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Abstract—- Metamorphosis is generally known as the continu-
ous evolution of a source into a target. There is frame-to-frame
camera or object motion most of the time when either the source
or the target is an image sequence. It would be desirable to make
smooth morphing transitions simultaneously along with the origi-
nal motion. In this paper, we describe a novel semi-automatic mor-
phing technique for image sequences. The proposed technique ef-
fectively exploits temporal coherence and automatic image match-
ing. One-to-one dense mappings between pairs of corresponding
frames are obtained by applying a compositing procedure and a hi-
erarchical image matching technique based on dynamic program-
ming. These dense mappings can be initialized by sparse frame-
to-frame feature correspondences obtained semi-automatically by
integrating a friendly user interface with a robust feature tracking
algorithm. Experimental results show that our approach to video
metamorphosis can produce superior results.

1 Introduction

Metamorphosis, or morphing is generally known as the continuous
evolution of a source into a target. In many situations, there is cam-
era or object motion, and it would be more natural to make transi-
tions simultaneously along with the original motion than to stop the
original motion while making the transitions. In this paper, we in-
troduce a morphing technique for image sequences to achieve this
effect. Typically, we assume the two input videos have the same
number of frames and the natural one-to-one frame correspondence
across the two sequences is actually the one we use. In addition, we
also need a mapping between each pair of corresponding frames.
The mappings are also referred to as warp functions. The animation
generated from such a technique should start from the first frame of
the first image sequence and end at the last frame of the second se-
quence. Suppose we have N + 1 frames in each input sequence.
The frames from the first sequence are denoted as {Fi}, the frames
from the second one {Fi

′}, where 0 ≤ i ≤ N . The warp function
between frames Fi and F ′

i is denoted as Wi. Every frame fi in the
resulting animation should be an intermediate morph generated by
Wi.

Morphing is an artistic endeavor, the amount of required user in-
teraction may vary with respect to the characteristics of the input
videos. Semi-automatic mechanisms that allow variable user input
are desirable. Such methods would also be preferred if we would
like to consider video morphing as an operation in a video author-
ing tool that everyone can use. The temporal coherence available
in image sequences can be exploited for such mechanisms. The po-
sitions of the same feature pattern in consecutive frames are likely
to be close to each other. Automatic feature tracking techniques
can be adapted to figure out the correspondences in this situation.
Moreover, the image plane can be considered as an elastically de-
formable membrane. Since the amount of difference between two
consecutive frames is likely to be small, a mapping between them
should minimally deform the image plane so that corresponding re-
gions from the two frames match.
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Figure 1: Dense mappings across the two input image sequences
are obtained from a compositing process. This process relies on the
dense mappings calculated between consecutive frames in the same
sequence.

In this paper, we develop a semi-automatic framework that ef-
fectively exploits temporal coherence in the same video sequence
to help establish a wide range of video morphing. A key compo-
nent of this framework is to generate a complete one-to-one dense
mapping between every pair of corresponding frames. To obtain the
dense mapping for a single pair of frames, we develop an automatic
image matching technique that incorporates orthogonal dynamic
programming with image pyramids. This algorithm is first applied
to obtain mappings between consecutive frames from the same se-
quence. Then the warp functions across two image sequences are
obtained from a novel compositing process. As shown in Fig. 1, if
we already know the mapping W0 between F0 and F ′

0, the map-
ping between F1 and F0, as well as the mapping between F ′

0 and
F ′

1, then W1 can be obtained by concatenating these three. This
dense mapping algorithm will be introduced in Section 4.

The automatic image matching technique can be optionally en-
hanced with sparse feature correspondences to make it more robust.
The sparse correspondences can be obtained either from feature
tracking or from user interaction. These sparse correspondences
can be used as ”seeds” to guide the image matching process so that
the dense mapping will be sufficiently constrained and the sparse
correspondences will be satisfied as well. More details about ob-
taining sparse correspondences will be discussed in Section 3.

