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Single-Item Auction

O

Sell 1 item to n bidders, to maximize revenue

O

Bidder i's value v; is drawn independently from D;

O

Direct revelation auction
1. Bidders bid by, by, ..., b,

2. Seller picks allocations x1, x2, ..., x, and payments p1, p2,. .., Pn
3. Bidder i wins the item w.p. x;, pays p;, gets utility vix; — p;

[m]

Dominant-Strategy Incentive Compatible (DSIC)

Vi,vi,bi, b vixi(vi,b_;) — pi(vi, b—i) > vixi(bi, b_;) — pi(bi, b_;)

O

Individually Rational (IR)

Vi, vi,b_i:  vixi(vi, b—i) — pi(vi, b—j) > 0
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Myerson'’s Theory

0 DSIC and IR are equivalent to
1. xi(vi, b—;) is monotone (e.g., step function)
2. pi(vj, b_;) is the area on the left of x;(v;, b—;) as a function of v;
(e.g., threshold price above which x; = 1, if x; is a step function)
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2. pi(vj, b_;) is the area on the left of x;(v;, b—;) as a function of v;
(e.g., threshold price above which x; = 1, if x; is a step function)

O Expected revenue is equivalent to expected virtual welfare
n
E Y wi(vi)x(v)
i=1

where the virtual value ¢; is

wi(vi) =vi — 1_f,(FVlI()VI)

O Myerson's optimal auction deferred to next lecture
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Optimal Pricing in the Single-Bidder Case

O Sell 1 item to 1 bidder, whose value v is drawn from D
O Every DSIC and IR auction is equivalent to posting a price p
0 Revenue of price p is p- q(p), where g(p) =1 — F(p) is p's quantile

O Revenue curve in quantile space R(q) = v(q) - q
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Data-Driven Optimal Pricing

Optimal pricing is easy...
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Data-Driven Optimal Pricing

Optimal pricing is easy... but how much information is needed?

0 Sample Complexity/Statistical Learning Model
m Take m i.i.d. samples from D as input
® QOutput a price p
O How many samples are needed to pick a near optimal p “up to an & margin”?
B ¢ additive approximation
[0, 1]-bounded distributions (illustrative example)
® 1 — ¢ (multiplicative) approximation

Regular distributions (i.e., concave revenue curve)
MHR distributions

[1, H]-bounded distributions

(i.e., "strongly concave” revenue curve)

O The sample complexity is smallest number of samples needed
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Basic Upper Bound Techniques

Empirical Revenue Maximizer (ERM). Choose the price p that maximizes
revenue w.r.t. uniform distribution over the samples (empirical distribution).
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Step 1: Estimate the Revenue of One Price p

It suffices to estimate quantile g(p) =1 — F(p)
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Step 1: Estimate the Revenue of One Price p

It suffices to estimate quantile g(p) =1 — F(p)

Theorem (Chernoff-Hoeffding, User-Friendly Version)
X1,X2,..., Xy, are i.i.d. RV over [0,1]. Let = E X;. With probability 1 — § we have

1 & x < Iog%
‘;Z TR m
i=1
. . log % iid. .
Conclusion: Using m > 0525 samples vi, va, . .., vm ~ D and letting X; = 1,,>p,

we can estimate g(p) (and thus p's revenue) up to € additive error w.p. 1 — ¢
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Step 2: Covering the Price Space
Consider p that is “close to” p. Can p's revenue be much larger than p's?
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2. lf p>p>p—=, then 5-q(p) could be almost p - g(p)
eg.,p=1 p=0.98, and D is point mass at 0.99

Conclusion: p covers [p, p + ¢]; prices 0,¢,2¢,...,1 — & cover the price space [0, 1]
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Step 3: Estimate Revenue of All Representative Prices

: log 1 .. , ,
0 Using m 2> 0525 i.i.d. samples, we can estimate q(p) (and thus p's revenue)
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O Prices 0,¢,2¢,...,1 — ¢ cover the price space [0, 1]

Theorem (Union Bound)

For any (bad) events E;, E, ..., E,, we have Pr[El UBbU---U En] <30, Pr[E,-]
O If we estimate each representative price's revenue up to € w.p. 1 — &4,

then we estimate all of them w.p. at least 1 — ¢

. . log X .. . .
Conclusion: Using m = ﬂz’ i.i.d. samples, we can estimate the revenue of all prices
up to € additive error w.p. 1 — 9
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Upper Bound for [0, 1]-Bounded Distribution

Empirical Revenue Maximizer (ERM). Return price p that maximizes revenue
w.r.t. uniform distribution over the samples (empirical distribution).

Theorem
ERM using m 2 523 samples is an e additiive approximation w.p. 1 — 4.

12/30



Basic Techniques

Lower Bound Techniques

13/30



Le Cam’s Method (a.k.a., the Two-Point Method)

O Consider two value distributions P and @ that are

1. Sufficiently “similar”
One needs m 2> Eiz samples to distinguish P and @, say, w.p. %
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Le Cam’s Method (a.k.a., the Two-Point Method)

O Consider two value distributions P and @ that are

1. Sufficiently “similar”
One needs m 2> E% samples to distinguish P and @, say, w.p.

WIN

2. Sufficiently “different”
No price p is an € additive approximation for both P and @

O We next present

1. Statistical distances that characterize the number of samples needed to
distinguish two distributions
2. Sufficient condition under which two distributions are “similar” enough

3. Construction of P and @
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Distinguish P and @ with Multiple Samples

O Observation: m samples from D < one sample from D™
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O Observation: m samples from D < one sample from D™

O Minimum total error for distinguishing P and Q@ with m samples is:
1—-TV(P™ Q™)

0 Hard to reason about TV(P”. Q™) directly.

.. We need a manageable proxy
0O Kullback-Leibler (KL) divergence

L(PIQ) = 3~ P(v) g g

m Relation to TV (Pinsker’s inequality) TV(P.Q) <4/ %KL(PHQ)
® Direct sum KL(P™||Q@™) = m- KL(P||Q)
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Pr|[predict P | D = Q] + Pr[predict Q | D = P] > %
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W~

O Characterization via KL:

KL(PT[RT)S1 = KL(PIQ)S ?

