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Abstract. This paper presents how the image-based rendering technique of view-
dependent texture-mapping (VDTM) can be efficientl implemented using pro-
jective texture mapping, a feature commonly available in polygon graphics hard-
ware. VDTM is a technique for generating novel views of a scene with approx-
imately known geometry making maximal use of a sparse set of original views.
The original presentation of VDTM in by Debevec, Taylor, and Malik required
significan per-pixel computation and did not scale well with the number of orig-
inal images. In our technique, we precompute for each polygon the set of origi-
nal images in which it is visibile and create a “view map” data structure that en-
codes the best texture map to use for a regularly sampled set of possible viewing
directions. To generate a novel view, the view map for each polygon is queried
to determine a set of no more than three original images to blended together in
order to render the polygon with projective texture-mapping. Invisible triangles
are shaded using an object-space hole-fillin method. We show how the render-
ing process can be streamlined for implementation on standard polygon graphics
hardware. We present results of using the method to render a large-scale model of
the Berkeley bell tower and its surrounding campus enironment.

1 Introduction

A clear application of image-based modeling and rendering techniques will be in the
creation and display of realistic virtual environments of real places. Acquiring geomet-
ric models of environments has been the subject of research in interactive image-based
modeling techniques, and is now becoming possible to perform with time-of-fligh laser
range scanners. Photographs can be taken from a variety of viewpoints using digital
camera technology. The challenge, then, is to use the recovered geometry and the avail-
able real views to generate novel views of the scene quickly and realistically.

A desirable quality of such a rendering algorithm is to make judicious use of all the
available views, including when a particular surface is seen from different directions in
several images. This problem was addressed in [2], which presented view-dependent
texture mapping as a means to render each pixel in the novel view as a blend of its cor-
responding pixels in the original views. However, the technique presented did not guar-
antee smooth blending between images as the viewpoint changed and did not scale well
with the number of available images.

In this paper we adapt view-dependent texture mapping to guarantee smooth blend-
ing between images, to scale well with the number of images, and to make efficien use
of polygon texture-mapping hardware. The result is an effective and efficien technique
for generating virtual views of a scene when:

� A geometric model of the scene is available



� A set of calibrated photographs (with known locations and known imaging geom-
etry) is available

� The photographs are taken in the same lighting conditions
� The photographs generally observe each surface of the scene from a few different

angles
� Surfaces in the scene are not extremely specular

2 Previous Work

Early image-based modeling and rendering work [12, 5, 7], presented methods of using
image depth or image correspondences to reproject the pixels from one camera position
to the viewpoint of another. However, the work did not concentrate on investigatinghow
to combining appearance information from multiple images to optimally produce novel
views.

View-Dependent Texture Mapping (VDTM) was presented in [2] as a method of ren-
dering interactively constructed 3D architectural scenes using images of the scene taken
from several locations. The method attempted to make full use of the available imagery
in novel view generation using the following principle: to generate a novel view of a
particular surface patch in the scene, the best original image from which to sample re-
flectanc information is the image that observed the patch from as close a direction as
possible as the desired novel view. As an example, suppose that a particular surface of
a building is seen in three original images from the left, front, and right. If one is gener-
ating a novel view from the left, one would want to use the surface’s appearance in the
left view as the texture map. Similarly, for a view in front of the surface one would most
naturally use the frontal view. For an animation of moving from the left to the front, it
would make sense to smoothly blend between the left and front texture maps during the
animation in order to prevent the texture map suddenly changing from one frame to the
next. As a result, the view-dependent texture mapping approach allowed renderings to
be considerably more realistic than static texture-mapping allowed, since it better repre-
sented non-diffuse reflectanc and can simulate the appearance of unmodeled geometry.

The implementation of VDTM in [2] computed texture weighting on a per-pixel ba-
sis, required visibility calculations to be performed at rendering time, examined every
original view to produce every novel view, and only blended between the two closest
viewpoints available. As a result, it was computationally expensive and did not always
guarantee the image blending to vary smoothly as the viewpoint changed. This paper
uses visibility preprocessing, polygon view maps, and projective texture mapping to
overcome these limitations.