2 Related Work

Image morphing can be classified as mesh based [Wolberg 1990],
or field-based [Beier and Neely 1992]. Warp function genera-
tion can be formulated as scattered data interpolation [Wolberg
1990; Ruprecht and Muller 1995] using thin-plate surface model
[Litwinowicz and Williams 1994] or more general radial basis func-
tions [Arad and Reisfeld 1995]. Enforcing a one-to-one mapping
can be achieved either by expensive energy minimization [Lee et al.
1995a] or much more efficient multilevel free-form deformation
across a hierarchy of control lattices [Lee et al. 1995b]. [Gao and
Sederberg 1998] presents an interesting morphing algorithm for two
similar images with little or no human interaction. They attempt to
minimize energy terms using a fast search strategy which however,
does not guarantee a good solution between two dissimilar images.
Refer to the excellent surveys reported in [Wolberg 1998; Gomes
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et al. 1997] for other static image morphing techniques. [Lee et al.
1998] considered the composition of mappings in warp computa-
tion.

Given that two images are sufficiently similar, image registration
[Bajcsy and Kovacic 1989; Brown 1992] offers a potential solu-
tion for automatically determining the correspondence among all
points across two images. Optical flow techniques [Beauchemin
and Barron 1995; Quenot et al. 1998] are regularly used to track
the frame-to-frame motion of video frames. Both types of tech-
niques do not guarantee one-to-one correspondence, which is unde-
sirable for image morphing. [Shinagawa and Kunii 1998] presents
a more effective image matching algorithm using critical-point fil-
ters at multiple resolutions. Meanwhile, there are quite a few effec-
tive feature tracking algorithms [Lucas and Kanade 1981; Torresani
et al. 2001; Olson 2002] for image sequences in computer vision.
[Shi and Tomasi 1994] proposes criteria for choosing and updat-
ing features during tracking. [Olson 2002] describes a maximum-
likelihood feature tracking strategy which is more robust than most
previous methods.

Despite the large amount of work on image morphing, video
morphing is much less mature although feature tracking has pre-
viously been exploited [Szewczyk et al. 1997; MorphMan 2003].
As in this paper, user assistance is necessary to correct tracking er-
rors. In general, the tracking algorithm [Olson 2002] adopted in
this paper has better performance than those in [Szewczyk et al.
1997; MorphMan 2003]. Most importantly, automatically obtain-
ing dense mappings with temporal coherence has not previously
been considered for video morphing. Previous work has not con-
sidered morphing between highly nonrigid objects such as fluids,
either.

3 Sparse Correspondences

In this section, we discuss the optional stage of obtaining sparse
correspondences. The obtained sparse correspondences may be
used as constraints in the following image matching to solve dense
correspondences. We consider two types of sparse correspon-
dences: the first one, called intrasequence correspondences, is be-
tween two consecutive keyframes from the same sequence; and the
second one, called intersequence correspondences, is between two
corresponding keyframes in two sequences. We apply an automatic
and robust feature point tracking algorithm in [Olson 2002] to help
with the first task. This algorithm is capable of tracking feature
points with large frame-to-frame motion.

3.1 Intrasequence Feature Correspondences

The user chooses a subset of uniformly spaced frames from each
input sequence as keyframes (Fig. 2). For example, there could
be a keyframe every three frames. The keyframes in the two in-
put sequences are synchronized. In practice, we track points from
keyframe to keyframe assuming it is sufficiently accurate to lin-
early interpolate the location of a feature in an intermediate frame.
In the extreme case of very large motion, every frame in the orig-
inal sequence should be a keyframe and interpolation is no longer
necessary. Occasionally, the user needs to adaptively adjust the lo-
cations of the keyframes for a specific feature point through user
interaction.

A sparse set of significant features are automatically detected
and updated for each sequence using the criteria from both [Olson
2002] and [Shi and Tomasi 1994]. The user may also interactively
choose a few additional features that are crucial in delineating the
shape of an object. While the features are followed automatically
between keyframes, the user needs to verify the correctness of the
tracking results. In the case of an error, the user can make correc-
tions using mouse clicks. Our user study indicates that verification

(a)

(b) (c)

Figure 3: (a) The user interface for feature tracking. Two consecu-
tive keyframes from each sequence are displayed vertically. Four
frames are shown simultaneously in the window. Each feature
point is assigned an identification number which provides conve-
nience for user verification across keyframes of the same sequence.
(b)&(c) A pair of superkeyframes with their feature correspon-
dences which include tracked features and additional user selected
points.

of the correctness of tracking can be performed four to seven times
faster than clicking every feature from keyframe to keyframe. New
features can be incrementally inserted conveniently when the user
later finds out there is a necessity to do so.

