maps

In the previous sections, we modeled the reflectance properties as being uniform for each

surface. In this section, we continue to do so for specular parameters because a small

number of views of each surface does not provide enough information to reliably estimate

specular parameters for each point individually. However, we relax this constraint on dif-
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fuse albedo and model it as a spatially varying function, an albedo map, on each surface.

The diffuse albedo for any point � on a surface is computed as:

0���� � 5�����"��� (4.5)

where 0���� is the diffuse albedo map, ���� is the diffuse radiance map, and "��� is the

irradiance map.

Suppose there is an image covering the considered surface which gives a radiance map

3��� � ��������� where ���� is the specular radiance map seen from the image’s cam-

era position. Then the diffuse radiance map in Eqn. (4.5) can be obtained by subtracting

the specular component from each pixel of the radiance map 3��� using the specular re-

flectance parameters already recovered. We estimate the radiance due to specular reflection

as the sum of specular reflection due to direct and indirect illumination. The specular re-

flection due to direct illumination is computed from the knowledge of the direct lighting

and the estimated reflectance properties, and we estimate the indirect specular reflectance

by tracing a perturbed reflected ray into the environment in a manner similar to that in

Section 4.5.1.

The irradiance "��� can be computed at any point on the surface from the direct illu-

mination and by using analytical point-to-patch form-factors [65] as in previous sections.

For efficiency, we compute the irradiance due to the indirect illumination only at certain

sample points on the surfaces, and interpolate these indirect irradiance estimates to gener-

ate estimates for all surface points �. Of course, care must be taken to sufficiently sample

the irradiance in regions of rapidly changing visibility to the rest of the scene.
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Something that complicates estimating diffuse albedos in this manner is that in highlight

regions the specular component of the reflectance ���� will be much larger than the diffuse

component����. As a result, relatively small errors in the estimated ���� will cause large

relative errors in ���� and thus 0����. However, just as a person might shift her view to

avoid glare while reading a movie poster, we make use of multiple views of the surface to

solve this problem.

Suppose at a point � on a surface, we have multiple radiance values �3�����
��� from

different images. The highest value in this set will exhibit the strongest specular compo-

nent, so we simply remove this value from consideration. For the remaining values, we

subtract the corresponding specular estimates ����� from the radiance values 3����, to

obtain a set of diffuse radiance estimates�����. We compute a final diffuse radiance com-

ponent ���� as a weighted average of the �����, with weights inversely proportional to

the magnitude of the estimated specular components ����� to minimize the relative error in

����. We also weight the ����� values proportionally to the cosine of the viewing angle

of the camera in order to reduce the influence of images at grazing angles; such oblique

images typically have poor texture resolution and exhibit particularly strong specular re-

flection. Since we are combining information taken from different images, we smooth

transitions at image boundaries by gradually reducing the weight of an image towards the

edges.

Once diffuse albedo maps are recovered, they could be used to separate the diffuse and

specular components in the specular highlight areas. This would allow recovering more

accurate specular parameters in the BRDF model. In practice, however, we have found

good estimates to be obtained without further refinements.
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Detect specular highlight blobs on the surfaces.

Choose a set of sample points inside and around each highlight

area.

Build hierarchical links between sample points and patches in the

environment and use ray tracing to detect occlusion.

Assign to each patch one radiance image and one average radiance

value captured at the camera position.

Assign zero to �� at each hierarchical link.

For iter=1 to N

For each hierarchical link,

use its �� to update its associated radiance value;

For each surface,

optimize its BRDF parameters using the data

from its sample points;

For each hierarchical link,

estimate its �� with the new BRDF parameters.

End

Figure 4.6: The Inverse Global Illumination algorithm.
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4.7 Results

4.7.1 Results for a Simulated Scene

We first tested our algorithm on a simple simulated cubical room with mutual illumination.

This allowed us to verify the accuracy of the algorithm and compare its results to ground

truth. All the six surfaces of the room have monochromatic diffuse and specular compo-

nents, but each one has a distinct set of parameters. Each of the surfaces has spatially

uniform specularity. We assigned two surfaces to be anisotropically specular and added

10-20% zero mean white noise to the uniform diffuse albedo of two surfaces to simulate

spatial variations. We used the RADIANCE rendering system [81] to produce synthetic

photographs of this scene. Six of the synthetic photographs were taken from the center

of the cube with each one covering one of the six surfaces. Another set of six zoomed-in

photographs were taken to capture the highlight areas. The scene was illuminated by six

point light sources so that specular highlights could be observed on each surface. These

twelve images along with the light source intensity and positions were used to solve the

BRDF parameters. The images of the specular highlights are shown in Fig. 4.7. Some of

the highlights are visually very weak, but corresponding parameters can still be recovered

numerically. The original and recovered BRDF parameters are given in Table 4.1. For the

last two surfaces with noisy diffuse albedo, the recovered albedo values are compared to

the true average values. The total running time for BRDF recovery is about half an hour on

a SGI (� 180MHz workstation.

The numerical errors shown in Table 4.1 are obtained by comparing the recovered pa-

rameters with the original ones. There are three sources of error: BRDF modeling error,
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rendering error, and BRDF recovery error. BRDF modeling error comes from the inability

of a given BRDF model to capture the behavior of a real material. By using the same model

for recovery that RADIANCE uses for rendering, BRDF modeling error was eliminated for

this test. However, because RADIANCE computes light transport only approximately, ren-

dering error is present. We thus cannot determine the exact accuracy of our BRDF recovery.

However, the test demonstrates that the algorithm works well in practice.
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(a)

(b)

Figure 4.7: Synthetic grey-scale images of the interior of a unit cube in the presence of

mutual illumination. (a) A wide-angle view of the cube with light sources(white dots) and

specular(isotropic and anisotropic) highlights; (b) Actual images used for recovering the

BRDF model of each surface. The top row shows the six images taken at the center of

the cube with each one covering one of the six surfaces. The bottom row shows the six

zoomed-in images taken to capture one specular highlight area on each surface. The first

and last surfaces have anisotropic specular reflection. The last two surfaces have 20 and 10

percent zero mean white noise added to their diffuse albedo, respectively.
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�� �� ����� �� �

True 0.3 0.08 0.6 0.03 0

Recovered 0.318296 0.081871 0.595764 0.030520 -0.004161

Error(%) 6.10 2.34 0.71 1.73

True 0.1 0.1 0.3

Recovered 0.107364 0.103015 0.300194

Error(%) 7.36 3.02 0.06

True 0.1 0.01 0.1

Recovered 0.100875 0.010477 0.101363

Error(%) 0.88 4.77 1.36

True 0.3 0.02 0.15

Recovered 0.301775 0.021799 0.152331

Error(%) 0.59 8.90 1.55

True 0.2 0.05 0.05

Recovered 0.206312 0.050547 0.050291

Error(%) 3.16 1.09 0.58

True 0.2 0.1 0.05 0.3 45

Recovered 0.209345 0.103083 0.050867 0.305740 44.997876

Error(%) 4.67 3.08 1.73 1.91

Table 4.1: Comparison between true and recovered BRDF parameters for the six surfaces

of a unit cube. The first and last surfaces have anisotropic specular reflection. They have

two more parameters: second roughness parameter 8� and the orientation * of the principal

axes in a local coordinate system. The errors shown are the combined errors from both

rendering and recovering stages.
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Figure 4.8: The complete set of forty radiance images of the room used to recover re-

flectance properties. Except for a few small areas, every surface in the room was seen in

at least one radiance image. Each radiance image was constructed from between one and

ten digital pictures depending on the dynamic range of the particular view. Black areas

indicate regions which were saturated in all input images, and are not used by the recovery

algorithm. The last three radiance images, reproduced ten stops darker than the rest, inten-

tionally image the light bulbs. They were used to recover the positions and intensities of

the sources.