Other image-based modeling and rendering work has addressed the problem of
blending between available views of the scene in order to produce renderings. In [6],
blending was performed amongst a dense regular sampling of images in order to gen-
erate novel views. Since scene geometry was not used, a very large number of images
was necessary in order to produce relatively low-resolution renderings. [4] was simi-
lar to [6] but used approximate scene geometry derived from object silhouettes. Both of
these methods restricted the viewpoint to be outside the convex hull of an object or inside
a convex empty region of space. The number of images necessary and the restrictions
on navigation do not particularly recommend these methods for acquiring and navigat-
ing through a large environment, at least without specialized equipment. The work in
this paper leverages the results of these methods to render each surface of a model as
a light fiel constructed from a sparse set of views; since the model is assumed to con-
form well to the scene and the scene is assumed to be mostly diffuse, far fewer images



are necessary to achieve good results.

3 Overview of the Method

Our method for VDTM firs preprocesses the scene to computer which images saw
which polygons from which directions. The preprocessing occurs as follows:

1. Compute Visibility: For each polygon, determine which images it is seen in, split-
ting polygons that are partially seen in one of the images.

2. Fill Holes: For each polygon not seen in any view, choose vertex colors for per-
forming Gouraud shading.

3. Construct View Maps: For each polygon, store its closest viewing angle for each
direction of a regularized viewing hemisphere.

The rendering loop is organized as follows:

1. Draw all polygons seen in none of the original views using the vertex colors de-
termined during hole filling

2. Draw all polygons which are seen in just one view.
3. For polygon seen in more than one view, calculate its viewing direction for the

desired novel view. Calculate where the novel view falls within the view map,
and then determine the three closest viewing directions and relative weights. Ren-
der the polygon using alpha-blending of the three textures with projective texture
mapping.

4 Projective Texture Mapping

To take advantage of current graphics hardware, we make use of projective texture map-
ping. Projective texture mapping was introduced in [8] and is now part of the OpenGL
graphics standard. Although the original paper used it only for shadows and lighting ef-
fects, it is extremely useful in image-based rendering because it can simulate the inverse
projection of taking photographs with a camera. In order to do projective texture map-
ping, the user needs to specify a virtual camera position and orientation, and a virtual
image plane with the textures. The texture is then cast onto a geometric model using the
camera position as the center of projection. In later sections we will adapt projective
texture-mapping to take advantage of multiple images of the scene (View-Dependent
Texture-Mapping).

For a fixe image, we only want to map this image onto the polygons visible to
the camera position from which the photograph was taken. We should not erroneously
map it onto those occluded polygons. The OpenGL implementation of projective tex-
ture mapping does not automatically perform such visibility checks. It instead lets the
texture pierce through the geometry and get mapped onto all backfacing and occluded
polygons on the path of the ray(Fig. 1). So parts of the geometry that are occluded in the
original image still receive valid texture coordinates and are incorrectly texture mapped
instead of remaining in shadow. This effect is easily observed in Fig. 1. Thus, we need
to obtain visibility information before texture-mapping.

We could solve this visibility problem in image-space using ray tracing or an item
buffer. However, such methods would require us to compute visibility in image-space
for each frame, which would be computationally expensive and not suited to interactive
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Fig. 1. The current hardware implementation of projective texture mapping in OpenGL lets the
texture go through the geometry and get mapped onto all backfacing and occluded polygons on
the path of the ray. Viewing the model from a viewpoint far from the original produces artifacts
unless proper visibility pre-processing is performed.

applications. Hardware texture-mapping can be done in real-time if all the visibility in-
formation is known, which means we need a visibilitypreprocessing step in object-space
to fully exploit the hardware performance. For any scene, this object-space preprocess-
ing needs to be done only once.