3.2 Intersequence Feature Correspondences

Suppose there are two sets of corresponding features in the first
frames of the two input sequences and each of these features can
be tracked from frame to frame in its own sequence. Observing
temporal coherence, the correspondences between these two sets
of tracked features will be automatically maintained at every pair
of frames across the two sequences. In practice, because feature
tracking has accumulated errors, we need to automatically remove
some of the existing features and insert new high-quality features at
every keyframe [Shi and Tomasi 1994]. We also identify a sparse
set of superkeyframes where a larger amount of user interaction can
be involved besides usual feature verification (Fig. 2). The user
can also interactively specify a number of additional feature corre-
spondences to better constrain the mapping. These additional cor-
respondences do not need to be tracked in the subsequent frames.
Therefore, additional user interaction is only necessary for a very
small number of superkeyframes. Nevertheless, it is more conve-
nient for the user to edit point tracking results.

The user interface for feature tracking and a pair of su-
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Figure 2: Sparse feature correspondences among keyframes of the same sequence are obtained using a feature tracking algorithm followed
by user correction; feature locations in the intermediate frames are obtained by interpolation; feature correspondences between a pair of
corresponding superkeyframes across the two sequences are obtained by exploiting temporal coherence and user interaction.

perkeyframes with marked feature correspondences are shown in
Fig. 3. Fig. 3(a) shows the features we actually tracked for the
puma and human face sequences. Fig. 3(b) shows the correspon-
dences at superkeyframes of these sequences. It can be seen that
Fig. 3(b) has a larger number of features than Fig. 3(a) because we
sometimes need a relatively larger number of constraints for map-
pings across two sequences since the objects in different sequences
might have very different shapes and colors.

4 Dense Mappings

A pixelwise dense mapping between two corresponding images is
required for morphing. Inspired by image matching in computer
vision [Bajcsy and Kovacic 1989; Shinagawa and Kunii 1998], we
designed a new algorithm for generating dense mappings in a con-
strained optimization framework. The integration between this im-
age matching algorithm and sparse correspondences obtained from
feature tracking will be discussed in Section 4.4.

4.1 Problem Formulation for Optimal Mappings

The basic principle in automatic image matching is that we as-
sign a score to any valid mapping between a pair of images us-
ing a cost function and an optimal mapping corresponds to a min-
imum score. It is desirable to minimize the amount of change in
terms of shape and color in a smooth morph sequence. Therefore,
our optimization formulation is based on a tradeoff between these
two cues. Suppose we represent the two components of W(x, y)
as (U(x, y), V (x, y)). The color difference between two points,
(x, y) and W(x, y) is defined as the color difference between two
local neighborhoods centered at the two points,

Cxy(W) =

x+w∑

i=x−w

y+w∑

j=y−w

||clr(i, j) − clr(U(i, j), V (i, j))||2

(1)
where clr(i, j) is the color vector of the pixel (i, j). In practice,
histogram equalization[Heeger and Bergen 1995] is applied to each
color channel of the input images to align their intensity ranges.

We consider the image plane as a deformable membrane. The
amount of shape change can be measured by the total amount of
local deformation. The amount of local deformation at pixel (x, y)
is defined as

Dxy(W) = ||dx,y − dx+1,y||2 + ||dx,y − dx−1,y||2
+||dx,y − dx,y+1||2 + ||dx,y − dx,y−1||2.

where dx,y = (U(x, y)−x, V (x, y)−y) is the displacement vector
at pixel (x, y).

To evaluate the optimality of a warp function, one needs to con-
sider the total amount of color difference and distortion over all
pixels in the source image. The total cost of a warp function is
defined as

E(W) =
∑

x,y

Exy(W) (2)

where

Exy(W) = ωxy(Cxy(W) + µxy(W)) + λDxy(W) (3)

where ωxy represents the relative importance of pixel (x, y),
µxy(W) represents the amount of additional bias that should be
imposed at a pixel for warp function W, and λ adjusts the relative
importance between color similarity and geometric distortion. We
set up ωxy to be proportional to the edge strength, measured by the
response to an edge detector [Canny 1986], at pixel (x, y) so that
matching errors at edge pixels are minimized with high priority.
Typically µxy(W) = 0. But it is quite useful in some special situ-
ations, such as interpolating warp constraints that will be discussed
in Section 4.4. λ is the only parameter that is set manually. In prac-
tice, a typical range for λ is between 0.1 and 1 if we normalize the
range of each color channel. Smaller values of λ allows more geo-
metric distortion and the image objects appear less rigid. Therefore,
the lower range of λ is reserved for images with elastic or fluid-type
objects while the higher range is for more rigid objects.