4.7.2 Results for a Real Scene

In this section we demonstrate the results of running our algorithm on a real scene. The

scene we chose is a small meeting room with some furniture and two whiteboards; we also

decorated the room with colored cards, posters, and three colored metallic spheres Once the

BRDFs of the materials were recovered, we were able to re-render the scene under novel

lighting conditions and with added virtual objects.
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Figure 4.9: The model of the room, photogrammetrically recovered from the photographs

in Fig 4.8. The recovered camera positions of the forty photographs are indicated.

Data Acquisition

We illuminated the scene with three heavily frosted 3-inch diameter tungsten light bulbs.

Using high dynamic range photography, we verified that the lights produced even illumina-

tion in all directions. A DC power source was used to eliminate 60Hz intensity fluctuations

from the alternating current power cycle.

We used a Kodak DCS520 color digital camera for image acquisition. The radiance

response curve of the camera was recovered using the technique in [11]. We used a wide-

angle lens with a 75 degree field of view so that we could photograph all the surfaces in the

scene from a few angles with a relatively small number of shots. Forty high dynamic range

radiance images, shown in Fig. 4.8, were acquired from approximately 150 exposures.
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��(red) ��(green) ��(blue) ��(red) ��(green) ��(blue) �

whiteboard 0.5794 0.5948 0.6121 0.0619 0.0619 0.0619 0.0137

roundtable top 0.7536 0.7178 0.7255 0.0366 0.0366 0.0366 0.0976

door 0.6353 0.5933 0.5958 0.0326 0.0326 0.0326 0.1271

wall 0.8543 0.8565 0.8036 0.0243 0.0243 0.0243 0.1456

poster 0.1426 0.1430 0.1790 0.0261 0.0261 0.0261 0.0818

red card 0.7507 0.2404 0.3977 0.0228 0.0228 0.0228 0.0714

yellow card 0.8187 0.7708 0.5552 0.0312 0.0312 0.0312 0.1515

teal card 0.4573 0.5951 0.5369 0.0320 0.0320 0.0320 0.1214

lavender card 0.3393 0.3722 0.4437 0.0077 0.0077 0.0077 0.1144

red ball 0 0 0 0.5913 0.1862 0.3112 0

green ball 0 0 0 0.2283 0.3694 0.3092 0

blue ball 0 0 0 0.2570 0.3417 0.4505 0

Table 4.2: BRDF parameters recovered for the materials in the test room. All of them are

isotropic, and most of them are plastic. The balls are metallic.

Twelve of the images were taken specifically to capture specular highlights on surfaces.

The radiance images were processed to correct for radial light falloff and radial image

distortion. Each of these corrections was modeled by fitting a polynomial of the form

� � �-� � )-� to calibration data captured with the same lens settings used for the scene

images. To reduce glare and lens flare, we shaded the lens from directly viewing the light

sources in several of the images. Regions in the images corresponding to the light stands

(which we did not model) or where excessive remaining glare was apparent were masked

out of the images, and ignored by the algorithm. The thin cylindrical light stands which
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appear in the synthetic renderings have been added to the recovered model explicitly.

The radiance images were used to recover the scene geometry and the camera positions

(Fig. 4.9) using the Façade [12] modeling system. Segmentation into areas of uniform

specular reflectance was obtained by having each polygon of each block in the model (e.g.

the front of each poster, the surface of each whiteboard, the top of each table) have its own

uniform specular reflectance parameters.

The positions and intensities of the three light sources were recovered from the last three

dynamic range radiance images. The positions were recovered using triangulation. During

BRDF recovery, the area illumination from these spherical light sources was computed by

stochastically casting several rays to each source.

BRDF Recovery

Given the necessary input data, our program recovered the surface BRDFs in two stages. In

the first stage, it detected all the highlight regions and recovered parametrized BRDFs for

the surfaces. In this stage, even if a surface had rich texture, only an average diffuse albedo

was recovered. Surfaces for which no highlights were visible the algorithm considered

diffuse. The second stage used the recovered specular reflection models to generate diffuse

albedo maps for each surface by removing the specular components.

The running time for each of the two stages was about 3 hours on a Pentium II 300MHz

PC. The results show our algorithm can recover accurate specular models and high-quality

diffuse albedo maps. Fig. 4.10 shows how specular highlights on the white board were

removed by combining the data from multiple images. Fig. 4.11 shows the albedo maps

obtained for three identical posters placed at different places in the room. Although the
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posters were originally seen in different illumination, the algorithm successfully recovers

very similar albedo maps for them. Fig. 4.12 shows that the algorithm can remove ”color

bleeding” effects: colors reflected onto a white wall from the cards on the table do not

appear in the wall’s diffuse albedo map. Table 4.2 shows the recovered specular parameters

and average diffuse albedo for a variety of the surfaces in the scene. We indicated to the

program that all the materials are isotropic, and that the metallic spheres only have ideal

specular components3.

Re-rendering Results

We directly compared synthetic images rendered with our recovered BRDF models to real

images. In Fig. 4.13, we show the comparison under the original lighting conditions in

which we took the images for BRDF recovery. In Fig. 4.14, we show the comparison un-

der a novel lighting condition obtained by removing two of the lights and moving the third

to a new location, and adding a new object. There are a few differences between the real

and synthetic images. Some lens flare appears in the real images of both figures, which we

did not attempt to simulate in our renderings. We did not model the marker trays under

the whiteboards, so their shadows do not appear in the synthetic images. In Fig. 4.14, a

synthetic secondary highlight caused by specular reflection from the adjacent whiteboard

3For surfaces that have only ideal specular reflection, such as mirrors, there is no diffuse component and

the roughness parameter is zero. We can still recover their specular reflectance � � from a single image by

noting that the specular reflectance can be computed as the simple ratio between two radiance values. One is

the radiance value in the image corresponding to the intersection between the surface and a ray shot from the

camera position; the other is the radiance value of the environment along the reflected ray. In practice, we

shoot a collection of rays from the camera position to obtain the average reflectance.
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appears darker than the one in the real image, which is likely due to RADIANCE’s approx-

imations for rendering secondary specularities. However, in both figures, real and synthetic

images appear quite similar.

