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Recap: Single-Item Auctions

��� Sell 1 item to n bidders, to maximize revenue

��� Bidder i ’s value vi is drawn independently from Di

��� Direct revelation auction

1. Bidders bid b1, b2, . . . , bn
2. Seller picks allocations x1, x2, . . . , xn and payments p1, p2, . . . , pn
3. Bidder i wins the item w.p. xi , pays pi , gets utility vixi − pi

��� Dominant-Strategy Incentive Compatible (DSIC)

∀i , vi , bi , b−i : vixi (vi , b−i )− pi (vi , b−i ) ≥ vixi (bi , b−i )− pi (bi , b−i )

��� Individually Rational (IR)

∀i , vi , b−i : vixi (vi , b−i )− pi (vi , b−i ) ≥ 0
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Recap: Myerson’s Theory

��� DSIC and IR are equivalent to

1. xi (vi , b−i ) is monotone (e.g., step function)
2. pi (vi , b−i ) is the area on the left of xi (vi , b−i ) as a function of vi

(e.g., threshold price above which xi = 1, if xi is a step function)

��� Expected revenue is equivalent to expected virtual welfare

E
n∑

i=1

ϕi (vi )xi

where the virtual value ϕi is

ϕi (vi ) = vi −
1− Fi (vi )

fi (vi )
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Recap: Optimal Pricing

��� Sell 1 item to 1 bidder, whose value v is drawn from D

��� Every DSIC and IR auction is equivalent to posting a price p

��� Revenue of price p is p · q(p), where q(p) = 1− F (p) is p’s quantile

��� Revenue curve in quantile space R(q) = v(q) · q

0 1

slo
pe =

v

derivative
=
ϕ

(v)

q

R
(q

)
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Recap: Data-Driven Optimal Pricing

��� Sample Complexity/Statistical Learning Model

��� Take m i.i.d. samples from D as input
��� Output a price p

��� How many samples are needed to pick a near optimal p “up to an ε margin”?

��� ε additive approximation

[0, 1]-bounded distributions

��� 1− ε (multiplicative) approximation
Regular distributions (i.e., concave revenue curve)

MHR distributions (i.e., “strongly concave” revenue curve)

[1,H]-bounded distributions

��� The sample complexity is smallest number of samples needed
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Recap: Data-Driven Optimal Pricing (Cont’d)

Distributions Sample Complexity

[0, 1]-Bounded 1
ε2

Regular distributions 1
ε3

MHR distributions 1
ε1.5

[1,H]-bounded distributions H
ε2

��� Upper Bound:
Concentration inequality + covering of price space + union bound

��� Lower Bound:
Reduction to sample complexity of distinguishing two distributions
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Recap: Concentration Inequalities

Theorem (Chernoff-Hoeffding, User-Friendly Version)

X1,X2, . . . ,Xm are i.i.d. RV over [0, 1]. Let µ = EXi . With probability 1− δ we have

∣∣∣ 1

m

m∑
i=1

Xi − µ
∣∣∣ .

√
log 1

δ

m

Theorem (Bernstein Inequality, User-Friendly Version)

X1,X2, . . . ,Xm are i.i.d. RV over [0, 1]. Let µ = EXi . With probability 1− δ we have

∣∣∣ 1

m

m∑
i=1

Xi − µ
∣∣∣ . max

{ √
µ(1− µ) log 1

δ

m
,

log 1
δ

m

}
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Myerson’s Optimal (Single-Item) Auction

��� R̄(q) is concave closure of revenue curve

��� Max expected revenue given sale prob. q

��� Ironed virtual value ϕ̄i (vi ) is R̄(q)’s derivative

��� Quantile q’s marginal revenue contribution

��� Highest non-negative virtual value wins

��� Winner pays threshold winning bid
i.e., lowest bid above which he/she wins

��� Expected revenue is at most E
∑n

i=1 ϕ̄i (vi )xi
with equality if values in an ironed interval are
treated as the same

0 1

slo
pe

=
v

der
iva

tiv
e =

ϕ̄(v
)

q

R
(q

),
R̄

(q
)
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Data-Driven Optimal (Single-Item) Auction

��� Sample Complexity/Statistical Learning Model

��� Take m i.i.d. samples from D = D1 × D2 × · · · × Dm as input
��� Output a DSIC and IR auction A

��� How many samples are needed to pick a near optimal A “up to an ε margin”?