We seek an optimal warp function that minimizes the cost func-
tion E(W). The warp function may be subject to two additional
types of constraints. Since the above cost function alone cannot
completely capture the semantics in the images, sparse warp con-
straints from user interaction or tracking are often necessary. Our
optimization technique should be able to incorporate such con-
straints. The specific strategies will be discussed in Section 4.4.
It is also desirable for a warp function to be a one-to-one mapping
between two image planes to prevent the warped image from fold-
ing back upon itself. The second type of constraints on the warp
function can guarantee such a mapping.

4.1.1 Constraints for One-to-One Mappings

Each image plane is considered as a continuous plane with subpixel
accuracy. Since pixels have integer coordinates, they partition this
continuous image plane into a regular grid. Suppose the warp func-
tion is W. It can be easily shown that a one-to-one mapping exists
between the rectangle defined by four neighboring pixels, (x, y),
(x+1, y), (x+1, y+1) and (x, y+1), in the source image and the
quadrilateral defined by the mapped points, W(x, y), W(x+1, y),
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Figure 4: The horizontal and vertical passes of orthogonal dynamic
programming. (a) A row of pixels(solid) in the first image cor-
responds to a sequence of points lying on a curve(dashed) in the
second image. Suppose p originally corresponds to q. After a hor-
izontal pass, it may correspond to a new position q′ on the curve.
(b) A column of pixels passing p corresponds to a second curve in
the second image. After a vertical pass, p may correspond to a new
position q” on the second curve.

W(x + 1, y + 1) and W(x, y + 1), in the target image if and only
if the target quadrilateral is not self-intersecting. To prevent the
whole source image plane from being flipped when mapped to the
target image plane, we also impose that every four mapped cor-
ners, W(x, y), W(x + 1, y), W(x + 1, y + 1) and W(x, y + 1)
must still follow a counterclockwise order. A nonself-intersecting
quadrilateral should satisfy either of the following two conditions:
i) W(x + 1, y) and W(x, y + 1) do not lie on the same side of
the line defined by W(x, y) and W(x + 1, y + 1); or ii) W(x, y)
and W(x+1, y +1) do not lie on the same side of the line defined
by W(x + 1, y) and W(x, y + 1). Note that a quadrilateral may
become degenerate but still not self-intersecting when two adjacent
corners coincide.

4.2 Iterative Orthogonal Dynamic Programming

An unknown warp function has an unknown displacement vector
at every pixel. Minimizing (2) is extremely hard because of the
sheer number of unknowns. We choose to optimize the warp func-
tion in an iterative framework where an updated warp function is
generated every iteration based on the one obtained from the pre-
vious iteration. Thus, we generate a sequence of warp functions,
W0, W1,...,Wm, such that E(Wi) ≤ E(Wi−1). We stop when
the total cost stops decreasing or the total number of iterations has
reached a predefined upper bound.

The founding component of an iteration is a one-dimensional
dynamic programming scheme. For the time being, let us focus
on the i0-th row of the image. The sequence of pixels on this row
are represented as {pi0j = (i0, j)} with fixed i0 and varying j.
Assume the current version of warp function is Wc which defines
the sequence of mapped points, {qi0j = Wc(pi0j)}. The current
warp function can be improved by using dynamic programming to
obtain an optimal matching between these two sequences. Dynamic
programming allows pi0j mapped to a point other than qi0j in the
second sequence. The cumulative cost between a pair of points
from the two sequences is defined as

Cdp(pi0j , qi0k) = Ei0j(W
i0(j→k)
c ) + min

l∈Sjk

Cdp(pi0(j−1), qi0l)

(4)
where |j − k| and |(j − 1)− l| are bounded by the size of a search
window; W

i0(j→k)
c is a modified warp function that maps pi0j to

a different point qi0k in the second sequence; Ei0j(Wi0(j→k))
follows the definition in (3); and Sjk contains all the admissible
values of l. If the conditions for a one-to-one correspondence are
not violated when pi0j is mapped to qi0k and pi0(j−1) is mapped

to qi0l, then l ∈ Sjk. Once the cumulative cost for the last pixel
in the row is calculated, one can trace back and find the path of the
optimal matching between the two sequences.

