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Recap: Single-Item Auctions

��� Sell 1 item to n bidders, to maximize revenue

��� Bidder i ’s value vi is drawn independently from Di

��� Direct revelation auction

1. Bidders bid b1, b2, . . . , bn
2. Seller picks allocations x1, x2, . . . , xn and payments p1, p2, . . . , pn
3. Bidder i wins the item w.p. xi , pays pi , gets utility vixi − pi

��� Dominant-Strategy Incentive Compatible (DSIC)

∀i , vi , bi , b−i : vixi (vi , b−i )− pi (vi , b−i ) ≥ vixi (bi , b−i )− pi (bi , b−i )

��� Individually Rational (IR)

∀i , vi , b−i : vixi (vi , b−i )− pi (vi , b−i ) ≥ 0
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Recap: Myerson’s Theory

��� DSIC and IR are equivalent to

1. xi (vi , b−i ) is monotone (e.g., step function)
2. pi (vi , b−i ) is the area on the left of xi (vi , b−i ) as a function of vi

(e.g., threshold price above which xi = 1, if xi is a step function)

��� Expected revenue is equivalent to expected virtual welfare

E
n∑

i=1

ϕi (vi )xi

where the virtual value ϕi is

ϕi (vi ) = vi −
1− Fi (vi )

fi (vi )

4 / 29



Recap: Myerson’s Theory

��� DSIC and IR are equivalent to

1. xi (vi , b−i ) is monotone (e.g., step function)
2. pi (vi , b−i ) is the area on the left of xi (vi , b−i ) as a function of vi

(e.g., threshold price above which xi = 1, if xi is a step function)

��� Expected revenue is equivalent to expected virtual welfare

E
n∑

i=1

ϕi (vi )xi

where the virtual value ϕi is

ϕi (vi ) = vi −
1− Fi (vi )

fi (vi )

4 / 29



Recap: Myerson’s Optimal (Single-Item) Auction

��� R̄(q) is concave closure of revenue curve

��� Max expected revenue given sale prob. q

��� Ironed virtual value ϕ̄i (vi ) is R̄(q)’s derivative

��� Quantile q’s marginal revenue contribution

��� Highest non-negative ironed virtual value wins

��� Winner pays threshold winning bid
i.e., lowest bid above which he/she wins

��� Expected revenue is at most E
∑n

i=1 ϕ̄i (vi )xi
with equality if values in an ironed interval are
treated as the same
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Recap: Data-Driven Optimal (Single-Item) Auction

��� Sample Complexity/Statistical Learning Model

��� Take m i.i.d. samples from D = D1 × D2 × · · · × Dm as input
��� Output a DSIC and IR auction A

��� How many samples are needed to pick a near optimal A “up to an ε margin”?

��� ε additive approximation
[0, 1]-bounded distributions (illustrative example)

��� 1− ε (multiplicative) approximation
Regular distributions (i.e., concave revenue curve)

MHR distributions (i.e., “strongly concave” revenue curve)

[1,H]-bounded distributions

��� The sample complexity is smallest number of samples needed
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Recap: Summary of Upper and Lower Bounds So Far

Distributions Upper Bound Lower Bound

[0, 1]-Bounded n
ε3

n
ε2

Regular distributions n
ε4

n
ε3

MHR distributions n
ε3

n
ε2

[1,H]-bounded distributions Hn
ε3

Hn
ε2

��� Upper Bound:
Concentration inequality + covering of auction space + union bound

��� Lower Bound:
Assouad’s method
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Recap: Concentration Inequalities

Theorem (Chernoff-Hoeffding, User-Friendly Version)

X1,X2, . . . ,Xm are i.i.d. RV over [0, 1]. Let µ = EXi . With probability 1− δ we have

∣∣∣ 1

m

m∑
i=1

Xi − µ
∣∣∣ .

√
log 1

δ

m

Theorem (Bernstein Inequality, User-Friendly Version)

X1,X2, . . . ,Xm are i.i.d. RV over [0, 1]. Let µ = EXi . With probability 1− δ we have

∣∣∣ 1

m

m∑
i=1

Xi − µ
∣∣∣ . max

{ √
µ(1− µ) log 1

δ

m
,

log 1
δ

m

}
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Learning Prices’ Revenue vs. Learning Value Distribution

��� Recall our approach for data-driven optimal pricing

��� It suffices to learn the revenue of every price up to ε
��� For each price, estimating its revenue reduces to estimating its quantile

��� Next consider an alternative approach

��� It suffices to learn the distribution up to ε w.r.t. its CDF/quantile, i.e.

sup
v∈[0,1]

∣∣ FD(v)︸ ︷︷ ︸
true CDF

− FE (v)︸ ︷︷ ︸
estimated CDF

∣∣ ≤ ε (Kolmogorov distance)

��� Then, for each price, we know its revenue up to ε

��� Two approaches coincide for pricing...

but not for auctions
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Lower Confidence (Revenue) Bounds vs. Underestimating Distribution

��� Recall the take-home question regarding optimal pricing

��� Different value distributions require different regularization in Lecture I
��� Can we get all upper bounds using the same algorithm?