��� ε additive approximation
[0, 1]-bounded distributions (illustrative example)

��� 1− ε (multiplicative) approximation
Regular distributions (i.e., concave revenue curve)

MHR distributions (i.e., “strongly concave” revenue curve)

[1,H]-bounded distributions

��� The sample complexity is smallest number of samples needed

11 / 31



Data-Driven Optimal (Single-Item) Auction

��� Sample Complexity/Statistical Learning Model

��� Take m i.i.d. samples from D = D1 × D2 × · · · × Dm as input
��� Output a DSIC and IR auction A

��� How many samples are needed to pick a near optimal A “up to an ε margin”?

��� ε additive approximation
[0, 1]-bounded distributions (illustrative example)

��� 1− ε (multiplicative) approximation
Regular distributions (i.e., concave revenue curve)

MHR distributions (i.e., “strongly concave” revenue curve)

[1,H]-bounded distributions

��� The sample complexity is smallest number of samples needed

11 / 31



Data-Driven Optimal (Single-Item) Auction

��� Sample Complexity/Statistical Learning Model

��� Take m i.i.d. samples from D = D1 × D2 × · · · × Dm as input
��� Output a DSIC and IR auction A

��� How many samples are needed to pick a near optimal A “up to an ε margin”?

��� ε additive approximation
[0, 1]-bounded distributions (illustrative example)

��� 1− ε (multiplicative) approximation
Regular distributions (i.e., concave revenue curve)

MHR distributions (i.e., “strongly concave” revenue curve)

[1,H]-bounded distributions

��� The sample complexity is smallest number of samples needed

11 / 31



Recap

Data-Driven Single-Item Auction

A Glimpse of Statistical Learning Theory

Sample Complexity of Single-Item Auctions
Upper Bound
Lower Bound

12 / 31



General Learning Problem

The learning process is a process of choosing an appropriate function from a
given set of functions. —Vladimir Vapnik

��� Type space T
��� Distribution D over T

��� Hypothesis space H
��� Each hypothesis h ∈ H is a function from T to [0, 1]

��� Learn h ∈ H from i.i.d. samples from D to minimize/maximize

Et∼D h(t)

13 / 31
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Example: Linear Binary Classification

��� Type space consists of feature-label pairs

T =
{

(x , y) : x ∈ Rn︸ ︷︷ ︸
feature

, y = ±1︸ ︷︷ ︸
label

}

��� Hypothesis space consists of linear classifiers

��� Each h ∈ H corresponds to a linear function 〈a, x〉+ b, a ∈ Rn, b ∈ R

h(x , y) =

{
0 if 〈a, x〉+ b and y have the same sign

1 otherwise

��� Learn h ∈ H from i.i.d. samples from D to minimize E(x ,y)∼D h(x , y)︸ ︷︷ ︸
classfication error
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Example: Data-Driven Optimal Auction

��� Type space consists of value profiles of n bidders

T = [0, 1]n

��� Hypothesis space consists of DSIC and IR auctions

��� Each h ∈ H corresponds to a DSIC and IR auciton A
��� h(v) equals the expected revenue of running A on values v

��� Learn h ∈ H from i.i.d. samples from D to maximize Ev∼D h(v)︸ ︷︷ ︸
expected revenue
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Sample Complexity and “Degree of Freedom”: Informal Introduction

Recall the three-step approach

1. Estimate the expectation of a single hypothesis h ∈ H up to ε

Solution: Chernoff-Hoeffding Bound, Bernstein Inequality

Takeaway: m &
log 1

δ

ε2
samples give ε additive approximation w.p. 1− δ

2. Finitely many hypotheses whose “neighborhoods” cover the hypothesis space H

Conventional wisdom: If the hypothesis space H has “degree of freedom” d
(a.k.a., “dimension”), then R = 2Õ(d) representative hypotheses suffice

3. Estimate the expectations of all these representative hypotheses up to ε

Solution: Union Bound

Takeaway: m &
log R

δ

ε2
samples suffice when there are R representative hypotheses

i.e., m &
d log 1

δ

ε2
samples suffice
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Binary Classification and Vapnik-Chervonenkis Dimension

��� Type space consists of feature-label pairs

T =
{

(x , y) : x ∈ Rn︸ ︷︷ ︸
feature

, y = ±1︸ ︷︷ ︸
label

}
��� Hypothesis space is a set of classifiers

��� Each h ∈ H corresponds to a classifier c : Rn → {−1,+1}

h(x , y) =

{
0 if c(x) = y

1 otherwise

��� VC dimension of H is the largest number of features vectors x1, x2, . . . , xd such
that for any labeling y1, y2, . . . , yd , there is h ∈ H such that h(xi , yi ) = 0