One complete iteration in our method involves a horizontal pass
and a vertical pass (Fig. 4). The horizontal pass modifies the
previous warp function row by row in a scanline order using the
above one-dimensional dynamic programming while the vertical
pass modifies the warp function column by column in the same
manner. It is not important which pass should be performed first.
This process of interleaving horizontal and vertical passes are there-
fore referred to as orthogonal dynamic programming. It can move
a point to anywhere in the image plane after a finite number of iter-
ations. Since our dynamic programming scheme updates an entire
row or column simultaneously, it is less likely to be stuck in lo-
cal minima than locally perturbing one pixel at a time. Since our
method maintains a one-to-one mapping during each iteration, it
also needs such a mapping as an initialization. Fortunately, the
identity warp function satisfies the conditions when there are no
warp constraints.

4.3 Multiresolution

We are dealing with an extremely high dimensional optimization
problem which indicates that there are a large number of local min-
ima. The noise and high-frequency details in the original images
make this situation worse. Multiresolution image pyramids have
been frequently applied to image processing tasks. They have a few
advantages: i) noise and high-frequency details can be removed at
lower resolutions; ii) there are fewer local minima at lower resolu-
tions; iii) it is much more computationally efficient if an approxi-
mate solution is obtained at low resolutions first.

Linear low-pass filters commonly used for image pyramids [Burt
and Adelson 1983] actually do not preserve important semantic fea-
tures, such as the eyes and mouth on a human face, at the same time
when they remove noise. The color of a single pixel at a top level of
the pyramid is the weighted average of the colors in a large region,
which can potentially be larger than a semantic feature, in the orig-
inal image. On the other hand, the critical point filters adopted in
[Shinagawa and Kunii 1998] can effectively preserve important fea-
tures such as local maxima, local minima and saddle points in lower
resolution images. There are four filtered images at each level of a
pyramid, one for local maxima, one for local minima and the other
two for saddle points.

Inspired by the advantage offered by the critical point filters, we
build a hybrid image pyramid for each input image. As usual, the
image resolution is halved every time one proceeds to a higher level
in the pyramid. The top levels are constructed using critical point
filters because they can preserve important landmarks at low reso-
lutions where low-pass filters only blur features and make different
image regions look similar and ambiguous. However, when the
image resolution is relatively high, the original color patterns in the
image still have the most accurate information. Therefore, the lower
levels are built in the same way as a Laplacian pyramid [Burt and
Adelson 1983] except that the color of every pixel is represented
explicitly using the three channels for the YUV color space. At top
levels, the color vector has three identical channels representing the
filtered luminance value obtained from the Y-channel of the lower
level. In practice, the two halves of the pyramid typically interface
at the middle level.

The orthogonal dynamic programming process optimizes the
warp function at a single resolution. To incorporate this process
with our hybrid image pyramids, there is one additional detail we
still need to be careful about. Once a one-to-one mapping, Wl, is
obtained at a coarser resolution, it should be utilized to initialize
such a mapping, Wl+1

0 , at the next higher resolution. We adopt the
following scheme to achieve this goal.

4



• Wl+1
0 (2x, 2y) = Wl(x, y);

• Wl+1
0 (2x + 1, 2y) = Wl(x,y)+Wl(x+1,y)

2
and

Wl+1
0 (2x, 2y + 1) = Wl(x,y)+Wl(x,y+1)

2
;

• If Wl(x+1, y) and Wl(x, y +1) do not lie on the same side
of the diagonal between Wl(x, y) and Wl(x + 1, y + 1),

Wl+1
0 (2x + 1, 2y + 1) = Wl(x,y)+Wl(x+1,y+1)

2
; otherwise,

Wl+1
0 (2x + 1, 2y + 1) = Wl(x+1,y)+Wl(x,y+1)

2
.

4.4 Interpolating Warp Constraints

In many situations, there exist constraints that the optimized warp
function is required to satisfy. The constraints can be expressed as
a sparse set of correspondences involving the unknown warp func-
tion, {W(xi, yi) = (xi

′, yi
′)}. The following steps can be taken

to obtain the desired warp function.

• Align these two point sets using a global affine transformation
which has a closed form linear least-squares solution [Bovik
2000]. Any global translation and/or rotation between these
two point sets should be compensated by this transformation.
However, each pair of transformed points may still have a
residual displacement between them.