3+
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_ . Reminder
Sufficient Condition for KL(P||Q) < &2 KL(P|Q) = ¥, P(v)log £

Lemma
Suppose that e~¢ < gg“g < e€ for any v. We have:

KL(P|Q) 5 &
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Lower Bound for [0, 1]-Bounded Distributions

Theorem
Any e additive approximation algorithm uses at least m 2 = L samples.

0 Construct two [0, 1]-bounded value distributions P and Q that are

1. “Similar": For any v, e ¢ < QE % < ef
2. "Different”: No price p is an ¢ additive approximation for both P and Q
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Settling the Single-ltem Single-Bidder Case
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Distributions Sample Complexity

[0, 1]-Bounded %
Regular distributions

MHR distributions

[1, H]-bounded distributions
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Regular Distributions

O Value distribution D is regular if ¢p(v) is nondecreasing
< The revenue curve R(q) is concave
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Regular Distributions

O Value distribution D is regular if ¢p(v) is nondecreasing
< The revenue curve R(q) is concave
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O ERM does not converge for some regular distribution
® With constant probability we get two samples with quantiles less than %
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What goes wrong?

1. Estimate the revenue of one price p up to 1 —  ~ e~ % approximation

2. Prices between p and e®p cannot yield much higher revenue

= Consider finitely(?) many prices whose “neighborhoods” cover [0, >0)

3. Estimate the revenue of all these representative prices
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1. Estimate the revenue of one price p up to 1 — ¢ &~ e~ ° approximation

m To get ‘—E, 1 Xi — 11| < e/ we need m > samples
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What goes wrong?

1. Estimate the revenue of one price p up to 1 — ¢ &~ e~ ° approximation
m To get ‘—Z, 1 Xi — ,u’ < e/ we need m > samples

= Unbounded when for small quantile 1 (i.e., hlgh prices)

Theorem (Bernstein Inequality, User-Friendly Version)
X1, X2,..., Xy, are i.i.d. RV over [0,1]. Let = E X;. With probability 1 — § we have
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What goes wrong?

2. Prices between p and e®p cannot yield much higher revenue

= Consider finitely(?) many prices whose “neighborhoods” cover [0, o)

m “Extremely low" prices are not relevant anyway
m “Extremely high” prices will be “truncated” algorithimically

infinitely many low prices infinitely many high prices
0e* 1 et e o0
price space
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Existence of a “Good Enough” Price with “Large” Quantile

Observation: By concavity of revenue curve, there exists a price p such that
1. It is an 1 — ¢ approximation

2. Its quantile is at least ¢

QY S
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Upper Bound for Regular Distributions

g-Guarded ERM. Return price p that maximizes the empirical revenue, among
prices whose empirical quantiles are at least q.
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Upper Bound for Regular Distributions

g-Guarded ERM. Return price p that maximizes the empirical revenue, among
prices whose empirical quantiles are at least q.

Theorem
e-Guarded ERM using m > 65 samples is an 1 — & approximation w.p. 1 — 6.

0 Toget |2 37, Xi — 1| < eyt we need m > |g5

samples

O It suffices consider prices with quantiles at Ieast €
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Lower Bound for Regular Distributions

Theorem
Any 1 — ¢ approximation algorithm uses at least m 2, = L samples.

O Construct two regular value distributions P and Q that are
1. "Similar”: For ¢ fraciton of v, e™¢ < g% % < €%; for the rest, P(v) = Q(v)
2. "Different”: No price p is a 1 — € approximation for both P and Q
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Lower Bound for Regular Distributions

Theorem
Any 1 — ¢ approximation algorithm uses at least m 2, = L samples.

O Construct two regular value distributions P and Q that are

1. “Similar”: For € fraciton of v, e7¢ < g% % < €%, for the rest, P(v) = Q(v)

2. "Different”: No price p is a 1 — € approximation for both P and Q
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[1, H]-Bounded Distributions

Theorem
1 -Guarded ERM using m > 55 samples is an 1 — € approximation w.p. 1 —§.

Theorem
Any 1 — e approximation algorithm uses at least m 2, H samples.
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MHR Distributions

Theorem
ERM using m > 5 samples is an 1 — € approximation w.p. 1 — 4.

Theorem
Any 1 — e approximation algorithm uses at least m Z, L samples.

28/30



Summary

Distributions Sample Complexity
[0, 1]-Bounded E%
Regular distributions 8%
MHR distributions 5
H

[1, H]-bounded distributions

)
N

O Upper Bound:
Concentration inequality + covering of price space + union bound

O Lower Bound:
Reduction to sample complexity of distinguishing two distributions
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Summary

Distributions Sample Complexity
[0, 1]-Bounded E%
Regular distributions 8%
MHR distributions 5
H

[1, H]-bounded distributions

)
N

O Upper Bound:
Concentration inequality + covering of price space + union bound

O Lower Bound:
Reduction to sample complexity of distinguishing two distributions

Take-Home Question: Can we get all upper bounds using the same algorithm?
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