Fig 4.15 shows four panoramic views of the rendered scene. (a) shows the hierarchical

mesh with the initial estimates of radiance obtained from the images. (b) shows the entire

room rendered in the original illumination. (c) shows the entire scene rendered with novel

lighting. The original lights were removed and three track lights were virtually installed

on the ceiling to illuminate the posters. Also, a strange chandelier was placed above the

spheres on the table. The new lights reflect specularly off of the posters and the table. Since

the chandelier contains a point light source, it casts a hard shadow around the midsection

of the room. The interior of the chandelier shade is turquoise colored which results in

turquoise shadows under the spheres. A small amount of synthetic glare was added to this

image. (d) shows the result of adding synthetic objects to various locations in the room,

including two chairs, a crystal ball, two metal boxes, and a floating diamond. In addition, a

very large orange sculpture, was placed at the back of the room. All of the objects exhibit

proper shadows, reflections, and caustics. The sculpture is large enough to turn the ceiling

noticeably orange due to diffuse interreflection.
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Figure 4.10: The left picture is a radiance image of a whiteboard, showing strong specular

highlights. The right picture shows the diffuse albedo map of the whiteboard recovered

from several images. Unlike the radiance image, the diffuse albedo map has a nearly uni-

form background, and is independent of the illumination.

Figure 4.11: The diffuse albedo maps of three posters with the same texture. The posters

were placed at different locations in the real scene with different illumination. Nonetheless,

the recovered albedo maps are nearly the same. For identification purposes, a small yellow

square was placed in a different location on the lower right of each poster.

79



Figure 4.12: The left image shows a part of a wall that becomes noticeably colored from

light reflecting from the cards placed on the table below, an effect known as ”color bleed-

ing”. The right image shows the recovered albedo map of the same part of the wall. It is

nearly uniform, showing that the color bleeding was properly accounted for. The black line

indicates where the table top aligned with the wall.

Figure 4.13: A comparison between real images (top) and synthetic renderings of our room

with the recovered reflectance parameters (bottom). The simulated lighting is the same as

in the original pictures, and the synthetic viewpoints have been matched to the recovered

camera positions of the real images. The images show that good consistency was achieved.
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Figure 4.14: A comparison between real and virtual, this time with novel lighting. Two

of the lights were switched off and the third was moved to a new location. In addition,

a real mirrored ball was placed on the red card. The scene was photographed from two

locations and these real views are shown in the top row. To render the bottom row, we

recovered the camera positions and light source position in the top views, estimated the

material properties and position of the ball, and added a virtual ball to the model. The main

noticeable difference is camera glare; however, some inaccuracies in the model (e.g. the

whiteboard marker tray was not modeled) are also apparent. Otherwise, the illumination of

the scene and appearance and shadows of the synthetic object are largely consistent.
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(a) Initial hierarchical polygon mesh, with radiances assigned from images.

(b) Synthetic rendering of recovered properties under original illumination.

(c) Synthetic rendering of room under novel illumination.

(d) Synthetic rendering of room with seven virtual objects added.

Figure 4.15: Panoramic renderings of the room with various changes to lighting and geom-

etry.
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Chapter 5

Modeling and Recovering Illumination

and Reflectance for Outdoor

Architectural Scenes

5.1 Introduction

It is light that reveals the form and material of architecture. In keeping with its rhythms of

light and dark, clear and cloudy, the architecture evokes distinct visual moods and impres-

sions, something that many photographers and painters have sought to capture. Perhaps

the most noteworthy of these attempts is the famous series of studies of the Cathedral at

Rouen by Claude Monet–he painted the same facade at many different times of day and in

different seasons of the year, seeking to capture the different ‘impressions’ of the scene.

The goal of this section is to develop this theme in the context of computer graphics. To

produce renderings under new outdoor lighting conditions, we solve a series of optimiza-
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tion problems to find the parameters of appropriate lighting and reflectance models that best

explain the measured values in the various photographs of the scene. The lighting models

include those for the radiance distribution from the sun and the sky, as well as a landscape

radiance model to consider the effect of illumination from the secondary sources in the

environment. Note that illumination from these secondary sources, such as the ground near

the floor of a building can be very important and is often the dominant term in shadowed

areas. To have sufficient data for parameter recovery, we take several photographs–of the

sun, the sky, the architecture, and the environment surrounding the architecture. This en-

ables us to recover radiance models for the sun, sky and environment for that time of day.

The process is repeated for a few different times of the day; collectively all these data are

used to estimate the reflectance properties of the architecture. It is assumed that a geo-

metric model of the architecture had previously been created using a modeling system, so

at this stage enough information is available to rerender the building under novel lighting

conditions. The data-flow diagram of the system is given in Figure 5.1.

There are several technical challenges that must be overcome. We highlight a few of

them here:

1. The photographs do not directly give us radiance measurements–there is a nonlinear

mapping which relates the digital values from the photograph to the radiance in the

direction of that image pixel. This can be estimated using the technique from [11],

and subsequent processing performed using radiance images.

2. Measurements that we make from photographs are not sufficient to recover the full

spectral BRDF. We need to define a new concept, the pseudo-BRDF associated with
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Figure 5.1: Data-flow diagram of the architectural re-rendering system.

a particular spectral distribution of the illuminant. This is done in Section 5.2. Our

system is based on recovering pseudo-BRDFs for the architecture, and then subse-

quently using them for re-rendering. We recover two pseudo-BRDFs, one corre-

sponding to the spectral distribution of the sun and one corresponding to the inte-

grated light from the sky and landscape.

3. Producing renderings of the scene at novel times of day requires being able to predict

lighting from the sun, sky and environment at such times. For the sun and sky,

we rely on interpolated/extrapolated radiance models of the sun and sky (Section

5.5). Prediction of radiance from the environment at a novel time requires use of the

computer vision technique of photometric stereo to recover a low resolution surface

normal map of the environment, which can then be used in conjunction with the new
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sun position to yield the new environment radiance map.

5.2 The Pseudo-BRDF Concept

The traditional way to formally define reflectance is using the concept of the bidirectional

reflectance distribution function (BRDF) defined as follows:

0�$�� 9�� $�� 9�� �� �
�"�$�� 9�� ��

"�$�� 9�� �����$��:�

(5.1)

where "�$�� 9�� �� is the incident radiance and �"�$�� 9�� �� is the reflected differential radi-

ance.

Note the dependence on wavelength �. There has been some previous work using a

spectrophotometer to carefully measure spectral BRDFs [66]. However, we concluded that

it is impractical to use such a technique to measure the BRDFs of complex, outdoor scenes.

Our philosophy is to work with whatever information can be extracted from photographs,

and we will use just an ordinary handheld digital video camcorder to acquire these pho-

tographs. Assume that the camera is geometrically calibrated, permitting us to identify ray

directions from pixel locations.