• Use a scattered data interpolation scheme to interpolate the
residuals from the previous step. Basically, one mapping
constraint gives rise to two equations: U(xi, yi) = xi

′ and
V (xi, yi) = yi

′. Two interpolating functions should be
solved for these equations. The multiresolution FFD method
presented in [Lee et al. 1995b] is an example suitable for this
purpose since it generates a one-to-one mapping.

• Warp the target image using the interpolating mapping from
the previous two steps to satisfy the sparse correspondences.
Our multiresolution optimization is then performed on the
original source image and the warped target image. To main-
tain those already aligned correspondences, one needs to as-
sign a large negative number to µxiyi(W) in Exiyi(W)
when W(xi, yi) = (xi

′, yi
′). If the constrained corre-

spondences have small errors themselves, one would like to
approximate the constraints instead of interpolation. Then,
µxiyi(W) should be kept negative when ‖W(xi, yi) −
(xi

′, yi
′)‖ remains close to zero. A large negative number

cancels all or part of the positive cumulative cost from the
rest of the pixels and keeps the final cost favorable in dynamic
programming.

5 Morph Sequence Generation

5.1 Mapping Image Sequences

We need to obtain a dense mapping between every pair of corre-
sponding frames from two image sequences. Suppose a warp func-
tion Wi has been obtained between frames Fi and Fi

′. Applying
the image matching algorithm in the previous section with or with-
out sparse correspondences, we can obtain a warp function Wintra

i

between Fi and Fi+1. Obtain another warp function Wintra
i

′
be-

tween Fi
′ and Fi+1

′ similarly. Then the warp Wi+1 between
frames Fi+1 and Fi+1

′ can be obtained by compositing the fol-
lowing three warps: the inverse of Wintra

i , Wi, and Wintra
i

′
. The

inverse of Wintra
i can be easily obtained by adopting a reversed

mapping direction from Fi+1 to Fi. This relationship between Wi

and Wi+1 is shown in Fig. 1 and can be formulated as

Wi+1(p) = Wintra
i

′
(Wi(W

intra
i

−1
(p))). (5)

Because Wintra
i

′
and Wintra

i
−1

encode the coherent frame-to-
frame motion between consecutive frames, the above composite
mapping can effectively preserve temporal coherence among the
warp functions, {Wi}. An initial warp function for the first pair
of frames is necessary to start the whole process. Because of ac-
cumulated errors, we should recalibrate the process a few times at
intermediate superkeyframes. The inverse mapping of Wi can also
be obtained similarly.

Our method needs directly calculated intersequence dense map-
pings at a very sparse set of superkeyframes which always include
the first frame. The dense mappings at intermittent superkeyframes
serve as calibrating mappings since the above procedure can accu-
mulate errors from frame to frame. These mappings can be solved
using our image matching algorithm. The procedure outlined in
Section 4.4 needs to be followed when there are sparse feature cor-
respondences as warp constraints. These feature correspondences
are obtained with the help of the user, as mentioned in Section 3.2.
Once a superkeyframe is reached, the differences between the map-
ping obtained from composition and the mapping calculated di-
rectly are uniformly distributed across all the frames between the
current and previous superkeyframes.

Our composite mappings can perform better than mappings ob-
tained independently for each pair of frames because they maintain
temporal coherence more effectively. They ensure that the incre-
mental changes in the mapping are accumulated only from the small
frame-to-frame motion in each individual sequence while indepen-
dently obtained mappings may have relatively large discontinuities.
This has been confirmed in our various experiments.

5.2 Transition Functions

Transition control tries to determine the rate of warping and color
blending across a traditional morph sequence between two images
[Wolberg 1998]. The transition rate can vary at different parts of
the image plane. Therefore, a transition function T (t,p) is defined
over time as well as the spatial location on the image plane. The
most commonly used linear transition function can be written as
T (t,p) = t. A specially designed nonuniform transition function
is able to transform different regions of the source image at different
rates in order to achieve certain dramatic visual effects [Lee et al.
1995a].

For video morphing, each intermediate frame of a morph se-
quence is generated from a different pair of input frames. How-
ever, there is only one transition function controlling the whole
morph sequence. The intermediate frame fi can be generated using
T ( i

N
,p). In a more general situation, the transition of shape and

color does not have to be synchronous. We can adopt two distinct
transition functions, Tg and Tc, for controlling the transition rate
of shape and color separately. This strategy can create interesting
color transfer effects. For example, an image object may still keep
the shape of a source object while its color already becomes that of
the target object. Such an effect can help visualize the underlying
geometric distortion introduced by the warp function. An example
of asynchronous transition of shape and color is given in Fig. 6(b).

