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O

Individually Rational (IR)

Vi, vi,b_i:  vixi(vi, b—i) — pi(vi, b—j) > 0
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Recap: Myerson’s Theory

O DSIC and IR are equivalent to
1. xi(v;, b—;) is monotone (e.g., step function)
2. pi(vi, b_;) is the area on the left of x;(v;, b_;) as a function of v;
(e.g., threshold price above which x; = 1, if x; is a step function)
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O Expected revenue is equivalent to expected virtual welfare

n
E Z wi(vi)xi
i=1
where the virtual value ¢; is

wi(vi) =vi — 1_76,("‘_/11()‘/')
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Recap: Optimal Pricing

O Sell 1 item to 1 bidder, whose value v is drawn from D
O Every DSIC and IR auction is equivalent to posting a price p
0 Revenue of price p is p- q(p), where g(p) =1 — F(p) is p's quantile

O Revenue curve in quantile space R(q) = v(q) - q
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Recap: Data-Driven Optimal Pricing

0 Sample Complexity/Statistical Learning Model
® Take m i.i.d. samples from D as input
m Qutput a price p
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Recap: Data-Driven Optimal Pricing (Cont'd)

Distributions Sample Complexity
[0, 1]-Bounded %
Regular distributions 6%
MHR distributions 6%5
[1, H]-bounded distributions g

O Upper Bound:
Concentration inequality 4+ covering of price space + union bound

O Lower Bound:
Reduction to sample complexity of distinguishing two distributions
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Recap: Concentration Inequalities

Theorem (Chernoff-Hoeffding, User-Friendly Version)
X1, X2,..., Xy, are i.i.d. RV over [0,1]. Let = E X;. With probability 1 — 5 we have

1 m
’— E Xi — 1
m“

i=1

1
< log 5

m
Theorem (Bernstein Inequality, User-Friendly Version)

X1, Xo,..., Xy, are i.iid. RV over [0,1]. Let 1 = E X;. With probability 1 — § we have

1 m
‘— E Xi—
m 4

i=1

< (1 — 1) Iog%

m
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Data-Driven Single-ltem Auction
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Myerson's Optimal (Single-Item) Auction

O R(q) is concave closure of revenue curve
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O lroned virtual value @;(v;) is R(q)'s derivative A,
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O Ironed virtual value @;(v;) is R(q)'s derivative @

= Quantile g's marginal revenue contribution 6//* g
= &
1 be’\\ /
O Highest non-negative virtual value wins 2 %
; - : |/ 7
O Winner pays threshold winning bid @ ,Q@/ !
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i.e., lowest bid above which he/she wins [ P !

0 q 1

O Expected revenue is at most E "7 ; $i(vj)x;
with equality if values in an ironed interval are
treated as the same
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A Glimpse of Statistical Learning Theory
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General Learning Problem

The learning process is a process of choosing an appropriate function from a
given set of functions. —Vladimir Vapnik
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O Type space T
m Distribution D over T

O Hypothesis space H
m Each hypothesis h € H is a function from 7T to [0, 1]
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E:-p h(t)
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Example: Linear Binary Classification

O Type space consists of feature-label pairs
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SN—— ——

feature label
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—_——
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O Type space consists of value profiles of n bidders
T =10,1]"

O Hypothesis space consists of DSIC and IR auctions

m Each h € H corresponds to a DSIC and IR auciton A
m h(v) equals the expected revenue of running A on values v

O Learn h € H from i.i.d. samples from D to maximize  E,..p h(v)
———

expected revenue
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Sample Complexity and “Degree of Freedom”: Informal Introduction
Recall the three-step approach

1. Estimate the expectation of a single hypothesis h € H up to ¢

2. Finitely many hypotheses whose “neighborhoods” cover the hypothesis space H

3. Estimate the expectations of all these representative hypotheses up to ¢
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Solution: Union Bound
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log } 5
=2

i.e, m 2 samples suffice
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Binary Classification and Vapnik-Chervonenkis Dimension
O Type space consists of feature-label pairs
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O VC dimension of H is the largest number of features vectors xi, xo, ..., x4 such
that for any labeling y1, yo,...,yq, there is h € H such that h(x;,y;) =0
d+log & .
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“Degree of Freedom” for General Learning Problem