In such a photograph, the value � obtained at a particular pixel in a particular channel

(R, G, B) is the result of integration with the spectral response function %���

� �
�
%��������� ! (5.2)

where ���� is the incident radiance.
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Suppose we take photographs of an area light source and of an object illuminated by

this light source. Let us check the impact of this spectral integration over the traditional

BRDF reflection model. What we can get from the photograph of the area light source is

"������$�� 9�� �
�
"�$�� 9�� ��%����� (5.3)

and what we can get from the photograph of the object is

"������$�� 9�� �
�
"�$�� 9�� ��%�����

�
� �

"�$�� 9�� ��0�$�� 9�� $�� 9�� ��%����� ���$��:�! (5.4)

If we follow the definition of BRDF, but use "������$�� 9�� and "������$�� 9�� instead, we

can define the following quantity which we will call the pseudo-BRDF

0
������$�� 9�� $�� 9�� � � ��
���!��"��

 ��
���!��"�����!��#�
(5.5)

�



 �!��"��$���!��"��!��"��$�%�$� �$

 �!��"��$�%�$� �$

(5.6)

We note some properties of the pseudo-BRDF here:

� The pseudo-BRDF is equal to the real BRDF when the real BRDF does not vary with

the wavelength. So they usually are not the same.

� In general, the pseudo-BRDF varies as the spectral distribution of the light source

varies.

� If the spectral response function %��� � Æ�� � ���, then 0
������$�� 9�� $�� 9�� �

0�$�� 9�� $�� 9�� ���.
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Suppose we have a geometric model of some building. For the purpose of re-rendering

under different lighting conditions, we need to recover the reflectance of the faces in the

model. Since only pseudo-BRDFs can be recovered directly from photographs for each

color channel and pseudo-BRDFs are sensitive to the spectral distribution of the light

source, theoretically, we should divide the sky and the environment into small regions

which have almost uniform spectral distributions spatially and recover distinct pseudo-

BRDFs for each region. This is impractical because all these regions have their lighting

effects on the considered architecture altogether and it is impossible to turn on only one of

them and shut down the rest to recover individual pseudo-BRDFs. What we want to do is to

recover as few pseudo-BRDFs as possible, but still get good approximations in rendering.

It is possible to separate the sun from the sky since the sun moves across the sky during a

day and a face of a building can be lit or unlit at different times. This has the same effect

as turning the sun on or off for that face. It is also necessary to do this separation because

the sun is the most important light source and its spectral distribution is so different from

the blue sky. As to the rest of the sky and the environment, we find from experiments that

recovering only one set of pseudo-BRDFs for them works very well. From now on, we

will always recover two sets of pseudo-BRDFs, one of which corresponds to the spectral

distribution of the sun, and the other to the integrated effect of the sky and environment.

They will be used for re-rendering under novel lighting conditions under the assumption

that the spectral distribution of daylight does not change much. Under extreme conditions,

sunrise and sunset, we may expect these pseudo-BRDF’s to cease being accurate.
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5.3 Measuring and Modeling Illumination

(a) (b)

(c) (d)

Figure 5.2: (a)Solar image obtained using a couple of neutral density filters, (b) Solar

aureole obtained using fast shutter speed, (c) a photograph for the zenith, (d) a photograph

for the landscape and the sky near the horizon.

We consider three sources of illumination. Light can be from the sun, the sky and

the surrounding environment which serves as a secondary light source. Of course, in some

fundamental sense, the sun is the only true light source. Both skylight and the light from the

environment are ultimately derived from the sun. However, with an image-based approach,

we need to measure and model these three sources separately. We shall not be constructing

a physically correct global illumination model of the atmosphere and environment taking

into account all the scattering and reflection effects!

To model these illumination sources, we take photographs of the sun, the sky and en-

vironment using a handheld CCD camera. To accurately measure the radiance, we need
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(a) (b) (c) (d)

Figure 5.3: (a) A sky radiance model obtained by data-fitting,(b)-(d) the R,G,B channels

of the sky model in (a). All color channels are generated using the same sky luminance

model, but each color channel has its own distinct parameters.

to convert the photographs into radiance images by inverting the nonlinear mapping be-

tween the incident radiance of the camera and its digital output. To recover this nonlinear

mapping, we use the technique described in [11].

5.3.1 The Sun

We can measure the radiance of the sun with a camera and a couple of neutral density

filters(Figure 5.2(a)) to make it unsaturated so that we can recover its dynamic radiance

using the nonlinear mapping introduced before. The solid angle subtended by the sun

can be obtained from the diameter of the sun and the distance between the sun and the

earth. The solar position(altitude and azimuth) can be obtained from formula given in the

appendix of [101], provided that the latitude and longitude of the site on the earth’s surface,

and the time and date are known. We model the sun as a parallel light source.
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5.3.2 The Sky

We can take photographs of the sky in order to measure its radiance distribution. But there

exist a couple of problems. First, it is hard to know the camera pose because there is no

feature in the sky to calibrate camera orientation if the sky is clear; second, it is hard to get

a picture of the whole sky even with a fish-eye lens because there might be some objects

occluding part of the sky, such as trees, buildings, and mountains; third, the intensity of

circumsolar region or solar aureole can be very high, and can easily get saturated at a

normal shutter speed. To solve the first problem, we decided to include some buildings

as landmarks in each photograph so that we can use them to recover the camera pose

later. But this means we are going to have more occlusions. While we will take multiple

photographs(Figure 5.2(c)(d)) and hope the invisible part of the sky in one photograph will

become visible in some other photograph, there is no way to guarantee that every part of

the sky will be seen. Our approach to solve this difficulty is to have a sky model which we

can fit to the visible parts of the sky and extrapolate into the invisible parts. To solve the

last problem, we use a set of different shutter speeds for the solar aureole with each speed

capturing the radiance inside a circular band centered at the solar position(Figure 5.2(b)).

Several papers present physical models of sky radiance [85, 86, 94]. However, we do

not know how closely they approximate the real sky. Furthermore, physical models often

give the spectral distribution of any point in the sky. It is very hard to fit these models to

RGB data taken from photographs.

On the other hand, there are also many empirical models for sky luminance or radi-

ance distribution [90, 92, 93, 91]. All CIE standard sky formulae are fixed sky luminance
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distributions. They can not be used for the purpose of data-fitting. The all-weather sky lu-

minance model proposed in [90] is a generalization of the CIE standard clear sky formula.

It is given by

3��;� *� � 3�< ��;� *������ =� (5.7)

where ; is the zenith angle of the considered sky element and * is the angle between this

sky element and the position of the sun, 3�< is zenith luminance, = is the zenith angle of

the sun, and

��;� *� � �� � � ����)� ��� ;�	�� � � �����*� � � ���� *	 (5.8)

where �� )� �� �� and � are adjustable coefficients. These variable coefficients make this

empirical model more flexible than others, which means we might have a better fit by using

this model. Since both 3�< and ���� =� in the above model are unknown constants, we

replace them with one new variable coefficient which can be optimized during data fitting.

Empirically, we also find it is better to have one more variable coefficient as the exponent

of * in the term with � and �. Thus, we obtain the following revised seven-parameter sky

model

3��;� *� � 3<�� � � ����)� ��� ;�	�� � � �����*&� � � ���� *	 (5.9)

where �� )� �� �� �� >� and 3< are variable coefficients.

