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Figure 1: Several vector solid textures rendered in real time. In each group, the upper inset shows a closer view while the lower inset is
rendered using the bitmap solid texture from which the vector version is generated. In the middle group, the reflectance coefficients are stored
along with the RGB channels. In the rightmost group, three different scales of the same vector solid texture are composited to yield complex
self-similar boundaries.

Abstract

In this paper, we introduce a compact random-access vector repre-
sentation for solid textures made of intermixed regions with rel-
atively smooth internal color variations. It is feature-preserving
and resolution-independent. In this representation, a texture vol-
ume is divided into multiple regions. Region boundaries are im-
plicitly defined using a signed distance function. Color variations
within the regions are represented using compactly supported ra-
dial basis functions (RBFs). With a spatial indexing structure, such
RBFs enable efficient color evaluation during real-time solid texture
mapping. Effective techniques have been developed for generating
such a vector representation from bitmap solid textures. Data struc-
tures and techniques have also been developed to compactly store
region labels and distance values for efficient random access during
boundary and color evaluation.
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1 Introduction

Texture maps used for real-time rendering are traditionally stored as
bitmap images on graphics cards for random access. There has been
a constant tension between texture resolution and memory usage.
An overly fine resolution consumes too much GPU memory while
an insufficient resolution leads to blurry interpolated texture map-
ping results. This is even worse for solid textures because of large

memory consumption by 3D grids. A mipmap facilitates texture
minification, but not magnification. On the other hand, vector im-
ages are well-suited for magnification because of their resolution-
independent representation. The same vector image can be raster-
ized to a high-quality bitmap image at a wide range of resolutions.
It seems promising to solve the above dilemma for solid textures by
developing a specifically tailored vector representation.

Achieving this goal imposes a few challenging requirements. First,
the vector representation should be feature-preserving during mag-
nification. Features refer to edges where there exist sharp color or
intensity changes. In a solid texture, such edges typically form sur-
faces within the texture volume. Second, the vector representation
needs to be reasonably compact to alleviate memory consumption.
A vector representation becomes advantageous only when it con-
sumes a relatively small amount of memory but delivers a quality
equivalent to a relatively high resolution bitmap. Third, the vec-
tor representation should support fast random access and real-time
solid texture mapping on surfaces. Otherwise, it cannot become a
replacement for bitmap textures.

In this paper, we introduce an effective vector representation for
solid textures to meet the aforementioned requirements. It has the
following important characteristics. First, it decomposes a texture
volume into nonoverlapping regions along texture features. Re-
gion boundaries are implicitly defined using a signed distance func-
tion. Such a decomposition enables the preservation of rapid color
changes across features. Second, color variations within the regions
are compactly represented using radial basis functions (RBFs) with
a finite support. Such RBFs support efficient color evaluation dur-
ing real-time solid texture mapping. Third, data structures and
techniques have been developed to compactly store region labels
and distance values for efficient random access during boundary
and color evaluation. Furthermore, this representation facilitates
region-based texture composition and real-time texture editing op-
erations, including parametric warp and local boundary softness.

We have developed effective techniques for generating such a vec-
tor representation from either 2D exemplars or existing solid tex-
tures, and for mapping such vectorized solid textures onto mesh



surfaces in real time. During vectorization, color variations are
fitted with a minimal number of RBFs using both nonlinear opti-
mization and teleportation. The number of distinct region labels is
minimized by casting it as a graph coloring problem. A spatial in-
dexing structure is also set up for RBFs so that relevant RBFs can
be quickly looked up during real-time solid texture mapping.

Due to the use of signed distance functions and RBFs, our repre-
sentation requires that the sharp features (region boundaries) in a
solid texture can be identified by a binary mask and the regions
have relatively smooth internal color variations.