In a object-space visibilitypreprocessing, we should subdividepartially visible poly-
gons so that we only map the current image to their visible parts. Since the whole scene
is covered by multiple images which may have overlapping areas and gaps, a polygon
may be partially covered by multiple images. We need to clip the polygon against the
image boundaries so that different parts of the polygon get textures from different im-
ages.

5 Determining Visibility

Fig. 2. Users can pick a desired texture region from each image by drawing a convex polygon
inside the image frame. The chosen texture region may be either the interior or the exterior of the
polygon.

It is desirable to allow users to pick a part of each image as the texture in texture
mapping instead of forcing them to use every pixel from each photograph. In our al-
gorithm, a convex planar polygon can be specifie inside each image and the user can
pick either the interior or the exterior of this polygon as the desired texture(Fig. 2). This
gives rise to the necessity to clip polygons in the scene against the edges of this texture
region.



For rendering performance, we wish to minimize the number of polygons resulting
from visibility processing. Traditional object-space algorithms for hidden surface re-
moval [3, 11] often generate too many polygons or run very slowly. We propose an ef-
ficien visibility algorithm for the above purposes.

This algorithm operates in both image space and object space to get better perfor-
mance. It is summarized as follows:

1. Give each original polygon an id number. If a polygon is subdivided later, all the
smaller polygons generated share the same original id number.

2. If there are intersecting polygons, subdivide them along the intersecting line.
3. Clip the polygons against all image boundaries and user-specifie planar polygons

so that any resulting polygon is either totally inside or totally outside the desired
texture regions.

4. Set each camera position as the viewpoint in turn, Z-buffer the original large poly-
gons from the geometric model using their id numbers as their colors.

5. At each camera position, uniformly sample each frontfacing polygon and project
these sample points onto the image plane. Retrieve the polygon id at each projec-
tion of the sample points from the color buffer. If the retrieved id is different from
the current polygon id, a potentially occluding polygon is found and it is tested in
object-space whether they are coplanar and whether it is really an occluding poly-
gon.

6. Clip each polygon with its list of occluders in object-space.
7. Associate with each polygon a list of photographs to which it is totally visible.

Using identificatio (id) numbers to retrieve objects from Z-buffer is similar to the
item buffer technique introduced in [10]. The image-space steps in the algorithm can
quickly obtain the list of occluders for each polygon.

The objective of this algorithm is to minimize the number of polygons resulted from
clipping to accelerate texture mapping at a later stage while safely detecting all occlud-
ing polygons so that texture mapping is done correctly. In the above algorithm, safe
detection is enhanced by not only checking the pixels at the projections of the sample
points on each polygon, but also checking the pixels in a neighborhood of each projec-
tion.

5.1 Polygon Shallow Clipping

The method of clipping a polygon against image boundaries is the same as that of clip-
ping a polygon against a real occluding polygon. In either case, we should form a pyra-
mid for the occluding polygon or image frame with the apex at the camera position(Fig.
3(a)), and then clip the polygon with the bounding faces of the pyramid. Before clipping
with each bounding face, we should also verify if that bounding face really intersects the
polygon.

Our algorithm does shallow clipping in the sense that if polygon A occludes polygon
B, we only use A to clip B, and any polygons behind B are unaffected(Fig. 3(b)). Only
partially visible polygons are clipped. Those totally invisible ones are left intact. This
greatly helps minimize the number of resulting polygons.

If a polygon P has a list of occluders O � fp1� p2� ���� pmg, we use a recursive ap-
proach to do the clipping: Obtain the overlapping area on the image plane between each
member of O and polygon P and choose the polygon p in O with maximum overlapping
area to clip P into two parts P� and S where P� is the part of P that is occluded by p, and
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Fig. 3. (a) To clip a polygon against an occluder, we need to form a pyramid for the occluder with
the apex at the camera position, and then clip the polygon with the bounding faces of the pyramid.
(b) Our algorithm does shallow clipping in the sense that if polygon A occludes polygon B, we only
use A to clip B, and any polygons behind B are unaffected.