Up to now, we still only have a sky luminance model which does not have colors. We

have not seen in the literature any approach converting sky luminance models to RGB color
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distributions. The method proposed in [94] converts luminance data to color temperatures

and then to spectral distributions. The relationship they use between luminance and color

temperatures is not necessarily accurate for different weather conditions. Based on the fact

that the sky radiance distribution at each color channel has a similar shape, we decided to

use the same model but a distinct set of coefficients for each color channel by fitting the

above revised model to the data from each channel. In practice, the error of data-fitting

remains very small for each channel, which means our method is appropriate. Skies thus

obtained have convincing colors.

Since there might be trees, buildings or mountains in photographs, we interactively

pick some sky regions from each photograph and fit the revised sky model to the chosen

sky radiance data by using Levenberg-Marquardt method [99] to minimize the weighted

least-square

'	
���

�
�� � 3��;�� *��

��
	� (5.10)

where ��’s are the chosen sky radiance data from photographs and ��’s are weights. We

tried different weighting schemes, such as �� � �� ��� �������� ���sqrt����� or ��, and

found the best result was obtained when �� � ��� �������. With this weighting scheme, the

fitting error at most places is within 5%. A recovered sky radiance model is given in Figure

5.3.
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Figure 5.4: Two views of a spherical environment map. The upper hemisphere corre-

sponds to the sky and the lower hemisphere has the radiance values from the surrounding

landscape.

5.3.3 The Environment

By our definition, the environment of an outdoor object is its surrounding landscape. It

can be a more significant light source than the dark side of a clear sky. There are mu-

tual interreflections between an object and its environment. For reflectance recovery, we

need to measure the radiance distribution of the whole environment which includes radi-

ance from all visible objects and is the equilibrium state of mutual interreflections. It is

assumed that we do not interfere with this equilibrium state when we take photographs of

the environment.

For our purpose, we only need a coarse-grain environment radiance map to do irradi-

ance calculation because irradiance results from an integrated effect of the incident radiance

distribution. High-frequency components can therefore be ignored. We subdivide the en-

vironment sphere along latitudinal and longitudinal directions and get a set of rectangular

spherical regions. Once we have those environment photographs(Figure 5.2(d)) and their
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camera orientations, we project every pixel into one of the spherical regions. Finally, we

average the color of the pixels projected into each region and give the result as the average

radiance from that region. If the architecture has large size, we may need to capture more

than one environment map at different locations because the surrounding light field is a

four dimensional distribution. However, since the integrated irradiance over the surfaces

changes smoothly and slowly, we do not need to capture more than a small number of

coarse-grain environment maps.

Two images of a spherical environment map including radiance distribution from both

the sky and the landscape are shown in Figure 5.4.

5.4 Recovering Reflectance

Figure 5.5: Some photographs of a bell tower for reflectance recovery

Recall from Section 5.2, that we decided to recover two sets of pseudo-BRDFs: one

corresponding to the spectral distribution of the sun, and the other corresponding to the

spectral distribution of the irradiance from both the sky and environment.
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(a) (b) (c) (d) (e)

Figure 5.6: (a) A simple geometric model of a bell tower, (b)-(c) Diffuse pseudo-albedo

recovered by using irradiance from both the sky and the landscape, (d) diffuse pseudo-

albedo recovered incorrectly by only using irradiance from the sky, (e) diffuse pseudo-

albedo corresponding to the spectral distribution of the sun.

Since the outside surfaces of most buildings are close to Lambertian, we spent most

efforts on recovering pseudo-albedos. The recovery of diffuse pseudo-albedos at each sur-

face point needs the incident irradiance and the outgoing diffuse radiance. The incident

irradiance is obtained by gathering light from the sun, the sky, the environment, and pos-

sibly other polygonal faces occluding part of the previous three sources. We can get the

irradiance from the sun by using the surface normal, the color and solid angle of the sun

which we got from Section 5.3.1. The approach to gather light from the sky and environ-

ment is discussed in Appendix B. Gathering light from occluding faces can be done using

the method in [83]. We use one-bounce reflection to approximate the interreflection among

different faces.

Multiple photographs are taken for the considered building at different viewing direc-
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tions and times(Figure 5.5). Since most architectural materials are only weakly specular

except for windows, if our viewing direction is far away from the mirror angle of the cur-

rent solar position, we can assume only diffuse radiance is captured in the photograph.

Since each photograph can only cover some part of the architecture and there are occlu-

sions among different faces, we need to decide which face is visible to which photographs.

Visibility testing and polygon clipping was discussed in Section 3.5.

Since every surface of the building has its own surface texture, we need to incorporate

these spatial variations into its pseudo-albedos. Each polygon in the geometric model is

first triangulated and a dense grid is set up on each triangle in order to capture the varia-

tions. This step is similar to that introduced in [44]. Each grid point is projected onto the

photographs to which it is visible and a radiance value is taken from each photograph. The

diffuse pseudo-albedo at the grid point is obtained by dividing the average radiance by the

irradiance.

We need at least two photographs for each face of the building to recover both sets of

pseudo-BRDF’s. And it should not be lit by the sun in one photograph and should be lit in

the other. Thus we have two equations for each surface point, one from each photograph.

5"��� � 0������
�� (5.11)

5"��� � 0������
�� � 0������� (5.12)

where "��� and " ��� are radiance values obtained from the two photographs, � ���
�� and ����

��

are the irradiance from the sky and environment, ���� is the irradiance from the sun, 0��

is the pseudo-albedo corresponding to the spectral distribution of the sky and environment,
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and 0��� is the pseudo-albedo corresponding to the spectral distribution of the sun.

From (5.11), we can solve 0��. By substituting it into (5.12), we can solve 0��� too.

Of course, if we have more than two photographs, these estimations can be made more

robust. Figure 5.6 displays the recovered diffuse pseudo-albedo. Figure 5.6(b)&(c) shows

the diffuse pseudo-albedos of four different sides of a bell tower. These recovered pseudo-

albedos are quite consistent with each other, providing an independent verification of our

procedure since we recovered them from different photographs shot at different times.

We can choose solar positions to avoid large shadows cast on the architecture. When

large shadows are inavoidable, we can interactively label the shadow boundaries to separate

sunlit regions from shadowed ones. If there are several buildings located close to each other

such that some sides of the buildings can not be lit by the sun or we can not simply take

photographs for them, our method can not be applied. A solution to this difficulty might be

to fill in reflectance values from adjacent faces.

5.5 Modeling Illumination at Novel Times of Day

To generate renderings of the scene at a novel time of day, we need to predict what the

illumination will be at that time. This requires us to construct sun, sky and environment

illumination models appropriate to that time. We have available as a starting point, the

illumination models for a few times of day where we took the initial photographs, recovered

using the techniques introduced in Section 5.3.
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5.5.1 The Sun And Sky

Given the local time of day, the solar position(altitude and azimuth) can be obtained directly

from formula given in the appendix of [101], provided that the latitude and longitude of the

site on the earth’s surface and the day number in a year are all known.

Finding the appropriate sky model requires more work. First we consider sky interpola-

tion during the main part of the day, ignoring sunrise and sunset. Note that the sky radiance

distribution changes with the solar position, and naive pointwise radiance interpolation at

each point in the sky would not work as shown in Figure 5.7.