The final images of a video morph are generated by quadrilateral
rendering using OpenGL [Wolberg 1990].

6 Experimental Results

We have implemented the video morphing technique and performed
extensive experiments with the system. In this section we report
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Comparisons among various algorithmic combinations. (a)&(e) Two frames from an image sequence. They are 10 frames apart
in the original sequence. (b) A superimposed image generated from (a)&(e) to show their discrepancy. (c) The matching result obtained
from only applying orthogonal dynamic programming at the highest resolution. No image pyramid is used. (d) The matching result from
a Laplacian pyramid. (f) The matching result from a pyramid constructed using critial point filters. (g) The matching result from a hybrid
pyramid and pixelwise 2D local search. (h) The matching result from a hybrid pyramid and dynamic programming, which produced a more
accurate one-to-one mapping than the other methods. The matching between corresponding eyes is perfect. In this comparison, there are no
warp constraints, and no feature tracking is performed. c©1988 NGT, Inc.

results on a variety of image objects and motion. On a pair of 60-
frame image sequences at video resolution, automatic feature track-
ing and image matching take between 1.5 to 3 hours on a Pentium
IV 2GHz PC while the total amount of time for user interaction is
less than 2 hours if one chooses to have a keyframe for tracking
in every two frames. After that, the user can still choose to make
minor changes if the results are not completely satisfactory. The
machine needs to go through image matching and morph sequence
production after the user makes changes.

6.1 Comparisons

The first comparison concerns the performance of our automatic
image matching algorithm. We chose two frames from an image
sequence. The two frames have the same objects (an animal and
leaves), but are ten frames apart in the original video. Although
there are large displacements between corresponding features, it is
straightforward to verify the correctness of the resulting matching.
Besides linear time dynamic programming, another efficient opti-
mization method is pixelwise local search which sequentially op-
timizes the correspondence at each pixel instead of updating one
complete row or column of pixels simultaneously. Fig. 5 shows
the results from various algorithmic combinations. Our algorithm
produces a more accurate mapping than other methods. Dynamic
programming can perform better than local search because it is less
likely to be stuck in a local minimum. However, performing dy-
namic programming only at the highest resolution is ineffective be-
cause of the huge number of unknowns and the presence of noise
while integrating it into each level of the pyramid significantly im-
proves the results. Our hybrid pyramids also prove to be better than
pyramids constructed from Laplacian or critical point filters only.
There are two major reasons why only applying critical point fil-
ters does not generate as good results. First, color images have to
be converted to grey-scale images before critical point filters can
be applied since maxima and minima are not well-defined among
colors but among luminance values. Second, if a noisy pixel hap-
pens to be a local maximum or minimum, it can be pushed up to the

top level of the pyramid and give rise to erroneous correspondences
there. Low-pass filtering the original image at lower levels of the
pyramid can remove noise and prevent this possibility.

The second comparison concerns the morphing between a person
and a puma both of which have their own motion. There are moving
shadows cast by the leaves on the face of the puma. Morphing is fo-
cused on their faces by only tracking features in the facial regions.
The backgrounds are naturally cross dissolved. In addition to fea-
ture tracking, there is a superkeyframe every twelve frames with an
extra superkeyframe at the end. That results in six superkeyframes
for the 60-frame sequences. A linear motion model assumes the
position of a feature on an intermediate frame can be linearly in-
terpolated from the positions of the same feature in the two closest
keyframes. Assuming a linear motion model between two consecu-
tive superkeyframes is insufficient since our superkeyframes are too
sparse. On the other hand, feature tracking along with very sparse
superkeyframes can produce good results. We show a comparison
between the results from our approach and the results from a linear
motion model in Fig 7. The linear motion model produces obvi-
ous misalignments in Fig 7(b). To produce better results with this
model, the user has to mark features and correspondences in a much
larger set of frames.

6.2 Morphing Examples

A few video morphing examples are given in Fig. 6, Fig. 7 and Fig.
8 along with the λ values we use for Eq. 3. The examples include
rigid and nonrigid objects as well as fluids. Feature tracking was
performed on most of the sequences, but not all.

