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Single-Item Auction

��� Sell 1 item to n bidders, to maximize revenue

��� Bidder i ’s value vi is drawn independently from Di

��� Direct revelation auction

1. Bidders bid b1, b2, . . . , bn
2. Seller picks allocations x1, x2, . . . , xn and payments p1, p2, . . . , pn
3. Bidder i wins the item w.p. xi , pays pi , gets utility vixi − pi

��� Dominant-Strategy Incentive Compatible (DSIC)

∀i , vi , bi , b−i : vixi (vi , b−i )− pi (vi , b−i ) ≥ vixi (bi , b−i )− pi (bi , b−i )

��� Individually Rational (IR)

∀i , vi , b−i : vixi (vi , b−i )− pi (vi , b−i ) ≥ 0
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Myerson’s Theory

��� DSIC and IR are equivalent to

1. xi (vi , b−i ) is monotone (e.g., step function)
2. pi (vi , b−i ) is the area on the left of xi (vi , b−i ) as a function of vi

(e.g., threshold price above which xi = 1, if xi is a step function)

��� Expected revenue is equivalent to expected virtual welfare

E
n∑

i=1

ϕi (vi )xi (v)

where the virtual value ϕi is

ϕi (vi ) = vi −
1− Fi (vi )

fi (vi )

��� Myerson’s optimal auction deferred to next lecture
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Optimal Pricing in the Single-Bidder Case

��� Sell 1 item to 1 bidder, whose value v is drawn from D

��� Every DSIC and IR auction is equivalent to posting a price p

��� Revenue of price p is p · q(p), where q(p) = 1− F (p) is p’s quantile

��� Revenue curve in quantile space R(q) = v(q) · q

0 1

slo
pe =

v

derivative
=
ϕ

(v)

q

R
(q

)
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Data-Driven Optimal Pricing

Optimal pricing is easy...

but how much information is needed?

��� Sample Complexity/Statistical Learning Model

��� Take m i.i.d. samples from D as input
��� Output a price p

��� How many samples are needed to pick a near optimal p “up to an ε margin”?

��� ε additive approximation
[0, 1]-bounded distributions (illustrative example)

��� 1− ε (multiplicative) approximation
Regular distributions (i.e., concave revenue curve)

MHR distributions (i.e., “strongly concave” revenue curve)

[1,H]-bounded distributions

��� The sample complexity is smallest number of samples needed
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Basic Upper Bound Techniques

Empirical Revenue Maximizer (ERM). Choose the price p that maximizes
revenue w.r.t. uniform distribution over the samples (empirical distribution).

��� Consider a [0, 1]-bounded distribution, and ε additive approximation

��� Plan: Estimate the revenue of every price up to ε additive error

1. Estimate the revenue of one price p up to ε
2. Prices “close to” p cannot yield much higher revenue (up to ε)
⇒ Consider finitely many prices whose “neighborhoods” cover [0, 1]

3. Estimate the revenue of all these representative prices up to ε
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Step 1: Estimate the Revenue of One Price p

It suffices to estimate quantile q(p) = 1− F (p)

Theorem (Chernoff-Hoeffding, User-Friendly Version)

X1,X2, . . . ,Xm are i.i.d. RV over [0, 1]. Let µ = EXi . With probability 1− δ we have

∣∣∣ 1

m

m∑
i=1

Xi − µ
∣∣∣ .

√
log 1

δ

m

Conclusion: Using m &
log 1

δ

ε2
samples v1, v2, . . . , vm

i.i.d.∼ D and letting Xi = 1vi≥p,
we can estimate q(p) (and thus p’s revenue) up to ε additive error w.p. 1− δ
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Step 2: Covering the Price Space

Consider p̃ that is “close to” p. Can p̃’s revenue be much larger than p’s?

p̃ · q(p̃) v.s. p · q(p)

1. If p + ε ≥ p̃ > p, then:

p̃ · q(p̃) ≤ p̃ · q(p)

≤
(
p + ε

)
· q(p)

≤ p · q(p) + ε

2. If p > p̃ ≥ p − ε, then p̃ · q(p̃) could be almost p · q(p)
e.g., p = 1, p̃ = 0.98, and D is point mass at 0.99

Conclusion: p covers [p, p + ε]; prices 0, ε, 2ε, . . . , 1− ε cover the price space [0, 1]
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Step 3: Estimate Revenue of All Representative Prices