(a) (b)

Figure 5.7: 1D Schematic of sky interpolation where peaks represent sky radiance at solar

aureole. (a) A new sky(solid) obtained by pointwise interpolating two sky models(dot). It

is not correct because it has two peaks. (b) A new sky(solid) obtained with our interpolating

scheme.

Instead, let’s examine the sky model in (5.9). It has three parts. The first part is the

scaling factor 3< which controls the overall brightness of the sky. If not during sunrise or

sunset, it should be almost a constant. The second part is the sky background. We denote

it by 
.�;�. The third part is the solar aureole. We denote it by ���*�. The shapes of


.�;� and ���*� remain unchanged during most times of a day. What changes is their

relative position. ���*� rotates relative to 
.�;� as the sun moves across the sky. Based
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 5.8: (a)-(d) Environment maps for four different times, obtained from multiple

photographs, (e)-(h) corresponding environment maps generated with the recovered en-

vironment radiance models which were obtained by data-fitting. There is one recovered

radiance model for each environment region.

on this observation, we derive a sky interpolation scheme. Suppose we have recovered ?

sky models. If we need a new sky model at a different time, a grid is first set up on the

sky hemisphere. At each grid point with parameters �;�� *�� corresponding to the new solar

position, we can get three data sets �3<	 � 
.	�;��� ��	�*��� � � �� � � � � ?� from the existing

models. Set the sky radiance at the grid point to be the product of three weighted averages of

the three data sets. The weight for each existing sky model is proportional to the reciprocal

of the angular distance between the new solar position and the solar position of that sky
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model. Finally, with the radiance values at the grid points, we can run an optimization to

fit a new sky model.

During sunrise or sunset, there is less light from short wavelengths. So the sun and

solar aureole appear more red. The whole sky is darker. But the color of the rest of the

sky only changes a little. It is well known, e.g. [86], that the color of the sky and sun is

caused by scattering in the atmosphere. If a light beam travels a distance � in a medium

with scattering particles, its intensity will be decreased by a factor of �����@�� where @ is

a constant coefficient. With different @’s for different wavelengths, the color of the beam

will also change. The distance � that the sunlight travels through the atmosphere is the

smallest when solar direction is perpendicular to the ground and it increases when the sun

moves closer to the horizon. The optical depth of the atmosphere at the horizon is about 38

times that at the zenith. A formula to compute � for any solar position can be found in [86]

which tries to get the color of the sun and sky from physics-based models. However, we

want to fit the above scattering model to real measurements. We measured solar radiance

during the day and sunset and fit a distinct @ for each color channel. We use the same

coefficients to get the color of solar aureole. For the sky background, we use an average @

for all three color channels to decrease the brightness but keep the color unchanged.

5.5.2 Environment Radiance Model

Predicting radiance models for the sun and sky is not enough, because the building also

receives light reflected from other surfaces in the environment. Predicting the environment

radiance map at a novel time is a challenging problem, and it may appear that the only
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solution would be to completely geometrically model the rest of the environment and then

solve a global illumination problem to render the entire scene. However we have found an

acceptable approximation for our purposes by a much simpler technique.

The idea is to recover not the detailed geometric structure of the environment, but rather

a very crude, low frequency model adequate enough for our purpose – obtaining an approx-

imation to the illumination resulting from it on the primary architectural piece of interest.

We use the technique of photometric stereo for shape-from-shading in computer vi-

sion [98] to recover the average reflectance, assumed lambertian, and surface normal for

each region of the environment. One can solve for the albedo and normal orientation at

each pixel location in an overdetermined system by taking multiple images of the same

object with the same camera position but different positions of the single light source. In

our context, the different positions of the light source are generated by the movement of the

sun during the day. Interreflections within the environment are neglected. The Lambertian

model appears reasonable because most surfaces in an outdoor scene are pretty diffuse.

The big change is that we do not have a single light source, but must consider both the sky

and the sun as light sources. Considering the sky as an ambient light source and the sun as

a directional light source, we have the following formulation

"��� �

����������
���������

0������� � 0
��������'��� � 6����

� if '��� � 6��� � ��

0������� � otherwise!

(5.13)

where 0��� is the pseudo-albedo corresponding to the spectral distribution of the sky, ����

is the magnitude of the total flux from the sky because we consider the sky as an ambient
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source, 0��� is the pseudo-albedo corresponding to the spectral distribution of the sun,����

is the irradiance from the sun, '��� is the normal of the considered region and 6��� is the

solar position. The reason why we allow 0��� and 0��� to be independent because they are

related to pseudo-BRDF’s corresponding to the spectral distributions of the sky and the sun

and we expect them to be very different.

Since we have three color channels, both 0��� and 0��� have three components, and

'��� has two degrees of freedom because it has unit length. There are eight unknowns

for each environment region. If we photograph the environment for at least three solar

positions and get the corresponding sky flux values, we would have at least nine equations

at each environment region and the unknowns can be estimated by weighted least-square

method. Note that the trajectory of the sun seen from the surface of the earth is not a

planar curve, otherwise the three solar positions would not give us independent information.

The estimated pseudo-albedos and normal can then be used to predict radiance under new

lighting conditions.

How can we impose the constraint that '��� has unit length ? We could just add a

penalty term in (5.13) to do this. However we find, among the six variables in 0��� and

'���, there are only five degrees of freedom. We can just set one of them to be a constant to

impose the constraint more strictly. Any component of '��� can be either zero or nonzero.

It is more appropriate to set one component of 0��� to be a positive constant, say 0.1. Now

'��� does not necessarily have unit length. (5.13) should be rewritten in the following way
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"��� �

����������
���������

0������� � �0����'����������
����
������

� 6����

� if '��� � 6��� � ��

0������� � otherwise!

(5.14)

We use the Levenberg-Marquardt method to solve this nonlinear least-squares problem.

However this technique requires the objective function to have a derivative everywhere

while our formulation above does not have one when '��� � 6��� � �. One way to get

around this is to reformulate (5.14) as follows

"��� �

���������������
��������������

0������� � �0����'����������
����
������

� 6����

� if '��� � 6��� � ��

0������� � �0����'����������

� �
(
����� (

������
'��� � 6����� �	� � otherwise!

(5.15)

where 8 can be any large positive constant, say 1000.

We can check that (5.15) has derivative everywhere and its second term keeps very close

to zero when '����6��� A �, which is a good approximation to (5.14). Levenberg-Marquardt

method can be easily used to minimize the least-square error criterion for (5.15). The start

point of 0��� is set to the ratio between the average radiance and the average magnitude

of incident flux from the sky, and the start point of 0��� is set to the ratio between the

average radiance and the average irradiance from the sun. We may obtain meaningless

values for the normal if some region is never lit by the sun. To alleviate this problem,

during the optimization, if the data fitting error at some region is larger than a threshold and

the obtained normal is pointing away from the building, we remove the solar term in the

above model and only try to get an estimation for 0���. Adding a smoothing term between
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adjacent regions may also help. Some recovered environment radiance maps with the above

modeling method are given in Figure 5.8(e)-(h). For every region of the environment, we

have eight unknowns in the model and twelve equations obtained from four different times

of day. Since the system is overdetermined, the good fit in Figure 5.8 provides justification

for our simplifying assumptions that the environment is Lambertian and that interreflections

within the environment can be neglected.