One of the major advantages of our method is that it can pro-
duce very interesting results for highly nonrigid objects such as flu-
ids. Such nonrigid objects have fast nonlinear motion and volatile
feature points. Marking features and correspondences becomes ex-
tremely hard by both humans and machines. When morphing such
objects, correspondences across superkeyframes and feature track-
ing between consecutive keyframes become optional and only a
very small number of points are tracked if tracking is actually per-
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(a)

(b)

Figure 6: A video morph sequence between a pool of water and a cartoon figure. The cartoon figure deforms along with the motion of the
water. (a) A morph produced using a linear transition function for both pixel location and color. (b) A morph produced using two different
nonlinear transition functions for pixel location and color, respectively. The underlying warp function can be more clearly seen in this second
example. λ = 0.1. c©Clamp/Kodansha

(a)

(b)

Figure 8: (b) A morph between two videos of the same landscape at different times of the day with dramatically different sky illumination.
λ = 0.5. c©David Fortney (c) A video morph between an audience with waving hands and a fire sequence. λ = 0.1.

formed. However, our image matching algorithm can successfully
find correspondences between images without warp constraints.
For example, we found it was almost impossible to interactively
mark feature correspondences between consecutive frames of the
fire sequence used for Fig. 8(b), and feature tracking was not very
successful, either. For the same reason, no feature correspondences
across superkeyframes were generated for the examples shown in
Fig. 6, Fig. 8(b) and the clouds in Fig. 8(a). However, the morph
images in the middle of Fig. 8(b) show an impressive alignment
between the deformed hands and fire flames. Morphing between
dynamic water and a static cartoon figure shown in Fig. 6 is another
difficult example. Our algorithm solved correspondences between
the frames of the water and the cartoon figure automatically. We
can see that the cartoon figure deforms along with the motion of the
water to indicate that they are not simply cross dissolved.

Eq. (1) tries to match pixels with similar colors after histogram
equalization. When the colors from two images are completely dif-
ferent, it still tries to match the closest ones. In Fig. 8(b), it correctly
matches the hands with the flames because their colors become
closest after histogram equalization. This becomes a minor issue

for consecutive frames from the same sequence since the color of
the same object is not expected to change much in two consecutive
frames. This kind of color coherence is actually exploited in the
compositing procedure for warp functions across two sequences.
We only directly compute the mappings across two sequences at
the superkeyframes where the user can impose a relatively larger
number of warp constraints as illustrated in Fig. 3(b)-(c). These
mappings are propagated to the rest of the frames using mappings
between consecutive frames from the same sequence.

The video for the morphing examples in
this report may be found at: http://www-
sal.cs.uiuc.edu/˜yyz/movie/VideoMorph_mpeg4.avi

7 Conclusions and Discussions

We have presented an effective morphing technique for image se-
quences. An important component of the approach is an automatic
image matching algorithm based on hybrid pyramids and orthogo-

7



(a)

(b)

Figure 7: (a) a video morph using feature tracking plus su-
perkeyframes. (b) two intermediate morph images assuming linear
motion between superkeyframes. They correspond to the middle
row in (a). The linear motion model produces obvious misalign-
ment because of the sparsity of the superkeyframes. λ = 1.0.

nal dynamic programming. When automatic matching cannot cap-
ture the high-level feature correspondences in the images, this al-
gorithm is capable of incorporating sparse warp constraints from
user intervention or feature tracking. Sparse frame-to-frame feature
correspondences can be obtained semi-automatically by integrating
a friendly user interface with a robust feature tracking algorithm.
To obtain high-quality mappings across two image sequences, a
novel compositing procedure has been designed to observe tem-
poral coherence and increase the robustness. Experimental results
showed that our method performed well on a wide variety of image
sequences.

A number of topics remain to be explored. Different videos may
have drastically different object motion, which means that video
morphing may perform better on a subset of image sequences than
on the others. The video matting technique [Chuang et al. 2002] can
be used for semi-automatic object and contour tracking and extrac-
tion so that one can morph a foreground object without affecting the
background. We would like to extend our system so that it better
supports a change of occlusion and order between multiple image
objects by incorporating a multi-layer model for image and video
morphing. Nevertheless, the method in this paper can still produce
a smooth and reasonable morph when occlusions and disocclusions
occur by optimally interpreting these events in the current single-

layer model. By enforcing a one-to-one mapping, occlusions are
usually interpreted as object size reduction and disocclusions as ex-
pansion.

Acknowledgment: This work was supported by National Sci-
ence Foundation CCR-0132970.
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