��� m h d+log 1
δ

ε2
samples are sufficient and necessary

17 / 31
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“Degree of Freedom” for General Learning Problem

��� Type space T
��� Distribution D over T

��� Hypothesis space H
��� Each hypothesis h ∈ H is a function from T to [0, 1]
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��� Pseudo dimension of H is the largest number d for which we have

��� Types t1, t2, . . . , td ∈ T and
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��� For any signs y1, y2, . . . , yd ∈ {1,−1} there is h ∈ H satisfying

sign
(
h(ti )− ri

)
= yi

��� m &
d log 1

ε
+log 1

δ

ε2
samples are sufficient
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“Degree of Freedom” for General Learning Problem

��� Type space T
��� Distribution D over T

��� Hypothesis space H
��� Each hypothesis h ∈ H is a function from T to [0, 1]

��� Rademacher complexity of H (with m samples) is

Rm(H) = E
t1,...,tm∼D︸ ︷︷ ︸
random types

, y1,y2,...,ym
unif∼ {1,−1}︸ ︷︷ ︸

random noise

sup
h∈H

1

m

m∑
i=1

yih(ti )

��� Intuitively, it captures how well hypothesis class H can fit random noise

��� It suffices to have m &
log 1

δ

ε2
and Rm(H) . ε
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Recap

Data-Driven Single-Item Auction

A Glimpse of Statistical Learning Theory

Sample Complexity of Single-Item Auctions
Upper Bound
Lower Bound
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Explicit Covering for Single-Item Auction: [0, 1]-Bounded Case

Recall Myerson’s optimal auction

��� Highest non-negative virtual value wins

��� Winner pays threshold winning bid
i.e., lowest bid above which he/she wins

Narrowing down the representitive auctions in three steps

1. Focus on auctions defined by n non-decreasing “ironed virtual value functions”

2. Discretize the value space

3. Discretize the virtual value space
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Discretization of Value Space

Lemma
There is an auction A on value space {0, ε, 2ε, . . . , 1} such that rounding each vi to the
closest multiple of ε from below, denoted as bvicε, and running A is optimal up to ε.

quantiles q1, q2, . . . , qn

1. Values v1, v2, . . . , vn

2. Allocate to bidder i with
highest non-negative ϕ̄i (vi )

3. Winner pays threshold bid

1. Values bv1cε, bv2cε, . . . , bvncε
2. Allocate to bidder i with

highest non-negative ϕ̄i (vi )

3. Winner pays threshold bid,
at worst smaller by ε
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Discretization of Virtual Value Space

Lemma

1. Negative fi (vi ) may be treated as −∞ without loss of generality.

2. Allocating to the bidder i with the largest bϕ̄i (vi )cε breaking ties, say,
lexicographically, (and letting it pay threshold bid) is optimal up to ε.

Recall: Expected revenue is

E
n∑

i=1

ϕ̄i (vi )xi

if values in an ironed interval are treated as the same

��� Allocating to largest bϕ̄i (vi )cε still treats values in an ironed interval as the same

��� Lose at most ε in E
∑n

i=1 ϕ̄i (vi )xi
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Information Theoretic Upper Bound

Theorem
Using m &

n log 1
ε

ε3
+

log 1
δ

ε2
= Õ( n

ε3
) samples, we can find an auction that is an ε additive

approximation with probability 1− δ.

1. Estimate the expectation of a single hypothesis h ∈ H up to ε

m &
log 1

δ

ε2
samples give ε additive approximation w.p. 1− δ
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n log 1
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) samples, we can find an auction that is an ε additive

approximation with probability 1− δ.

1. Estimate the expectation of a single hypothesis h ∈ H up to ε

m &
log 1

δ

ε2
samples give ε additive approximation w.p. 1− δ

Why information theoretic?

��� We estimate revenue by averaging over samples, i.e., empirical distribution

��� Empirical distribution is not independent

��� Optimal auction over dependent value distribution is hard
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Upper Bound via Polynomial-Time Algorithm

Empirical Myerson’s Auction (with Value Discretization)

��� Given i.i.d. samples v i = (v i1, v
i
2, . . . , v

i
n), 1 ≤ i ≤ m

��� Let Ej be the uniform distribution over bv1j cε, bv2j cε, . . . , bvmj cε
��� Return Myerson’s optimal auction w.r.t. E = E1 × E2 × · · · × En

Theorem
Using m &

n log 1
ε

ε3
+

log 1
δ

ε2
= Õ( n

ε3
) samples, Empirical Myerson’s Auction is an ε

additive approximation with probability 1− δ.