2 Related Work

Solid Texture Synthesis Solid textures are useful in many sce-
narios, including modeling natural textures such as wood and mar-
ble, and representing the interior or cross sections of volumetric ob-
jects, such as fruits. Heeger and Bergen [1995] as well as Ghazan-
farpour and Dischler [1995; 1996] did early work on example-based
solid texture synthesis using parametric approaches. Wei attempted
to synthesize solid textures from 2D input using a non-parametric
method [Efros and Leung 1999; Wei 2001]. Based on stereologi-
cal techniques, Jagnow et al. [2004] generate impressive results for
aggregate materials. But their method is not applicable for general
solid textures. Qin and Yang [2007] propose an approach for gen-
erating solid textures using aura matrices of the input exemplars.
Kopf et al. [2007] present a widely applicable method that utilizes
2D texture optimization [Kwatra et al. 2005] and histogram match-
ing. We use their method to generate solid textures from 2D exem-
plars. By considering the coherence within the 2D exemplars, Dong
et al. [2008] propose a parallel solid synthesis algorithm that runs
efficiently on the GPU. Finally, Takayama et al. [2008] develop an
intuitive interface that allows the user to design anisotropic solid
textures directly on objects using 3D exemplars.

In addition to texture synthesis, procedural textures (e.g. [Ebert
et al. 1994; Worley 1996]) provide a practical alternative for solid
texture generation. Such textures typically do not save explicit
copies, but evaluate pointwise texture colors on the fly. Although
impressive visual results have been achieved on certain types of tex-
tures, in general, it is still challenging to conceive a procedure that
convincingly reproduces an arbitrarily chosen natural pattern. La-
gae et al. [2009] introduce a procedural noise based on sparse Gabor
convolution that offers intuitive control over the spectral density,
anisotropy etc. of the noise. But the variety of materials that can be
generated is still limited. Note that our vector texture representation
relies on the same tricubic interpolation as Perlin’s noise. However,
we use it on signed distance values to determine region boundaries
while Perlin used it for noise and gradient interpolation.

Vector Graphics and Image Vectorization 2D vector graphics,
often in the form of charts, maps and clip arts, are curve-based and
regions in-between curves are filled with uniform colors or color
gradients. Nehab and Hoppe [2008] introduced an algorithm for
random-access rendering of antialiased 2D vector graphics on the
GPU. It can map vector graphics onto arbitrary surfaces. There has
been much work on non-photographic image vectorization [Chang
and Hong 1998; Zou and Yan 2001; Hilaire and Tombre 2006],
i.e. converting such an image into 2D vector graphics. These algo-
rithms are mainly designed for contour tracing and curve fitting.

Vectorization of full-color 2D raster images [Lecot and Levy 2006;
Price and Barrett 2006; Sun et al. 2007; Orzan et al. 2008; Lai
et al. 2009; Xia et al. 2009] has been popular recently. These im-
ages need a more generic vector representation that accounts for
color variations across the image plane in addition to feature curves.
Among them, high-quality image vectorization via a rectangular
grid of Ferguson patches has been explored in [Sun et al. 2007; Lai

et al. 2009]. Instead of using rectangular patches, Xia et al. [2009]
exploits the topological flexibility of triangular patches with curved
boundaries to perform automatic feature alignment and image vec-
torization. Diffusion curves [Orzan et al. 2008] model spatial color
variations in a vectorized image as a diffusion from curves with
both color and blur attributes.

Several softwares, such as VectorEye, Vector Magic, and AutoTrace
have been developed for automatically converting bitmaps to vector
graphics. Commercial tools (CorelDRAW, Adobe Live Trace, etc.)
that help artists design and edit vector images are also available.

In addition to complete vector representations, there exist hy-
brid feature-based 2D texture representations (e.g. [Ramanarayanan
et al. 2004; Sen 2004; Tumblin and Choudhury 2004; Tarini and
Cignoni 2005; Parilov and Zorin 2008]). The basic idea of these
methods is to improve the sharpness of the features in a magnified
bitmap image by performing interpolation with respect to explicitly
added feature boundaries. These methods represent features using
vector primitives but still represent spatial color variations using a
bitmap image. In comparison, our method works for 3D solid tex-
tures where features are represented as implicit surfaces instead of
curves. In addition, we represent color variations using compactly
supported RBFs, which are region-filling vector primitives more
generic than uniform colors or color gradients.