��� Using m &
log 1

δ

ε2
i.i.d. samples, we can estimate q(p) (and thus p’s revenue)

up to ε additive error w.p. 1− δ
��� Prices 0, ε, 2ε, . . . , 1− ε cover the price space [0, 1]

Theorem (Union Bound)

For any (bad) events E1,E2, . . . ,En, we have Pr
[
E1 ∪ E2 ∪ · · · ∪ En

]
≤
∑n

i=1 Pr
[
Ei

]
��� If we estimate each representative price’s revenue up to ε w.p. 1− εδ,

then we estimate all of them w.p. at least 1− δ

Conclusion: Using m &
log 1

εδ

ε2
i.i.d. samples, we can estimate the revenue of all prices

up to ε additive error w.p. 1− δ
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Upper Bound for [0, 1]-Bounded Distribution

Empirical Revenue Maximizer (ERM). Return price p that maximizes revenue
w.r.t. uniform distribution over the samples (empirical distribution).

Theorem
ERM using m &

log 1
εδ

ε2
samples is an ε additiive approximation w.p. 1− δ.

12 / 30
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Le Cam’s Method (a.k.a., the Two-Point Method)

��� Consider two value distributions P and Q that are

1. Sufficiently “similar”
One needs m & 1

ε2
samples to distinguish P and Q, say, w.p. 2

3

2. Sufficiently “different”
No price p is an ε additive approximation for both P and Q

��� We next present

1. Statistical distances that characterize the number of samples needed to
distinguish two distributions

2. Sufficient condition under which two distributions are “similar” enough

3. Construction of P and Q

14 / 30
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Distinguish P and Q with One Sample

a b c d

P 0.1 0.2 0.3 0.4
Q 0.4 0.3 0.2 0.1

Suppose that D ∈ {P,Q} and you draw one sample s ∼ D

��� If s = a, would you predict D = P or D = Q? What if s = c?

��� Following this strategy, what is the total error?

Pr
[
predict P | D = Q

]
+ Pr

[
predict Q | D = P

]

= 1− TV(P,Q)

��� Total variation distance

TV(P,Q) =
1

2

∥∥P − Q
∥∥
1

=
1

2

∑
v

∣∣P(v)− Q(v)
∣∣
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]
+ Pr

[
predict Q | D = P

]

= 1− TV(P,Q)

��� Total variation distance

TV(P,Q) =
1

2

∥∥P − Q
∥∥
1

=
1

2

∑
v

∣∣P(v)− Q(v)
∣∣
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Distinguish P and Q with Multiple Samples

��� Observation: m samples from D ⇔ one sample from Dm

��� Minimum total error for distinguishing P and Q with m samples is:

1− TV(Pm,Qm)

��� Hard to reason about TV(Pm,Qm) directly... We need a manageable proxy

��� Kullback-Leibler (KL) divergence

KL(P‖Q) =
∑
v

P(v) log
P(v)

Q(v)

��� Relation to TV (Pinsker’s inequality) TV(P,Q) ≤
√

1
2KL(P‖Q)

��� Direct sum KL(Pm‖Qm) = m ·KL(P‖Q)

16 / 30



Distinguish P and Q with Multiple Samples

��� Observation: m samples from D ⇔ one sample from Dm

��� Minimum total error for distinguishing P and Q with m samples is:

1− TV(Pm,Qm)

��� Hard to reason about TV(Pm,Qm) directly... We need a manageable proxy

��� Kullback-Leibler (KL) divergence

KL(P‖Q) =
∑
v

P(v) log
P(v)

Q(v)

��� Relation to TV (Pinsker’s inequality) TV(P,Q) ≤
√

1
2KL(P‖Q)

��� Direct sum KL(Pm‖Qm) = m ·KL(P‖Q)

16 / 30



Distinguish P and Q with Multiple Samples

��� Observation: m samples from D ⇔ one sample from Dm

��� Minimum total error for distinguishing P and Q with m samples is:

1− TV(Pm,Qm)