S is a set of convex polygons which make up the part of P not occluded by p. Recur-
sively apply the algorithm on each member of S, i.e. firs detect its occluders and then
do clipping.

Fig. 4. Visibility results for a bell tower model with 24 camera positions and for a university cam-
pus model with 10 camera positions. The shade of each polygon encodes the number of camera
positions from which it is visible.

5.2 Thresholding Polygon Size

By experiments, we found most polygons resulting from clipping are tiny polygons. To
further reduce the number of polygons, we set a threshold on the size of polygons. If
the object-space area of a polygon is below the threshold, it is not subdivided any more
and is assigned a constant color based on the textures on its surrounding polygons. If a
polygon is very small, it is not noticable whether it has a texture on it or just a constant



color. The rendered images can still maintain good quality.
Fig. 4 shows visibility processing results for two geometric models.

6 Hole Filling

No matter how many photographs we have, there still might be some polygons invisi-
ble to all cameras. Unless some sort of coloring is assigned to them, they will appear
as black holes as we move the view point away from the positions where we took the
photographis. This is an inherent problem in projective texture-mapping. One possi-
ble solution is to compute an aspect graph of the whole scene, which is computationally
expensive, and obtain the minimum number of camera positions we need to have the
whole scene covered. However, the required number of camera positions may be too
large for a complex scene and it may be impossible to take photographs from some of
the calculated camera positions.

Instead of taking more and more photographs, we decided to compose some colors
for those black holes from its surrounding area, a precessed called hole filling. Previous
hole-fillin algorithms [12, 2] have operated in image space, which can cause flickerin
in animations since the manner of the hole fillin will change with each frame. Object-
space fillin can guarantee the color for each invisible polygon is consistent at different
frames. By doing this, we can guarantee those invisible polygons are fille with some
colors close to the colors of their surrounding visible polygons and they will become less
noticeable.

Fig. 5. The image on the left has some black regions which are invisible to all the cameras. The
image on the right shows the rendering result with all the holes filled See also Fig. 9.

The steps in hole fillin are:

1. Determine polygon connectivity. At each shared vertex, set up a linked list for
those polygons sharing that vertex. In this way, from a polygon, we can access all
its neighboring polygons.

2. Sample a color for each visible polygon by projecting its centroid onto the image
planes and sampling the colors there.

3. Iterative step: for each invisible polygon, if it has not been fille with some colors,
each of its vertices is assigned the color of the closest polygon which is visible or
has been color-fille in the previous iterations.



The reason to have an iterative step is that an invisiblepolygonmay not have a visible
polygon in its neighborhood. So its fillin color should not be decided until some of its
neighboring polygons are fille with some colors.

There may be slight misalignment between the geometry and the photographs.
Therefore, the textures of the edges of some objects may be projected onto the back-
ground. This can only occur at the boundaries of visible and invisible areas. In order not
to fil invisible areas with these incorrect textures, we avoid sampling colors at places
close to those boundaries.

Fig. 5 shows the result for holefilling The invisible polygons, fille will Gouraud-
shaded low-frequency image content, are largely unnoticeable in animations.

7 Constructing and Querying Polygon View Maps

The goal of view-dependent texture-mapping is to always use surface appearance infor-
mation sampled from the images which observed the scene closest in angle to the novel
viewing angle. As such, the effects of specular reflectanc and incorrect model geome-
try will be minimized. Note than in any particular virtual novel view, different surfaces
in the scene may have different “best views”; an obvious case of this is when the novel
view encompasses an area not entirely observed in any one view.

In order to avoid the perceptually distracting effect of surfaces suddenly switching
between different best views as the user navigates through the scene, we wish to blend
between the available views as the angle of view changes. This section shows how for
each polygon we will create a view map that encodes how to blend between at most three
available views for any given novel viewpoint, with guaranteed smooth image weight
transitions as the viewpoint changes. The view map for each polygon takes little stor-
age and is simple to compute as a preprocessing step. A view maps may be queried
very efficientl given a desired novel viewpoint to return the set of images with which
to texture-map the polygon and their relative weights.