3 Vector Texture Representation
Our vector solid texture representation consists of three key com-
ponents: a set of regions with distinct region labels, a continuous
3D signed distance function, and the weights and parameters of a
set of radial basis functions. The region boundaries are implicitly
defined by the zero isosurface of the signed distance function. This
isosurface divides the texture volume into multiple connected com-
ponents, and a region consists of one or multiple such connected
components. The color variations within each region are repre-
sented separately using a distinct subset of radial basis functions.

Both the signed distance function and region labels are defined
through a 3D discrete grid, denoted as S, with d × d × d nodes.
The sampled signed distance values and region labels at the grid
nodes are explicitly stored. We denote xijk as the 3D location of
the grid node (i, j, k), where i, j, k ∈ {0, 1, . . . , d−1}, andD(x),
`(x) as the signed distance value and region label, respectively, at
an arbitrary location x, which is not necessarily a grid node, inside
the texture volume. To define the underlying continuous signed
distance function, we calculate the signed distance at an arbitrary
location by tricubic interpolation from the node values at the near-
est 4× 4× 4 subgrid. Tricubic interpolation guarantees a sufficient
level of continuity of the signed distance function.

The region label at an arbitrary location x is determined as follows.
If all nodes in its nearest 2 × 2 × 2 subgrid have the same region
label, `(x) is assigned the same label too. Otherwise, there exists
one or more boundary surfaces inside the subgrid, and the sign of
the interpolated distance value at x determines `(x).

Note that representing region labels and the distance function us-
ing a discrete grid is inherently different from representing colors
on a grid. The former encodes feature-based texture segmentation
results as well as the shape of region boundaries. Such geometric
information is essential for any vector representations, and plays a
crucial role in feature preservation and magnification.

4 Vector Texture Generation

This section describes an algorithm to convert a bitmap solid texture
to our vector representation.



Our algorithm requires a bitmap solid texture with an additional
channel of signed distance as the input. Signed distance func-
tions have been widely used as “feature maps” in texture synthe-
sis [Lefebvre and Hoppe 2006; Kopf et al. 2007] to improve the
synthesis quality. This signed distance function is an implicit rep-
resentation of texture features, i.e. surfaces that correspond to sharp
edges in the texture volume.

From 2D Exemplars Given an input 2D color texture and a bi-
nary feature mask from which a 2D signed distance transform
can be computed, we adopt Kopf et al.’s optimization-based algo-
rithm [2007] to synthesize a solid color texture with an additional
channel of signed distance (Figure 2). The binary feature mask can
be created by color thresholding or user interaction.

C2D M2D D2D C3D D3D

Figure 2: Synthesizing the solid color texture C3D with signed
distance channel D3D (colorized according to the sign for clar-
ity) from a 2D exemplar C2D and a signed distance transform D2D

computed from a binary feature mask M2D.

From Existing Solid Textures Given an existing solid texture
where a signed distance is absent, we do not need the user to pro-
vide a 3D binary mask for computing the distance channel since
manually creating a 3D mask is often impractical. Instead, the user
only needs to create a 2D mask in a 2D slice or the original 2D
exemplar (if available) of the solid texture, and we can synthesize
a 3D signed distance channel automatically. This problem is in
the same spirit as Image Analogies [Hertzmann et al. 2001]: given
a 2D color texture C2D, a 2D signed distance function D2D, and
a 3D color texture C3D, we would like to generate a 3D function
D3D that relates to C3D in the same way as D2D relates to C2D

(Figure 3). Although the idea is relatively simple, we find it works
surprisingly well for solid textures we have seen, especially those
where simple color thresholding cannot yield a satisfactory result.

C2D

:

D2D

: :

C3D

:

D3D

Figure 3: The problem of synthesizing a 3D distance function for
an existing solid texture can be formulated using the notation in
Image Analogies [Hertzmann et al. 2001].

Note that the synthesized distance channel is no longer an accurate
distance function, but an approximate one. Nevertheless, it suffices
as an implicit definition of feature surfaces which only need dis-
tance values at locations close to the zero isosurface.