��� Lower Confidence Bound (LCB), e.g., choose p to maximize

p ·
( ∣∣number of samples ≥ p

∣∣
m

−

√
log 1

δ

m

)
��� Alternatively, consider an underestimation of the value distribution, e.g.

FE (v) =

∣∣number of samples ≤ v
∣∣

m
+

√
log 1

δ

m

��� Two approaches coincide for pricing...

but not for auctions
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Data-Driven (Single-Item) Auction via Learning Value Distribution

��� Product empirical distribution E = E1 × E2 × · · · × En

��� Ei is uniform distribution over bidder i ’s value samples

��� Dominated product empirical distribution Ē = Ē1 × Ē2 × · · · × Ēn

FĒi
(v) = FEi

(v) +

√
FEi

(v)
(
1− FEi

(v)
)

m

(simplified incorrect form for illustration)

��� Return Myerson’s optimal auction w.r.t. E or Ē
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Hellinger Distance

H(P,Q) =
1√
2

∥∥√P −√Q
∥∥

2
=

√
1

2

∑
v

(√
P(v)−

√
Q(v)

)2

��� Direct product

1−H(P1 × · · · × Pn,Q1 × · · · × Qn)2 =
n∏

i=1

(
1−H(Pi ,Qi )

2
)

��� This implies sub-additivity

H(P1 × · · · × Pn,Q1 × · · · × Qn)2 ≤
n∑

i=1

H(Pi ,Qi )
2
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Hellinger, Kullback–Leibler, and Total Variation

��� Relation to TV
H(P,Q)2 ≤ TV(P,Q) ≤

√
2 ·H(P,Q)

��� Relation to KL
H(P,Q)2 ≤ KL(P‖Q)

��� Why TV is called total variation distance?

��� P and Q are distributions over T
��� h : T → [0, 1] is a function
��� We have ∣∣Ev∼Ph(v)− Ev∼Qh(v)

∣∣ ≤ TV(P,Q)
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Learnability of Distribution

Theorem
If D has support size k, E is empirical distribution over m h k+log 1

δ

ε2 i.i.d. samples, then

H(D,E ) ≤ ε

��� Here we prove a weaker result EH(D,E ) .
√

k
m(

EH(D,E )
)2
≤ EH(D,E )2

=
∑
v

E
(√

D(v)−
√

E (v)
)2

��� It suffices to bound E
(√

D(v)−
√

E (v)
)2

for any v

E

(
D(v)− E (v)

)2(√
D(v) +

√
E (v)

)2

≤ E

(
D(v)− E (v)

)2

D(v)︸ ︷︷ ︸
χ2 distance

=
1

m

(
1− D(v)

)
≤ 1

m
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Implications to Data-Driven Auction Design

��� D = D1 × D2 × · · · × Dn is an n-dimensional product value distribution

��� We may think of each dimension’s support size as k = 1
ε

because we can round values vi to bvicε (closest multiple of ε)
��� Formally, let bDcε be the distribution of rounded value profile

OPT (bDcε) ≥ OPT (D)− ε

��� E = E1 × E2 × · · · × En is product empirical distribution from m rounded samples

��� Ei is the uniform distribution over bidder i ’s rounded sample values

Theorem
With m & n

ε3 +
log 1

δ

ε2 samples, Myerson’s optimal auction ME w.r.t. E is an ε additiive
approximation w.p. 1− δ.
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Recap

Two Different Viewpoints

Learnability of Product Distributions

Strong (Revenue) Monotonicity

Further Extensions and Open Questions
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Underestimating Value Distribution

��� Value distribution D, e.g., uniform on [0, 1]

��� Empirical distribution E over m samples

��� Bernstein Inequality + Union Bound∣∣FE (v)−FD(v)
∣∣ .√FD(v)(1− FD(v)) log m

δ

m
+

log m
δ

m

��� Dominated empirical Ē

FĒ (v)−FE (v) h
√

FE (v)(1− FE (v)) log m
δ

m
+

log m
δ

m

��� Auxiliary distribution D̄ (D̄ � Ē � D)

FD̄(v)−FD(v) h
√

FD(v)(1− FD(v)) log m
δ

m
+

log m
δ

m

0 1v

C
D

F
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FD̄(v)−FD(v) h
√

FD(v)(1− FD(v)) log m
δ

m
+

log m
δ

m

0 1v

C
D

F

20 / 29



Underestimating Value Distribution

��� Value distribution D, e.g., uniform on [0, 1]

��� Empirical distribution E over m samples

��� Bernstein Inequality + Union Bound∣∣FE (v)−FD(v)
∣∣ .√FD(v)(1− FD(v)) log m

δ

m
+

log m
δ

m

��� Dominated empirical Ē
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Dominated Empirical Myerson’s Auction

��� Compute dominated empirical distribution Ēi for each bidder i

��� Return Myerson’s optimal auction MĒ w.r.t. Ē = Ē1 × Ē2 × · · · × Ēn

MĒ (D) vs. OPT (D)

��� What’s the best conceivable lower bound for MĒ (D) given Ē � D?