Lemma (Bernstein Inequality for Product Distribution)

For any function f : [0, 1]n → [0, 1]. Let µ = Ev∼E f (v). With probability 1− δ

∣∣∣ Ev∼E f (v)− µ
∣∣∣ . max

{ √
µ(1− µ) log 1

δ

m
,

log 1
δ

m

}
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Recap

Data-Driven Single-Item Auction

A Glimpse of Statistical Learning Theory

Sample Complexity of Single-Item Auctions
Upper Bound
Lower Bound
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Lower Bound

Theorem
Any ε additive approximation algorithm needs at least m & n

ε2
samples.

��� Linear dependence in number of bidders n

��� Upshot: The multi-bidder problem is strictly harder

��� Note that we already let each sample be a vector of n values
��� We need more information about each bidder’s value distribtuion

��� Dependence on ε does not match the upper bound, i.e., quadratic vs. cubic

��� Next lecture will resolve this gap
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Le Cam’s Method is Insufficient

��� Recap: Consider two value distributions P and Q that are

1. Sufficiently “similar”
One needs m & n

ε2
samples to distinguish P and Q, say, w.p. 2

3

2. Sufficiently “different”
No auction A is an ε additive approximation for both P and Q

��� 1st Attempt

��� Make P,Q similar s.t. distinguishing them takes m & n
ε2

samples
��� Any auction’s revenue differ by . ε√

n
on P and Q

��� 2nd Attempt

��� Make marginals Pi ,Qi similar s.t. distinguishing them takes m & n
ε2

samples
��� It takes much fewer samples to distinguish product distributions P and Q
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Assouad’s Method

��� Two marginals P, Q for each bidder, distinguishing which needs m & n
ε2

samples

��� Consider 2n value distributions D = D1 × D2 × · · · × Dn, where Di ∈ {P,Q}
��� Argument sketch

��� For neighboring D,D ′ differing in bidder i ’s marginal, any algorithm “makes
some mistake” in i ’s allocation, resulting in & ε

n total revenue loss to D,D ′

��� 2n−1n pairs of neighboring distributions
��� Some distribution D has revenue loss at least

2n−1n︸ ︷︷ ︸
number of neighboring pairs

· ε

n︸︷︷︸
revenue loss per pair

· 1

2n︸︷︷︸
divided by number of distributions

h ε
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��� 2n−1n pairs of neighboring distributions

��� Some distribution D has revenue loss at least
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number of neighboring pairs
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divided by number of distributions
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Assouad’s Method (cont’d)

��� P and Q have support
{

0, 12 , 1
}

��� Distinguishing them takes m & n
ε2

samples

��� Differ only in 2
n of the mass

��� Differ by at most 1± ε for any v
��� KL(P,Q) . ε2

n (last lecture)

��� Revenue loss due to Di = P vs. Di = Q

��� w.p. h 1
n , vi = 1

2 and other values are zero

��� Bidder i should win iff. Di = Q

ϕi

(
1
2

)
h

{
−ε Di = P

ε Di = Q

��� Lose & ε
n if we cannot distinguish P,Q

v 1 1
2 0

P(v) 1+ε
n

1−ε
n 1− 2

n

Q(v) 1−ε
n

1+ε
n 1− 2

n

0 2
n

1q

R
(q

)

29 / 31



Assouad’s Method (cont’d)

��� P and Q have support
{

0, 12 , 1
}

��� Distinguishing them takes m & n
ε2

samples

��� Differ only in 2
n of the mass

��� Differ by at most 1± ε for any v
��� KL(P,Q) . ε2

n (last lecture)

��� Revenue loss due to Di = P vs. Di = Q

��� w.p. h 1
n , vi = 1

2 and other values are zero

��� Bidder i should win iff. Di = Q

ϕi

(
1
2

)
h

{
−ε Di = P

ε Di = Q

��� Lose & ε
n if we cannot distinguish P,Q

v 1 1
2 0

P(v) 1+ε
n

1−ε
n 1− 2

n

Q(v) 1−ε
n

1+ε
n 1− 2

n

0 2
n

1q

R
(q

)

29 / 31



Assouad’s Method (cont’d)