The zero isosurface of the signed distance function divides the orig-
inal solid texture along its sharp features into multiple connected
components. We initially consider every connected component as
a distinct region, and later may merge multiple connected compo-
nents into the same region (Section 5.2). Every grid cell (a 2×2×2
subgrid) can be part of at most two different connected components
if connectedness is defined using 26 neighbors. We must also con-
sider the tileability of the original texture so that nodes that are con-
nected after tiling should belong to the same region.

4.1 RBF Color Fitting

Given the color C of the original solid texture (defined on the regu-
lar grid S), we use a set of radial basis functions (RBFs) to approx-
imate C. To avoid color bleeding across sharp features, we assign
a dedicated set of RBFs to each region. The approximated color at
a location x inside region p is defined as

C̃(x) = C̄p +

mp∑
q=1

wpqBpq(x), (1)

where C̄p is the average color of the nodes in region p, mp is the
number of RBFs assigned to region p, and Bpq is the q-th basis
function in region p and is defined as

Bpq(x) = φ

(
‖x− cpq‖

rpq

)
. (2)

We choose the Wyvill function [Wyvill et al. 1986] for φ because
of its compact support and low cost to evaluate:

φ(r) =

{
1− 4

9
r6 + 17

9
r4 − 22

9
r2, r ≤ 1

0, r > 1

The goal of RBF color fitting can now be formulated as: given the
original texture color C, κ regions in the texture volume, find n
RBFs that minimize the following objective function:

κ∑
p=1

∑
xijk∈Sp

∥∥C̃(xijk )− C(xijk )
∥∥2
, (3)

where
∑

p
mp = n, Sp is the subset of grid nodes inside region p.

The color fitting algorithm first chooses n random locations in-
side the texture volume as the initial centers of the RBFs. A re-
laxation procedure can be applied to make the initial distribution
of RBF centers more uniform. An RBF is assigned to a region
if its initial center is located inside that region. Its initial weight
w = C(x) − C̄(x) and radii set to a user-provided default value.
To solve the nonlinear optimization in (3), we adopt the L-BFGS-B
minimizer [Zhu et al. 1997]. L-BFGS-B is a gradient-based method
with bound constraints. Let cp∗, rp∗, and wp∗ be the center loca-
tion, radius, and weight of an RBF in region p, respectively. We
bound these variables as follows:

0 < cp∗ < 1,

0.5n−1/3 ≤ rp∗ ≤ 2n−1/3,

wmin −
wmax − wmin

2
≤ wp∗ ≤ wmax +

wmax − wmin

2
,

where

wmin = min
xijk∈Sp

[
C(xijk )− C̄(xijk )

]
,

wmax = max
xijk∈Sp

[
C(xijk )− C̄(xijk )

]
.

Due to high nonlinearity, the minimizer can be easily trapped in lo-
cal minima. We employ a teleportation scheme similar to that in
[Cohen-Steiner et al. 2004] and [Zhou et al. 2008]: after the mini-
mizer converges, we move the most insignificant RBF to the loca-
tion of the maximum fitting error and invoke the minimizer again to
see if the overall error can be further reduced. We define the signif-
icance of an RBF as the difference between the objective function
computed with and without this RBF. Let Bp∗ be an RBF in region
p, the significance of Bp∗ is defined as∑

xijk∈Sp

‖C̃(xijk )− wp∗Bp∗(xijk )− C(xijk )‖2

−
∑

xijk∈Sp

‖C̃(xijk )− C(xijk )‖2. (4)



When teleporting an RBF to a new location that is inside a different
region, the algorithm also dynamically changes the membership of
the RBF to that region. The inclusion of this teleportation scheme
leads to a further reduction of the objective function by 40%∼50%.

5 Compact Storage
In this section, we discuss a few effective techniques for reduc-
ing the amount of memory required for storing the signed distance
function and region labels.

5.1 Distance Quantization

The sampled signed distance values are initially stored as a d×d×d
array of 32-bit floating-point numbers. However, notice that the
nodes far from the region boundaries (with larger absolute distance
value) have little effect on the shape of the region boundaries. We
can thus clamp the distance values to a relative small range. Fur-
thermore, we have found that the clamped distance values can be
quantized using only 4 bits without visually degrading the quality
of the implicitly defined region boundaries (see Figure 4).