O Type space T
m Distribution D over T

O

Hypothesis space H
m Each hypothesis h € H is a function from 7 to [0, 1]

[m]

(e-)Fat shattering dimension of H is the largest number d for which we have
® Types t;, tr,...,ty € T and
m Witnesses r, r, ..., ry € (0,1) such that
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“Degree of Freedom” for General Learning Problem
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® Distribution D over T
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m Each hypothesis h € H is a function from 7 to [0, 1]

0 Rademacher complexity of H (with m samples) is

m
1
R H =E . su — § h(t:
m( ) t1,.,tm~D ,Y1-}/2,---7)/mu’nvlf{1»—1} hE’EL m < V ( l)
N J ~ _ =1
random types random noise

O Intuitively, it captures how well hypothesis class H can fit random noise

. log %
O It suffices to have m = oggz” and R, (H) < ¢
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Explicit Covering for Single-Item Auction: [0, 1]-Bounded Case

Recall Myerson's optimal auction
O Highest non-negative virtual value wins

O Winner pays threshold winning bid
i.e., lowest bid above which he/she wins

Narrowing down the representitive auctions in three steps
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3. Discretize the virtual value space

fi:{0,e,2¢e,...,1} - {—00,0,¢,2¢,...,1}
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Discretization of Value Space

Lemma
There is an auction A on value space {0,¢,2¢,...,1} such that rounding each v; to the
closest multiple of ¢ from below, denoted as |vi|., and running A is optimal up to ¢.
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Discretization of Value Space

Lemma

There is an auction A on value space {0,¢,2¢,...,1} such that rounding each v; to the
closest multiple of & from below, denoted as |v;i|., and running A is optimal up to .

quantiles g1, qo, . ..

<N

»qn

1. Values vi,vs, ..., v,

2. Allocate to bidder i with
highest non-negative @;(v;)

3. Winner pays threshold bid

1. Values |vi]e, [Valey-- s [Vale

Allocate to bidder i with
highest non-negative @;(v;)
Winner pays threshold bid,
at worst smaller by
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Discretization of Virtual Value Space

Lemma
1. Negative fi(v;) may be treated as —oo without loss of generality.

2. Allocating to the bidder i with the largest |@i(v;)|. breaking ties, say,
lexicographically, (and letting it pay threshold bid) is optimal up to e.
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lexicographically, (and letting it pay threshold bid) is optimal up to e.

Recall: Expected revenue is
n
E E g5,-(v,-)x,-
i=1
if values in an ironed interval are treated as the same

O Allocating to largest |@;(vi)]. still treats values in an ironed interval as the same

O Lose at most € in E "7 ; @i(vi)x;
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Information Theoretic Upper Bound

Theorem
Using m = nlog = 4+ log 8 = O( L) samples, we can find an auction that is an e additive
apprOXImat/on W/th probab///ty 1 —9.
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Theorem
Using m =, + lof 2 = O( L) samples, we can find an auction that is an e additive
apprOXImat/on W/th probability 1-4.

nlog 1

1. Estimate the expectation of a single hypothesis h € H up to e

lo
m> &3 log 3 samples give ¢ additive approximation w.p. 1 — 9

2. Finitely many hypotheses whose “neighborhoods” cover the hypothesis space H

3. Estimate the expectations of all these representative hypotheses up to ¢

log & . .
m > <52 samples suffice when there are R representative hypotheses

~ 52
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Information Theoretic Upper Bound

Theorem
Using m =, + lof 2 = O( L) samples, we can find an auction that is an e additive
apprOXImat/on W/th probability 1-4.

nlog 1

1. Estimate the expectation of a single hypothesis h € H up to e

lo
m> &3 log 3 samples give ¢ additive approximation w.p. 1 — 9

2. Finitely many hypotheses whose “neighborhoods” cover the hypothesis space H

Focus on R = ( +2)" 7(2+1) auctions defined by n non-decreasing functions
fi :{0,e,2¢e,...,1} - {—00,0,¢,2¢,...,1}

3. Estimate the expectations of all these representative hypotheses up to ¢

log & . .
m 2z chf samples suffice when there are R representative hypotheses

~
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Information Theoretic Upper Bound

Theorem )

logt | . . . .
Using m > "25= + Orgz” = O( L) samples, we can find an auction that is an e additive
approx1mat/on W/th probability 1-4.