��� Hard to reason about TV(Pm,Qm) directly... We need a manageable proxy

��� Kullback-Leibler (KL) divergence

KL(P‖Q) =
∑
v

P(v) log
P(v)

Q(v)

��� Relation to TV (Pinsker’s inequality) TV(P,Q) ≤
√

1
2KL(P‖Q)

��� Direct sum KL(Pm‖Qm) = m ·KL(P‖Q)

16 / 30



Distinguish P and Q with Multiple Samples

��� Observation: m samples from D ⇔ one sample from Dm

��� Minimum total error for distinguishing P and Q with m samples is:

1− TV(Pm,Qm)

��� Hard to reason about TV(Pm,Qm) directly... We need a manageable proxy

��� Kullback-Leibler (KL) divergence

KL(P‖Q) =
∑
v

P(v) log
P(v)

Q(v)

��� Relation to TV (Pinsker’s inequality) TV(P,Q) ≤
√

1
2KL(P‖Q)

��� Direct sum KL(Pm‖Qm) = m ·KL(P‖Q)

16 / 30



Distinguish P and Q with Multiple Samples

��� Observation: m samples from D ⇔ one sample from Dm

��� Minimum total error for distinguishing P and Q with m samples is:

1− TV(Pm,Qm)

��� Hard to reason about TV(Pm,Qm) directly... We need a manageable proxy

��� Kullback-Leibler (KL) divergence

KL(P‖Q) =
∑
v

P(v) log
P(v)

Q(v)

��� Relation to TV (Pinsker’s inequality) TV(P,Q) ≤
√

1
2KL(P‖Q)

��� Direct sum KL(Pm‖Qm) = m ·KL(P‖Q)

16 / 30



Distinguish P and Q with Multiple Samples

��� Observation: m samples from D ⇔ one sample from Dm

��� Minimum total error for distinguishing P and Q with m samples is:

1− TV(Pm,Qm)

��� Hard to reason about TV(Pm,Qm) directly... We need a manageable proxy

��� Kullback-Leibler (KL) divergence

KL(P‖Q) =
∑
v

P(v) log
P(v)

Q(v)

��� Relation to TV (Pinsker’s inequality) TV(P,Q) ≤
√

1
2KL(P‖Q)

��� Direct sum KL(Pm‖Qm) = m ·KL(P‖Q)

16 / 30



Distinguish P and Q with Samples: a Summary

��� What we want: One needs m & 1
ε2

samples to distinguish P and Q w.p. 2
3

��� Contrapositive: If we have less than m h 1
ε2

samples, then

Pr
[
predict P | D = Q

]
+ Pr

[
predict Q | D = P

]
>

2

3

��� Characterization via TV:

TV(Pm,Qm) ≤ 1

3

��� Characterization via KL:

KL(Pm‖Qm) . 1 ⇒ KL(P‖Q) .
1

m
h ε2
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Sufficient Condition for KL(P‖Q) ≤ ε2 Reminder
KL(P‖Q) =

∑
v P(v) log P(v)

Q(v)

Lemma
Suppose that e−ε ≤ P(v)

Q(v) ≤ e ε for any v. We have:

KL(P‖Q) . ε2

KL(P‖Q) ≤ KL(P‖Q) + KL(Q‖P)

=
∑
v

(
P(v)− Q(v)

)
log

P(v)

Q(v)

≤
∑
v

(eε − 1) min
{
P(v),Q(v)} · ε

≤ (eε − 1)ε

18 / 30
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Lower Bound for [0, 1]-Bounded Distributions

Theorem
Any ε additive approximation algorithm uses at least m & 1

ε2
samples.

��� Construct two [0, 1]-bounded value distributions P and Q that are

1. “Similar”: For any v , e−ε ≤ P(v)
Q(v) ≤ eε

2. “Different”: No price p is an ε additive approximation for both P and Q

v 1
2 1

P(v) 1
2 + 2ε 1

2 − 2ε

Q(v) 1
2 − 2ε 1

2 + 2ε

0 1

1
2 − 2ε

1
2 + 2ε

q

R
(q

)
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Model

Basic Techniques
Upper Bound Techniques
Lower Bound Techniques

Settling the Single-Item Single-Bidder Case
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Distributions Sample Complexity

[0, 1]-Bounded 1
ε2

Regular distributions

MHR distributions

[1,H]-bounded distributions

21 / 30



Regular Distributions

��� Value distribution D is regular if ϕD(v) is nondecreasing
⇔ The revenue curve R(q) is concave

0 1

slo
pe = v

derivative
=
ϕ

(v)

q

R
(q

)

0 1

0.5

1

1
m

q

R
(q

)

��� ERM does not converge for some regular distribution

��� With constant probability we get two samples with quantiles less than 1
m
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What goes wrong?