(a) (b) (c)

(d) (e) (f)

Figure 5.9: (a)-(c) Three real photographs of a bell tower taken with shutter duration

1/1500 a second, (d)-(f) three corresponding synthetic images for the same time and shutter

speed. They look similar although the real photographs in (a)-(c) are not used for training

and generating the synthetic images.
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(a) (b) (c)

(d) (e)

Figure 5.10: Five synthetic images of a bell tower under a clear sky with shutter duration

1/1500 a second. They represent the appearances of the bell tower at different times(solar

positions) on a sunny day close to the end of August at a location with latitude 37.8 and

longitude -122.3. (a) 7am, (b) 1pm, (c) 4pm, (d) 6pm, (e) 6:30pm.

5.6 Results

We chose the Berkeley bell tower(Campanile) as our target architecture and took a total

of about 100 photographs for the tower, the sky and the landscape at four different times.

These photographs are used as source in data-fitting. They can be considered as training

data. From the various measurements and recovered models, we found the relative im-

portance of each illumination component and reflectance component in our example. On

shaded sides of the tower, the irradiance from both the sky and landscape has the same

order of magnitude, but the irradiance from the landscape is larger. On sunlit sides, the sun

dominates the illumination if its incident angle is not too large. The percentage varies with
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(a) (b)

(c) (d)

Figure 5.11: Four synthetic images of a bell tower with shutter duration 1/1500 a second

under an overcast sky with different percentages of blocked sunlight(PBS). (a) PBS=0.0,

(b) PBS=0.5, (c) PBS=0.9, (d) PBS=0.95.

different color channels. If the incident angle is less than 60 degrees, the light from the sun

may exceed 90% in the red channel, and 60% in the blue channel.

We also took photographs at a fifth time. Those photographs are used for comparison

with re-rendered images. They can be considered as testing data.

Relative positions and orientations of the cameras are currently calibrated by using the

FACADE system in [12]. Alternatively, we could use any standard mosaicing technique

for the environment photographs. Exterior orientation is calibrated with a compass map or

the solar position.
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Photometric calibration of the camera is done using the technique in [11]. Once we

have recovered the nonlinear mapping between incident radiance and camera output, we

can use it to further recover the radiance at each pixel by taking photographs at different

shutter speeds and combining them. All subsequent processing in the system uses radiance

values. At the end, re-rendered radiance images are converted back to normal images using

the nonlinear response curve of the sensor.

5.6.1 Comparison With Ground Truth

Our approach makes a number of simplifying assumptions and approximations. It is there-

fore necessary to check the accuracy of our re-rendering by rendering the bell tower at the

fifth time and comparing the synthetic images with real photographs shot at the same time.

Three pairs of images from three different viewpoints are shown in Figure 5.9. The sky in

the synthetic images are obtained by clear sky interpolation introduced in Section 5.5.1.

5.6.2 Sunrise To Sunset Simulation

A sequence of images are shown in Figure 5.10. It includes images at sunrise and sunset

simulated with the technique in Section 5.5.1. Images rendered for sunrise and sunset

can only be considered as approximations to real photographs because the solar spectrum

changes at these periods, but we still use previously recovered pseudo-BRDF’s. However,

these approximations look realistic.
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5.6.3 Intermediate And Overcast Sky Simulation

By intermediate and overcast skies, we mean there is a uniform layer of clouds covering

the sky which blocks some or all of the sunlight. To simulate this kind of sky, we can either

get a overcast sky model by data fitting or use CIE standard overcast sky luminance model

along with a user-specified color for the clouds which is usually close to gray. A coefficient

specifying the percentage of the sunlight blocked by the clouds should also be given. Then

the color at a point in the sky is simply a linear interpolation between the color of a clear

sky and the color of the overcast sky. Actually some sky luminance models reviewed in

[93] really use this kind of interpolation between two extreme sky models.

A sequence of images are shown in Figure 5.11. It gives re-rendering results with

various sky interpolation coefficients.

5.6.4 High Resolution Re-Rendering

Since we used a fixed size grid on each triangular patch to capture the spatial variation of

surface reflectance, as the viewpoint moves sufficiently close to the surface of the object,

each grid cell will correspond to multiple image pixels. The resulting rendering then takes

on a somewhat blurred appearance, as variation in surface texture at a resolution finer than

the grid size is lost. In this section we show results from a simple technique by which the

resolution can be boosted to the pixel resolution. The basic idea is to use a high resolution

zoom photograph of the architecture available as a texture map in the “right” way. Since the

lighting conditions can be different, we need pixel wise reflectance values. Let "��� �� be

the radiance measured from the high-resolution photograph at pixel ��� �� and 0��� ��, and
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���� �� be the corresponding high-resolution pseudo-albedo and irradiance at the surface

point corresponding to pixel ��� ��. �"��� ��, �0��� �� and ����� �� are the corresponding

low-resolution versions. Both 0��� �� and ���� �� are unknown, but we can exploit the

fact that the spatial variation in lighting ���� �� has only low frequency components, and

therefore is quite well approximated by ����� ��. We can obtain �0��� �� from previously

recovered pseudo-albedo at surface grid points, and �"��� �� by smoothing "��� ��; then

����� �� �
	 �����
	������

and the high resolution pseudo-albedo 0��� �� can be estimated by

0��� �� �
"��� ��

���� ��

 "��� ��

����� ��
(5.16)

The recovered high-resolution pseudo-albedo 0��� �� can be used for re-rendering under

novel lighting conditions. In Figure 5.12, we give a resulting image from this kind of re-

rendering. A low-resolution image from previously recovered reflectance is also given for

comparison.
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(a)

(b) (c)

Figure 5.12: (a) A re-rendered zoom-in image with shutter duration 1/500 a second with

the sun behind the bell tower using the previously recovered surface pseudo-BRDF’s, (b)

a reference photograph at the same viewpoint, but with a different solar position, (c) a

synthetic image with the same illumination and shutter speed as in (a), but with higher

resolution, rendered using the view-dependent re-rendering technique. It uses both the

reference photograph and the previously recovered low-resolution surface pseudo-BRDF’s.
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Appendix A

BRDF Model and Parameter Recovery

Light

Camera

δ
θ

θ

i

r

N H

Figure A.1: Definitions of the angles used in Ward’s BRDF model. $� is the incident angle,

$� is the viewing angle, and Æ is the angle between the surface normal � and the halfway

vector2 between the lighting and viewing directions.

In this section we present more details on the BRDF model, introduced in Section 4.4,

and how its parameters are recovered. We use Ward’s [80] model for the specular term in

the BRDF, which could be modeled as either isotropic or anisotropic. In the isotropic case,

4�8��� �
�


��� $� ��� $�

����� ���� Æ�8�	

�58�
(A.1)

where 8 is a scalar surface roughness parameter, $� is the incident angle, $� is the viewing
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angle, and Æ is the angle between the surface normal and the halfway vector2 between the

lighting and viewing directions (Fig. A.1). $�, $� are two components (along with 9�, 9�)

of the vector� which represents the incidence and viewing directions.