1. Estimate the expectation of a single hypothesis h € H up to e

lo
m 2z k) log 5 samples give € additive approximation w.p. 1 — ¢

Why information theoretic?
O We estimate revenue by averaging over samples, i.e., empirical distribution
0O Empirical distribution is not independent

O Optimal auction over dependent value distribution is hard
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Upper Bound via Polynomial-Time Algorithm

Empirical Myerson’s Auction (with Value Discretization)

O Given i.i.d. samples v/ = (vi,vi ... vi),1<i<m
. . . . 1 2
O Let E; be the uniform distribution over |v; |, [vi]e, ..., [v]"]e

O Return Myerson's optimal auction w.r.t. E = E; X Ep X --- X E,
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Empirical Myerson’s Auction (with Value Discretization)

O Given i.i.d. samples v/ = (vi,vi ... vi),1<i<m
. . . . 1 2
O Let E; be the uniform distribution over |v; |, [vi]e, ..., [v]"]e

O Return Myerson's optimal auction w.r.t. E = E; X Ep X --- X E,

Theorem ) )

. | = | < ~ .. ’ . ;
Using m >~ gf = + % = O(%;) samples, Empirical Myerson's Auction is an ¢
additive approximation with probability 1 — 6.
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Upper Bound via Polynomial-Time Algorithm

Empirical Myerson’s Auction (with Value Discretization)
O Given i.i.d. samples v/ = (vi,vi ... vi),1<i<m
O Let E; be the uniform distribution over |vi|c, [vZ],..., | v™]c

J J J
O Return Myerson's optimal auction w.r.t. E = E; X Ep X --- X E,

Theorem ) )
Usi >n|ogg Ioggié n / E irical M 's A . .
sing m =~ + —* = O(%) samples, Empirical Myerson's Auction is an &

additive approximation with probability 1 — 6.

Lemma (Bernstein Inequality for Product Distribution)
For any function f : [0,1]" — [0,1]. Let o = E, g f(v). With probability 1 — 6

< (1 — p) Iog%
~ m

‘ E,~ef(v)—p




Sample Complexity of Single-ltem Auctions

Lower Bound
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Lower Bound

Theorem
Any € additive approximation algorithm needs at least m = % samples.
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O Linear dependence in number of bidders n
m Upshot: The multi-bidder problem is strictly harder
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Lower Bound

Theorem
Any € additive approximation algorithm needs at least m = 5 samples.

O Linear dependence in number of bidders n

m Upshot: The multi-bidder problem is strictly harder
® Note that we already let each sample be a vector of n values
m We need more information about each bidder’s value distribtuion
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Lower Bound

Theorem
Any € additive approximation algorithm needs at least m = 5 samples.

O Linear dependence in number of bidders n

m Upshot: The multi-bidder problem is strictly harder
® Note that we already let each sample be a vector of n values
m We need more information about each bidder’s value distribtuion

O Dependence on ¢ does not match the upper bound, i.e., quadratic vs. cubic
m Next lecture will resolve this gap
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Le Cam’'s Method is Insufficient

O Recap: Consider two value distributions P and @ that are

1. Sufficiently “similar”
One needs m 2, % samples to distinguish P and Q, say, w.p. %

2. Sufficiently “different”
No auction A is an ¢ additive approximation for both P and @
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One needs m 2, % samples to distinguish P and Q, say, w.p.
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No auction A is an ¢ additive approximation for both P and @

O 1st Attempt
= Make P, @ similar s.t. distinguishing them takes m 2 7 samples

£

= Any auction’s revenue differ by < 75 on P and Q
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Le Cam’'s Method is Insufficient