For a generic distance function, it may be feasible to adopt an
adaptively-sampled distance field (ADF) [Frisken et al. 2000] for
compression. However, due to the complexity of the internal re-
gions in most solid textures, we have found that the overhead of
storing the octree structure is too high to make it practical in our
case (with an exception discussed in Section 5.3).

(a) (b) (c) (d)

Figure 4: The discrete signed distance field (a) implicitly defines
the region boundaries as highlighted in (b). Quantizing the 32-bit
distance values in (b) using 8 bits (c) or even 4 bits (d) does not
visually degrade the quality of the boundary surfaces.

5.2 Region Relabeling

We have previously assigned a distinct region label to every con-
nected component. For a typical 1283 solid texture, there could be
over 1000 connected components, requiring at least 10 bits for each
region label. Let us recall two facts. First, the main goal of labeling
a region is to prevent this region from being affected by RBFs in
other regions; second, all the RBFs are compactly supported and
the maximum radius is bounded. They indicate that if two regions
satisfy the condition that neither region’s RBFs affect the other re-
gion, they can actually share the same label (Figure 5). Since each
region has its own average color, we add a special “RBF” to each
region. The center location and the radius of this RBF are set to
those of the bounding sphere of the region.

This becomes a classical graph coloring problem: given the cur-
rent region labels and the RBFs in each region, we can build an
undirected graph G, where each vertex corresponds to a region and
an edge (vi, vj) means there exists at least one RBF of region i
that affects region j or vice versa. Finding the smallest number
of colors needed to color an arbitrary graph (a.k.a. the chromatic
number) is NP-complete. But for all the textures we have tested,
a greedy algorithm with the Welsh-Powell heuristic [1967] is good
enough to find a solution with no more than 18 colors. The Welsh-
Powell algorithm first sorts all the vertices in a graph according to
their degrees and then processes the vertices in order and assigns
the smallest numbered available color to each vertex.

κ = 551 κ = 12

Figure 5: Region relabeling. Left: the blue region and the yel-
low region can share the same label because their RBFs (dashed
circles) do not affect each other. Middle and right: the colorized
region labels before and after relabeling.

5.3 Region Label-Pair Storage

The region labels, unlike the distance function, are constant within
each region. There should be more compact forms than directly
storing them at the regular grid nodes. However, due to the com-
plex intrinsic structures in most solid textures, applying common
spatial compression methods such as Run-Length Encoding or Oc-
trees directly on region labels often gives rise to expensive storage
overhead, not to mention the adverse effects on rendering perfor-
mance.

As mentioned in Section 4, there exist at most two different region
labels in each cell (a 2× 2× 2 subgrid) of the regular grid S. And
if there are two different labels, the cell must straddle a zero iso-
surface of the signed distance function, i.e. some of the nodes in
the cell are associated with a positive distance while the others are
associated with a negative distance. Based on this fact, we chose
to store two region labels, namely the label of the closest positive
region (denoted as `⊕) and the label of the closest negative region
(denoted as `	), inside each grid cell. To compute such closest
regions, we initialize the region labels inside a cell using the region
labels at the corners of the cell. Obviously in some cells, where no
isosurfaces cut through, either `⊕ or `	 is undefined. We apply the
fast marching algorithm [Sethian 1999] to propagate the initial `⊕
and `	 in two separate passes. Such propagation fills all undefined
labels, as illustrated in Figure 6.

Note that although storing the label pairs seems to have doubled the
storage requirement, the resulting spatial distribution of the label
pairs actually makes them much easier to compress because they
have much fewer transitions along any spatial direction. Indeed,
we can build an octree data structure for the label pairs. We ar-
range the octree structure in a similar way as [Lefebvre et al. 2005].
For the textures in this paper, the use of octrees saves at least 70%
(and at most 99.998%) of the original storage for region label pairs.
Furthermore, we have observed about 5% improvement on the ren-
dering performance due to reduced texture memory access.