MĒ (D) ≥ OPT (Ē ) (strong monotonicity)

��� What’s the best conceivable lower bound for OPT (Ē ) given Ē � D̄?

OPT (Ē ) ≥ OPT (D̄) (weak monotonicity)

��� Compare OPT (D̄) and OPT (D)
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Strong (Revenue) Monotonicity

Theorem
For any value distributions D � Ē , and the optimal auction MĒ for Ē

MĒ (D) ≥ OPT (Ē )

Here we only prove weak monotonicity, i.e., OPT (D) ≥ OPT (Ē ), via coupling

quantiles q1, q2, . . . , qn

1. Values v1, v2, . . . , vn ∼ D

2. Allocate to bidder i with
highest non-negative ϕ̄Ēi

(v̄i )

3. Winner pays threshold bid,
which is at least as large

1. Values v̄1, v̄2, . . . , v̄n ∼ Ē

2. Allocate to bidder i with
highest non-negative ϕ̄Ēi

(v̄i )

3. Winner pays threshold bid
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Comparing OPT (D) and OPT (D̄)
Reminder

FD̄(v)− FD(v) h
√

FD(v)(1−FD(v)) log m
δ

m +
log m

δ
m

Lemma
If we have m &

n · (log m
εδ

)2

ε2 samples, then the auxiliary distribution D̄

H(D, D̄) ≤ ε√
2

⇒ TV(D, D̄) ≤ ε

⇒ for any auction A, A(D̄) ≥ A(D)− ε

⇒ OPT (D̄) ≥ OPT (D)− ε
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Summary

Distributions Sample Complexity

[0, 1]-Bounded n
ε2

Regular distributions n
ε3

MHR distributions n
ε2

[1,H]-bounded distributions Hn
ε2

��� Upper Bound:
Learnability of product distribution + strong (revenue) monotonicity

��� Lower Bound:
Assouad’s method
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Recap

Two Different Viewpoints

Learnability of Product Distributions

Strong (Revenue) Monotonicity

Further Extensions and Open Questions
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Sample Compelxity of Optimization Problems in Stochastic Models

��� Revenue maximization

��� Single-parameter auctions (e.g., multiple homogeneous items)

��� Multi-parameter auctions (e.g., multiple heterogeneous items)
Optimal sample complexity is still open

��� Sequential decision-making in stochastic models

��� Prophet inequality
Optimal sample complexity is still open

��� Pandora’s box

��� Online stochastic matching
Optimal sample complexity is still open
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Underestimating Value Distribution

��� Value distribution D, e.g., uniform on [0, 1]

��� Empirical distribution E over m samples

��� Bernstein Inequality + Union Bound∣∣FE (v)− FD(v)
∣∣ .√FD(v)(1− FD(v)) log m

δ

m
+

log m
δ

m

��� Dvoretzky–Kiefer–Wolfowitz (DKW) inequality

∣∣FE (v)− FD(v)
∣∣ .

√
log 1

δ

m

��� Open question: Is there a Bernstein-style DKW inequality?

27 / 29



Underestimating Value Distribution

��� Value distribution D, e.g., uniform on [0, 1]

��� Empirical distribution E over m samples

��� Bernstein Inequality + Union Bound∣∣FE (v)− FD(v)
∣∣ .√FD(v)(1− FD(v)) log m

δ

m
+

log m
δ

m

��� Dvoretzky–Kiefer–Wolfowitz (DKW) inequality

∣∣FE (v)− FD(v)
∣∣ .

√
log 1

δ

m

��� Open question: Is there a Bernstein-style DKW inequality?

27 / 29



Underestimating Value Distribution

��� Value distribution D, e.g., uniform on [0, 1]

��� Empirical distribution E over m samples

��� Bernstein Inequality + Union Bound∣∣FE (v)− FD(v)
∣∣ .√FD(v)(1− FD(v)) log m

δ

m
+

log m
δ

m

��� Dvoretzky–Kiefer–Wolfowitz (DKW) inequality

∣∣FE (v)− FD(v)
∣∣ .

√
log 1

δ

m

��� Open question: Is there a Bernstein-style DKW inequality?

27 / 29



Bidders’ Strategic Behaviors in Data-Driven Auction Design

��� Bidders may underbid today in order to get a lower price tomorrow

��� Can we learn optimal auctions despite of bidders’ strategic behaviors?

��� Impossible if bidders are patient

��� Possible for relatively simple auctions, and impatient bidders
(with slower convergence rate than learning form non-strategic bidders)

��� Open question: Is the slower convergence rate avoidable?
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