O Recap: Consider two value distributions P and @ that are

1. Sufficiently “similar”
One needs m 2, % samples to distinguish P and Q, say, w.p.

2. Sufficiently “different
No auction A is an ¢ additive approximation for both P and @

O 1st Attempt

m Make P, @ similar s.t. d|st|ngU|sh|ng them takes m 2 7 samples
= Any auction’s revenue differ by < \f on Pand Q

O 2nd Attempt

= Make marginals P;, Q; similar s.t. distinguishing them takes m 2> &5 - samples
m |t takes much fewer samples to distinguish product dlstrlbutlons P and @
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Assouad’s Method

0 Two marginals P, @ for each bidder, distinguishing which needs m > E% samples
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O Argument sketch

® For neighboring D, D’ differing in bidder i’s marginal, any algorithm “makes
some mistake” in i's allocation, resulting in 2 % total revenue loss to D, D’
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Assouad’s Method

0 Two marginals P, @ for each bidder, distinguishing which needs m > E% samples
0 Consider 2" value distributions D = Dy x Dy x - -+ x Dy, where D; € {P, Q}
O Argument sketch
® For neighboring D, D’ differing in bidder i’s marginal, any algorithm “makes
some mistake” in i's allocation, resulting in 2 % total revenue loss to D, D’
m 2"~1p pairs of neighboring distributions
® Some distribution D has revenue loss at least

2
(O}

on
—~

divided by number of distributions

2n—1p

——

number of neighboring pairs revenue loss per pair

{:\m
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Assouad’s Method (cont’d)

O P and @ have support {0, %, 1}
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Assouad’s Method (cont'd)

O P and @ have support {O, %, 1}

1
v 1 5 0
Tre 1-c 1 _2
P(v ; - 1-=
1—¢ 1+e _ 2
Qlv) = =55 1-4%
1
S !
= )
|
1
1
0 2 q 1
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Assouad’s Method (cont'd)

O P and @ have support {0, %, 1}

v 1 i 0
e 2
O Distinguishing them takes m 2 5 samples P L= 1= ;2
m Differ only in % of the mass 1T 1te 5
m Differ by at most 1 £ ¢ for any v Qlv) 5= 55 1-3
2

= KL(P,Q) S = (last lecture)

s |/

x |

0o 2 q 1
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Assouad’s Method (cont'd)

O P and @ have support {0, %, 1}

v 1 i 0
2
O Distinguishing them takes m 2 5 samples P e 1: ;2
m Differ only in = of the mass 1T 1%e 5
m Differ by at most 1+¢forany v Qv) = = 1-3
= KL(P,Q) < % (last lecture)
O Revenue loss due to D; = P vs. D; = Q
" w.p < % v, = % and other values are zero
= !
x |
0 2 q 1
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Assouad’s Method (cont'd)

O P and @ have support {0, %, 1}

O Distinguishing them takes m 2 5 samples

o
—~~
<
_
|-
™

m Differ only in % of the mass
m Differ by at most 1 £ ¢ for any v
2
= KL(P,Q) S = (last lecture)

s

<

—

| 3
0}

—
:‘—&—:‘
™
—

|
SINSIN

s ‘

O Revenue loss due to D; = P vs. D; = Q

" w.p < % v, = % and other values are zero
m Bidder i should win iff. D; = @ =

—& D,' =P
)=

e Di=Q
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Assouad’s Method (cont'd)

O P and @ have support {0, %, 1}

O Distinguishing them takes m 2 5 samples

o
—~~
<
_
|-
m

m Differ only in % of the mass
m Differ by at most 1 £ ¢ for any v
2
= KL(P,Q) S = (last lecture)

s

<

—

| 3
0}

—
:‘—&—:‘
™
—

|
SINSIN

s ‘

O Revenue loss due to D; = P vs. D; = Q

" w.p < % v, = % and other values are zero
m Bidder i should win iff. D; = @ =

—& D,' =P
)=

e Di=Q

® Lose 2 < if we cannot distinguish P, Q
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Summary

Distributions

[0, 1]-Bounded

Upper Bound Lower Bound

= =
Regular distributions = 3
MHR distributions = =3
[1, H]-bounded distributions i Ha

O Upper Bound:

Concentration inequality 4+ covering of auction space + union bound
O Lower Bound:
Assouad’s Method
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