In the anisotropic case, we need two distinct roughness parameters 8�, 8� for two

principal axes on the surface and an azimuth angle * to define the orientation of these

principal axes on the surface relative to a canonical coordinate system. Then, the parameter

vector � actually has three components �8�� 8�� *� and we have:

4����� �
�


��� $� ��� $�

����� ���� Æ����� 9�8�
� � �
�� 9�8�

��	

�58�8�

(A.2)

where Æ is the same as in the isotropic case, and 9 is the azimuth angle of the halfway

vector2 projected into the local 2D coordinate system on the surface patch defined by the

two principal axes. To compute 9, *, which relates this coordinate system to the canonical

coordinate system, is necessary.

Now to parameter recovery. We wish to find 0�, 0� and � that minimize the squared

error between the measured and predicted radiance,

��0�� 0���� �
�	
���

�3� � 0�
5
"� � 0�4������"��

� (A.3)

where 3� is the measured radiance and "� is the irradiance (computable from the known

light source position) at sample point �� on the surface, and / is the number of sample

points.

Note that given a guess of �, 4������ becomes a known quantity, and minimizing

the error � reduces to a standard linear least-squares problem for estimating 0� and 0�.

Plugging in these values in the right hand side of Eqn. (A.3) lets us compute � as a function

of �. The optimization problem thus simplifies to a search for the optimum value of � to
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minimize ����. This is either a one-dimensional or three-dimensional search depending

on whether an isotropic or anisotropic model of the specular term is being used. We use

golden section search [99] for the isotropic case, and the downhill simplex method [99] in

the anisotropic case. It is convenient that neither method requires evaluating the derivative

�����, and both methods are fairly robust.

To deal with colored materials, we estimate both diffuse and specular reflectance in

each of the red, green, blue color channels. The specular roughness parameters � are the

same for all color channels. The nonlinear optimization is still over 1 or 3 parameters, since

given �, 0� and 0� estimation for each channel remains a linear least squares problem.

To make the parameter estimation additionally robust, we make two simple extensions

to the basic strategy derived above. The first is to solve a weighted least squares problem

instead of the vanilla version in Eqn. (A.3). Radiance measurements from the highlight

area have much larger magnitude than those from the non-highlight area. Correspondingly

the error in those measurements is higher both because of noise in imaging as well as error

in the BRDF model. Giving all the terms in (A.3) equal weight causes biased fitting and

gives poor estimation of the diffuse reflectance. From a statistical point of view, the correct

thing to do is to weight each term by the reciprocal of the variance of expected error in that

measurement. Not having a good model for the error term, we chose a heuristic strategy

in which the weight �� for the �-th term in the summation in Eqn. (A.3) is set to �
)�������

where �� is some ad hoc or iteratively improved roughness vector. Since the roughness of

most isotropic materials is less than 0.2, we used an initial value between 0.1 and 0.2 for

scalar 8�.

The second refinement to improve parameter recovery is to use specular color infor-
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mation. For instance, specular highlights on dielectric and plastic materials have the same

color as the light source, while the color of specular highlights on metals is the same as

their diffuse components, which is the color of the light modulated by the diffuse albedo.

For plastic objects, there would be one distinct variable 0� for each color channel, but the

same variable 0� for all color channels. For metallic objects, there would be one variable

0� for each channel and a common ratio between the specular and diffuse reflectance in all

channels. Thus, we can reduce the degree of freedom from 2� to �+1 where � is the

number of color channels. For plastic, we can still obtain both analytic and numerical lin-

ear least-squares solutions for the �+1 variables provided the other parameters are fixed.

The program performs a heuristic test to determine whether a material should be estimated

with the metal or plastic specular reflectance model. Our program first solves for the spec-

ular reflectance of each color channel separately and then checks to see if they are larger

than the estimated diffuse components. If they are larger, then the material is considered

metallic. Otherwise, the plastic model is used. Then the smaller number of parameters

corresponding to these material types are solved.

Our approach can be easily extended to accommodate data from multiple light-camera

configurations. The cost function for multiple configurations is the summation of the cost

function for each individual configuration as shown in Eqn. (A.3). All the above techniques

can be applied on this new cost function as well.
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Appendix B

Irradiance Calculation

We designed an efficient algorithm for gathering light from the sky based on adaptive sub-

division. Since irradiance is an integration of the incident radiance, it varies slowly over

the surface of the architecture. Thus we assume the irradiance over a triangular patch is a

constant. For each triangle, we only gather the light at its centroid, and the centroid can al-

ways be handled as the effective center of the sky dome hemisphere because of the dome’s

very large radius. Each triangle defines a plane and only the part of the sky which is on the

correct side of this plane, can be seen by the triangle. Further, there might be other faces

in front of the triangle occluding part of the sky. So clipping the sky is necessary. The

algorithm is summarized as follows

� Give each original polygon in the architecture model an id number; for each triangle,

set its centroid as the viewpoint, Z-buffer the polygons with their id numbers as their

color, scan the color buffer to retrieve the polygons in front of the current triangle.

� Discretize the sky hemisphere into a small set of large rectangular spherical polygons.
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For each triangle, use its tangent plane and those occluding polygons to clip these

spherical polygons. As a result, we get back a list of visible spherical polygons.

Subdivide these spherical polygons until the sky radiance over each of them is almost

uniform. The sky vector flux is the summation of the flux vectors of these subdivided

sky patches. Finally, the irradiance from the sky is the inner product between the sky

vector flux and the local surface normal.

The vector flux of a sky patch gives the direction and magnitude of the flux of that sky

patch [95]. This algorithm is efficient because we only do visibility clipping on the initial

small set of spherical polygons. This does not affect the accuracy because we do adaptive

subdivision after the clipping.

The vector flux of a spherical triangle with uniform unit radiance can be obtained using

a formula from [95]. We can assume the sky hemisphere has unit radius and its center is (

because the irradiance from the sky is determined by its solid angle which is fixed no matter

how large the radius is. Let 	�
�+ be three vertices on the sphere, 3�� be the length of

the arc on the great circle passing through 	 and 
, ��� be normalized ��
*

(	 	 *

(
�.

Then the vector flux of the spherical triangle 	
+ is

1 ��	
+� � 3��

�
��� �

3��

�
��� �

3��

�
���! (B.1)

This formula can be easily generalized to compute the vector flux of any kind of spherical

polygons.

Clipping a spherical polygon with a planar polygon can be done by connecting its ver-

tices with straight line segments and treating it as a planar polygon. The only thing we
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need to remedy after clipping is pushing back onto the sphere every new vertex generated

by clipping.

We calculate the irradiance from the environment in the same way except that we do

not subdivide each environment region adaptively. We only have a constant radiance value

over each region and adaptive subdivision will not help improve the accuracy here.
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