To build a polygon’s view map, we construct a local coordinate system for the poly-
gon that represents the space of all viewing directions. We then regularly sample the set
of viewing directions, and assign to each of these samples the closest original view in
which the polygon is visible. These view maps are stored and used at rendering time to
determine three best original views and their blending factors by a quick look-up based
on current viewpoint.

The local coordinate system, in which the set of viewing directions for each polygon
is represented, is constructed according to equation 1.

x �

�
yW � n , if yW and n are not collinear,
xW otherwise

y � n � x (1)

where xW and yW are world coordinate system axes, and n is the triangle unit normal.
In order to represent a viewing direction in the local coordinate system we use the

following mapping. It is constructed as seen in Fig. 6. We firs obtain v, the unit vector
in the direction from the polygon centroid c to the original view position. We then rotate
this vector into the x � y plane of the local coordinate system for the polygon.

vr � �n � v�� n (2)



This vector is then scaled by the arc length l � cos�1�nT v� and projected onto the x
and y axes giving the desired view mapping.

x � �lvr�
T x

y � �lvr�
T y (3)

rl

Local coordinate system for a 
polygon of the model geometry

v

Original view
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Fig. 6. The local polygon coordinate system for constructing view maps.

We pre-compute for each polygonof the model the mapping coordinates pi � �xi� yi�
for each originalview i in which the polygon is visible. These points p i represent a sparse
sampling of view direction samples.

To make up for the expected sparsity of samples, we regularize the sampling of view-
ing directions as in Fig. 7. For every viewing direction on the grid, we assign to it the
original view nearest to its location. This new regular configuratio is what we store
and use at rendering time. For current virtual viewing direction we compute its map-
ping pvirtual in the local space of each polygon. Then based on this value we do a quick
look-up in the stored regularly resampled view map. We fin the grid triangle inside
which pvirtual falls and use the original views associated with its vertices to in the ren-
dering (4, 5, and 7 in the example from Fig. 7). The blending weights are computed as
the barycentric coordinates of pvirtual in the triangle in which it lies. In this manner the
weights of the various viewing images are guaranteed to vary smoothly as the viewpoint
changes.

8 Efficient 3-pass View-Dependent Texture-Mapping

This section explains details of the implementation of the view-dependent texture-
mapping algorithm.

For each polygon visible in more than one original view we pre-compute and store
the viewmaps described in section 7. Then before a frame is rendered for each polygon
we fin the coordinate mapping of the current viewpoint pvirtual and do a quick lookup
to determine which triangle of the grid it lies inside of. As explained in 7 this gives the
three best original views and their prescribed weights α1� α2� α3.
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Fig. 7. The space of viewing directions for each polygon is regularly sampled, and the closest
original view is stored for each sample. To determine the weightings of original views to be used
in a new view, the barycentric coordinates of the novel view within its containing triangle are used.
This guarantees smooth changes of the set of three original views used for texture mapping when
moving the virtual viewpoint.

Since each VDTM polygon must be rendered with three texture maps, the rendering
is performed in three passes. Texture mapping is enabled in modulate mode, where the
new fragment color C is obtained by multiplying the existing fragment color C f and the
texture color Ct . The Z-buffer test is set to less than or equal (GL LEQUAL) instead of the
default less than (GL LESS) to allow a polygon to blend with itself as it is drawn multiple
times with different textures. The firs pass proceeds by selecting an image camera, bind-
ing the corresponding texture, loading the corresponding texture matrix transformation
Mtexture in the texture matrix stack and sending for display the part of the model geome-
try for which the firs best camera is the selected one with modulation color �α1� α1� α1�.
These steps are repeated for all image cameras. The results of this pass can seen on the
tower in Fig. 9 (b). The firs pass fill the depth buffer with correct depth values for the
entire view. Before proceeding with the second pass we enable blending in the frame
buffer, i.e. instead of replacing the existing pixel values with incoming values, we add
those values together. The second pass then selects cameras and renders polygons for