1. Estimate the revenue of one price p up to 1− ε ≈ e−ε approximation

2. Prices between p and eεp cannot yield much higher revenue

⇒ Consider finitely(?) many prices whose “neighborhoods” cover [0,∞)

��� “Extremely low” prices are not relevant anyway
��� “Extremely high” prices will be “truncated” algorithimically

3. Estimate the revenue of all these representative prices

23 / 30
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��� To get
∣∣∣ 1m∑m

i=1 Xi − µ
∣∣∣ ≤ εµ we need m &

log 1
δ

µε2
samples

��� Unbounded when for small quantile µ (i.e., high prices)

Theorem (Bernstein Inequality, User-Friendly Version)

X1,X2, . . . ,Xm are i.i.d. RV over [0, 1]. Let µ = EXi . With probability 1− δ we have

∣∣∣ 1

m

m∑
i=1

Xi − µ
∣∣∣ . max

{ √
µ(1− µ) log 1

δ

m
,

log 1
δ

m

}
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Existence of a “Good Enough” Price with “Large” Quantile

Observation: By concavity of revenue curve, there exists a price p such that

1. It is an 1− ε approximation

2. Its quantile is at least ε

0 1

1− ε
1

ε q

R
(q

)
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Upper Bound for Regular Distributions

q-Guarded ERM. Return price p that maximizes the empirical revenue, among
prices whose empirical quantiles are at least q.

Theorem
ε-Guarded ERM using m &

log 1
εδ

ε3
samples is an 1− ε approximation w.p. 1− δ.

��� To get
∣∣∣ 1m∑m

i=1 Xi − µ
∣∣∣ ≤ εµ we need m &

log 1
δ

µε2
samples

��� It suffices consider prices with quantiles at least ε
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Lower Bound for Regular Distributions

Theorem
Any 1− ε approximation algorithm uses at least m & 1

ε3
samples.

��� Construct two regular value distributions P and Q that are

1. “Similar”: For ε fraciton of v , e−ε ≤ P(v)
Q(v) ≤ eε; for the rest, P(v) = Q(v)

2. “Different”: No price p is a 1− ε approximation for both P and Q

0 1

1− 4ε

1− 2ε

1

2ε q

R
(q

)

26 / 30



Lower Bound for Regular Distributions

Theorem
Any 1− ε approximation algorithm uses at least m & 1

ε3
samples.

��� Construct two regular value distributions P and Q that are

1. “Similar”: For ε fraciton of v , e−ε ≤ P(v)
Q(v) ≤ eε; for the rest, P(v) = Q(v)

2. “Different”: No price p is a 1− ε approximation for both P and Q

0 1

1− 4ε

1− 2ε

1

2ε q

R
(q

)

26 / 30



[1,H]-Bounded Distributions

Theorem
1
H -Guarded ERM using m &

H log 1
εδ

ε2
samples is an 1− ε approximation w.p. 1− δ.

Theorem
Any 1− ε approximation algorithm uses at least m & H

ε2
samples.
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MHR Distributions

Theorem
ERM using m &

log 1
εδ

ε1.5
samples is an 1− ε approximation w.p. 1− δ.

Theorem
Any 1− ε approximation algorithm uses at least m & 1

ε1.5
samples.
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Summary

Distributions Sample Complexity

[0, 1]-Bounded 1
ε2

Regular distributions 1
ε3

MHR distributions 1
ε1.5

[1,H]-bounded distributions H
ε2

��� Upper Bound:
Concentration inequality + covering of price space + union bound

��� Lower Bound:
Reduction to sample complexity of distinguishing two distributions

Take-Home Question: Can we get all upper bounds using the same algorithm?
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