Figure 6: A 2D illustration of the region label pairs. From left to
right: the region labels on each grid node, the initial label pairs on
each grid cell, the separated positive (top) and negative (bottom)
labels, the labels after propagation, and the final label pairs.



6 Rendering
As a form of solid textures, our vector representation supports effi-
cient random access to the color at any given 3D location (texture
coordinate), as requested by a pixel shader. Basically, to calcu-
late the color of a pixel with texture coordinate x, the pixel shader
needs to access three data structures: the quantized signed distance
function D, the region label-pair octree P , and the set of RBFs, as
described in Algorithm 1.

Algorithm 1 Naı̈ve Vector Solid Texture Fetch

procedure VECTEXFETCH(x) . x ∈ [0, 1]3

d← D(x) . using tricubic interpolation
(`⊕, `	)← P (x)
if d > 0 then `← `⊕
else `← `	
color ← 0
for all RBF (w, c, r) in region ` do

color ← color + wφ( ‖x−c‖
r

)

return color

In the rest of this section we introduce several techniques to im-
prove the performance and quality of Algorithm 1. For clarity we
keep the description in an abstract way and leave the implementa-
tion details to Section 7.

6.1 RBF Spatial Indexing

To evaluate the color at a given location inside a region, a simple
way would evaluate the value of every RBF (assigned to the region)
at that location, which is expensive for regions with a relatively
large number of RBFs. Since all the RBFs are compactly supported
and their maximum radius is bounded, the number of RBFs that
simultaneously affect a given location is usually quite low. There-
fore, we set up a spatial indexing structure by dividing the texture
volume into a sparse grid of size ds × ds × ds. In each grid cell,
we record the RBFs that potentially affect this cell.

The spatial indexing structure can be built quickly when loading
the texture. Although it can boost the rendering performance sig-
nificantly, it also consumes a small amount of additional storage.
Therefore, the choice of ds provides a space-speed tradeoff. In
practice, we have found that ds = 8 strikes a balance in most cases.

6.2 Region Boundary Softening

Since we segment the texture volume into regions and perform RBF
fitting for each region separately, there exists a color contrast across
region boundaries in final texture mapping results. However, a clear
color contrast across region boundaries sometimes may look un-
natural. Therefore, we make use of the precomputed region label
pairs (Section 5.3) to perform boundary softening by blending col-
ors from two adjacent regions.

The color contrast across a region boundary is caused by abrupt
region membership changes across the boundary. Suppose the dis-
tance value D(x) at a location x is positive. From the region label
pair (`⊕, `	) at x, we not only know the region label of x, `⊕,
but also know the label of the closest neighboring region `	, and
|D(x)| is the shortest distance from x to the boundary between re-
gions `⊕ and `	. Thus, during real-time solid texture mapping, we
evaluate two colors (denoted as color⊕ and color	) on the fly at
the same location using RBFs from region `⊕ and `	, respectively.
The final color at any location x within a distance threshold δ from
a region boundary (i.e. |D(x)| < δ) is a linear blend between two
such evaluated colors:

color ← LERP(color	, color⊕, (D(x) + δ)/(2δ)). (5)

Note that unlike in 2D vector graphics, the meaning of boundary
softness in a vector solid texture is two-fold. From a 3D point of
view, it defines an intrinsic property of the solid texture that is simi-
lar to a 3D extension of the blur attribute in Diffusion Curves [Orzan
et al. 2008]. The threshold in this context is denoted as δ3D and is
a user-adjustable parameter. From a 2D point of view, the soft-
ness also controls how the rasterized vector texture is antialiased in
screen space.

To perform accurate antialiasing, we must carefully choose the
threshold, denoted as δ2D in this context, so that a pixel participates
blending if and only if the projected region boundary cut through it.
In practice, for each screen pixel we let δ2D = 0.5‖∇d‖, where d
is the signed distance value at the pixel and ∇d is the screen space
gradient of d. Hence, |d| < δ2D means there exists a region bound-
ary within the range of half the pixel width from the current pixel
center, and we compute the color according to (5).