which the second best camera is the selected one with colors �α2� α2� α2�. The results
of the second pass can seen on the tower in Fig. 9 (c). The third pass proceeds simi-
larly rendering polygons for which the third best camera is the currently selected one
with colors �α3� α3� α3�. The results of this last pass can seen on the tower in Fig. 9 (d).
Polygons visible only in one original view are compiled in separate list and rendered in
this firs pass with modulation color �1�0� 1�0� 1�0� to achieve additional speed.

The polygons that are not visible in any image cameras are compiled in a separate
OpenGL display list and their vertex colors are specifie according to the results of the
hole-fillin algorithm. Those polygons are rendered in another pass with Gouraud shad-
ing after the texture mapping is disabled.

The block diagram in Fig. 8 summarizes the display loop steps.

9 Discussion and Future Work

The method we have presented proved effective at taking a relatively large-scale image-
based scene and rendering it realistically at interactive rates on standard graphics hard-
ware. Using relatively unoptimized code, we were able to achieve 20 frames per second
on the Silicon Graphics InfiniteRealit hardware for the full tower and campus models.
Nonetheless, many aspects of this work should be regarded as preliminary in nature. One
problem with the technique is that it ignores the spatial resolution of the original images
in its selection process – an image that shows a particular surface at very low resolution
but at just the right angle would be given greater weighting than a high-resolution image
from a slightly different angle. Having the algorithm blend between the images using
a multiresolution image pyramid would allow low-resolution images to influenc only
the low-frequency content of the renderings. However, it is less clear how this could be
implemented using standard graphics hardware.

While the algorithm guarantees smooth texture weight transitions as the viewpoint
moves, it does not guarantee that the weights will transition smoothly across surfaces of
the scene. As a result, seams can appear in the renderings where neighboring polygons
are rendered with very different combinations of images. The problem is most likely to
be noticeable near the frame boundaries of the original images, or near a shadow bound-
ary of an image, where polygons lying on one side of the boundary include an image in
their view maps but the polygons on the other side do not. [2] suggested feathering the
influenc of images in image-space toward their boundaries and near shadow boundaries
to reduce the appearance of such seams; with some consideration this technique should
be adaptable to the object-space method presented here.

The algorithm as we have presented it requires all the available images of the scene
to fi within the main memory of the rendering computer. For a very large-scale environ-
ment, this is unreasonable to expect. To solve this problem, spatial partitioning schemes
such as those presented in [9] could be adapted for this purpose.

As we have presented the algorithm, it is only appropriate for models that can be
broken into polygonal patches. The algorithm can also work for curved surfaces; these
surfaces would be need to be broken down by the visibility algorithm until they are seen
without self-occlusion by their set of cameras.

Lastly, it seems as if it would be more efficien to analyze the set of available views
of each polygon and distill a unifie view-dependent function of its appearance, rather
than the raw set of original views. One such representation is the Bidirectional texture
function, presented in [1], or a yet-to-be-presented form of compressed light field Both
techniques will require new rendering methods in order to render the distilled represen-
tations in real time. Extensions of techniques such as model-based stereo [2] might be
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able to perform a better job than linear blending of interpolating between the various
views.

10 Images and Animations

Images and Animations of the Berkeley campus model may be found at:
http���www�cs�berkeley�edu��debevec�Campanile
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Fig. 9. The different rendering passes in producing a frame from the photorealistic renderings of
the Berkeley campus virtual fly-b . (a) The campus buildings and terrain; these areas were seen
from only one viewpoint and are thus rendered before the VDTM passes. (b) The Berkeley tower
after the firs pass of view-dependent texture mapping. (c) The Berkeley tower after the second
pass of view-dependent texture mapping. (d) The complete rendering of the scene.