��� P and Q have support
{

0, 12 , 1
}

��� Distinguishing them takes m & n
ε2

samples

��� Differ only in 2
n of the mass

��� Differ by at most 1± ε for any v
��� KL(P,Q) . ε2

n (last lecture)

��� Revenue loss due to Di = P vs. Di = Q

��� w.p. h 1
n , vi = 1

2 and other values are zero

��� Bidder i should win iff. Di = Q

ϕi

(
1
2

)
h

{
−ε Di = P

ε Di = Q

��� Lose & ε
n if we cannot distinguish P,Q

v 1 1
2 0

P(v) 1+ε
n

1−ε
n 1− 2

n

Q(v) 1−ε
n

1+ε
n 1− 2

n

0 2
n

1q

R
(q

)

29 / 31



Assouad’s Method (cont’d)

��� P and Q have support
{

0, 12 , 1
}

��� Distinguishing them takes m & n
ε2

samples

��� Differ only in 2
n of the mass

��� Differ by at most 1± ε for any v
��� KL(P,Q) . ε2

n (last lecture)

��� Revenue loss due to Di = P vs. Di = Q

��� w.p. h 1
n , vi = 1

2 and other values are zero

��� Bidder i should win iff. Di = Q

ϕi

(
1
2

)
h

{
−ε Di = P

ε Di = Q

��� Lose & ε
n if we cannot distinguish P,Q

v 1 1
2 0

P(v) 1+ε
n

1−ε
n 1− 2

n

Q(v) 1−ε
n

1+ε
n 1− 2

n

0 2
n

1q

R
(q

)

29 / 31



Assouad’s Method (cont’d)

��� P and Q have support
{

0, 12 , 1
}

��� Distinguishing them takes m & n
ε2

samples

��� Differ only in 2
n of the mass

��� Differ by at most 1± ε for any v
��� KL(P,Q) . ε2

n (last lecture)

��� Revenue loss due to Di = P vs. Di = Q

��� w.p. h 1
n , vi = 1

2 and other values are zero
��� Bidder i should win iff. Di = Q

ϕi

(
1
2

)
h

{
−ε Di = P

ε Di = Q

��� Lose & ε
n if we cannot distinguish P,Q

v 1 1
2 0

P(v) 1+ε
n

1−ε
n 1− 2

n

Q(v) 1−ε
n

1+ε
n 1− 2

n

0 2
n

1q

R
(q

)

29 / 31



Assouad’s Method (cont’d)

��� P and Q have support
{

0, 12 , 1
}

��� Distinguishing them takes m & n
ε2

samples

��� Differ only in 2
n of the mass

��� Differ by at most 1± ε for any v
��� KL(P,Q) . ε2

n (last lecture)

��� Revenue loss due to Di = P vs. Di = Q

��� w.p. h 1
n , vi = 1

2 and other values are zero
��� Bidder i should win iff. Di = Q

ϕi

(
1
2

)
h

{
−ε Di = P

ε Di = Q

��� Lose & ε
n if we cannot distinguish P,Q

v 1 1
2 0

P(v) 1+ε
n

1−ε
n 1− 2

n

Q(v) 1−ε
n

1+ε
n 1− 2

n

0 2
n

1q

R
(q

)

29 / 31



Summary

Distributions Upper Bound Lower Bound

[0, 1]-Bounded n
ε3

n
ε2

Regular distributions n
ε4

n
ε3

MHR distributions n
ε3

n
ε2

[1,H]-bounded distributions Hn
ε3

Hn
ε2

��� Upper Bound:
Concentration inequality + covering of auction space + union bound

��� Lower Bound:
Assouad’s Method

30 / 31



References

1. Jamie Morgenstern and Tim Roughgarden. “The pseudo-dimension of
near-optimal auctions.” In Proceedings of the 28th International Conference on
Neural Information Processing Systems, pp. 136–144, 2015.

2. Nikhil R Devanur, Zhiyi Huang, and Christos-Alexandros Psomas. “The sample
complexity of auctions with side information.” In Proceedings of the 48th Annual
ACM Symposium on Theory of Computing, ACM, pp. 426–439, 2016.

3. Yannai A Gonczarowski and Noam Nisan. “Efficient empirical revenue
maximization in single-parameter auction environments.” In Proceedings of the
49th Annual ACM Symposium on Theory of Computing, ACM, pp. 856–868,
2017.

31 / 31


	Recap
	Data-Driven Single-Item Auction
	A Glimpse of Statistical Learning Theory
	Sample Complexity of Single-Item Auctions
	Upper Bound
	Lower Bound