During rendering, the 3D and the 2D boundary softness thresholds
are incorporated as δ = max(δ3D, δ2D).

δ3D = 0
δ2D = 0

δ3D = 0
δ2D = 0.5‖∇d‖

δ3D = 0.3
δ2D = 0.5‖∇d‖

Figure 7: Boundary softening with different thresholds.

6.3 Mipmapping

Boundary softening alone cannot completely avoid aliasing in mini-
fication because more than two regions may fall into a single pixel.
Our vector texture representation can also employ mipmapping in
a similar way as bitmap textures do. To generate a mipmap for a
vector solid texture, we first generate the texture pyramid for the
original bitmap solid texture. Then each level of the pyramid is
vectorized separately as described in Section 4, using 1/8 as many
as the RBFs in the finer level. Figure 8 shows several mipmap levels
of a vector solid texture.

1283

643

323

163

Figure 8: Four mipmap levels of a vector solid texture.

7 Results and Discussion
We have generated a number of vector solid textures that cover a
wide range of texture types, as shown in Figure 12. Table 1 summa-
rizes the storage and rendering performance of each texture. Gen-
erally, for a solid texture with three 8-bit color channels, our vector
representation consumes 17% ∼ 26% the storage of a bitmap ver-
sion with the same grid resolution. This ratio is even lower for
textures with more channels (e.g. displacement, appearance coef-
ficients) since these additional channels are approximated with the
same set of RBFs in our vector textures. Furthermore, to achieve a
comparable quality after magnification, a bitmap solid texture with
a much higher grid resolution is required. Note that the Kiwi exam-
ple in Figure 12 (f) takes the most number of RBFs to get a good



Dataset Grid # RBFs Storage (MB) Rendering
Static Total (FPS)

Fig. 1 (left) 1283 5183 1.117 1.173 148.6

Fig. 1 (middle) 1283 202 1.002 1.016 549.7

Fig. 1 (right) 1283 2015 1.050 1.087 247.1

Fig. 10 963 5002 0.479 0.569 096.5

Fig. 12 (a) 1283 1387 1.120 1.152 252.4

Fig. 12 (b) 1283 69 1.497 1.548 146.4

Fig. 12 (c) 1283 1060 1.074 1.100 335.5

Fig. 12 (d) 1283 352 1.004 1.026 363.2

Fig. 12 (e) 643 19 0.126 0.135 741.1

Fig. 12 (f) 1283 7137 1.199 1.275 140.8

Fig. 12 (g) 1283+643 3893 1.290 1.369 150.5

Fig. 12 (h) 1283 4735 1.141 1.230 144.0

Table 1: Statistics of the vector solid textures in this paper. The
total size includes both the static size and the size of the RBF spatial
index. All the textures use an 83 grid for RBF spatial indexing.
Figure 12 (g) is composited from two vector solid textures. The
performance is measured by rendering a textured cube in an 8002

window on an NVIDIA GeForce 8800 GTX.

fitting result due to its complex structure and color variation. The
original bitmap texture was created manually using a special tool
developed by ourselves. It is difficult to generate such a texture
using procedural or example-based synthesis methods.

Given an input bitmap solid texture with an accompanying signed
distance function, the vectorization is fully automatic and takes
about 1 ∼ 20 minutes depending on the input resolution and the
number of RBFs.

We have implemented our rendering algorithm using Direct3D 9.
Since current graphics hardware does not natively support a single-
channel 4-bit texture format, we encode the d × d × d distance
function as a d × d × (d/2) texture in A4L4 format. The octree
for region label pairs can be packed into an A1R5G5B5 3D texture
where the 1-bit alpha value indicates whether a tree node is a leaf.
For textures with only three color channels, the RBFs are stored in
two 1D textures: an A16B16G16R16F texture for the center loca-
tions and radius values, and an A8R8G8B8 texture for the weights
and region labels, respectively. Finally, the RBF spatial indexing
structure consists of another 32-bit 3D texture for the grid and a
16-bit 2D texture for the indirection table (similar to [Nehab and
Hoppe 2008]). We use the ddx, ddy intrinsic functions to calcu-
late the screen-space gradient of the signed distance function in the
pixel shader. The tricubic interpolation of signed distance values
can be accelerated significantly by using the method introduced by
Sigg and Hadwiger [2005].

7.1 Texture Composition

In the field of solid modeling, implicit representations have the
unique strength to generate new geometric models by performing
algebraic or Boolean operations on two or more existing primitives.
Similarly, in our vector texture representation we can define the
signed distance function as the result of operations on multiple dis-
tance functions. Figure 9 enumerates several possible operations.

One example is to generate “self-similar” textures: during render-
ing, we replace the signed distance value, D(x), at 3D location x
by the following formula:

D′(x) = D(x) +

k∑
i=1

aiD(bix).

In this way, complex fractal-like boundaries can be generated with
no additional storage and little performance overhead, as shown in
Figure 1 (right), where k=2, a1 =0.5, a2 =0.3, b1 =4, b2 =16.

Da Db min(Da, Db) Da + Db

Figure 9: Combining two signed distance functions Da and Db to
define more complex region boundaries.

Another possibility is to generate a hybrid texture from two dif-
ferent textures, as demonstrated in Figure 12 (g). In this case, the
region label at a 3D location is determined by two signed distance
functions.

7.2 Real-Time Texture Manipulation

Based on our vector texture representation, we have implemented
several simple but interesting interactive tools that allow the user to
edit certain aspects of the texture in real time.

Parametric Warp We provide a stroke-based tool that emulates
the Liquify filter in Adobe Photoshop. By sketching on the surface
of a mesh, the user can modify (e.g. “bloat” or “pucker”) the tex-
ture coordinates of the mesh vertices within a given distance to the
stroke to create effects such as spatially-varying texton size. Al-
though this tool can also be applied to bitmap solid textures, the
resulting distortion can cause severe blurring, which is not the case
for vector solid textures (see Figure 12 (e)).

Local Boundary Softness As described in Section 6.2, the
boundary softness of a vector solid texture is a user-adjustable
global parameter. It is also possible to decide the softness based
on local variables. For example, in Figure 10, the softness at a pixel
is determined by the depth in the camera space to create a depth-of-
field effect.

Figure 10: The boundary softness at each pixel is determined by
the camera-space depth. The “focal plane” is set to the head (left)
and hip (right) of the tiger model, respectively.

7.3 Limitations

Due to the nature of signed distance functions, sharp features (i.e.
region boundaries) in the input bitmap texture must be identifiable
by a single binary mask, or in terms of the graph theory, the regions
should be 2-colorable. Although this is true for a wide range of
solid textures, there exist exceptions, e.g. Figure 11 (left), that vio-
late this requirement. A possible solution is to use multiple binary
masks (hence multiple signed distance functions) to identify differ-
ent regions, as shown in Figure 11 (right). Future research could be
performed to find an algorithm that automatically generates multi-
ple binary feature masks (if needed) for a given color texture.



Figure 11: In order to achieve a good vectorization of the upper
left texture, two binary masks need to be used.

Another limitation of our method is that boundary softness cannot
be set to an arbitrary value. The upper limit of distance threshold δ
is determined by the spatial distribution of region label pairs. If δ is
too large, a pixel color could be blended from incorrectly evaluated
region colors and artifacts may appear.

Since RBF-based color fitting is a lossy procedure, certain high-
frequency details in the original bitmap solid texture could be
smoothed out. It is worthwhile to investigate how to represent such
details in vectorization results.

8 Conclusion
We have introduced a compact random-access vector representa-
tion for solid textures. It delivers high-quality rendering results by
preserving both the sharp features and the smooth color variations
of a solid texture. With a spatial indexing structure, our represen-
tation enables efficient color evaluation during real-time solid tex-
ture mapping. Due to its resolution-independent nature, our repre-
sentation supports several interesting applications such as feature-
preserving texture composition and parametric warping. We have
developed effective techniques to generate vector solid textures
from either 2D exemplars or existing bitmap solid textures. One
interesting direction for future work is to develop a user-friendly
interface for designing vector solid textures from scratch.
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