Data-Driven Auction Design I Model and Basic Techniques

Zhiyi Huang

University of Hong Kong

Model

Basic Techniques

Upper Bound Techniques Lower Bound Techniques

Settling the Single-Item Single-Bidder Case

□ Sell 1 item to *n* bidders, to maximize revenue

 \square Bidder *i*'s value v_i is drawn independently from D_i

- □ Sell 1 item to *n* bidders, to maximize revenue
- \square Bidder *i*'s value v_i is drawn independently from D_i
- Direct revelation auction
 - 1. Bidders bid b_1, b_2, \ldots, b_n
 - 2. Seller picks allocations x_1, x_2, \ldots, x_n and payments p_1, p_2, \ldots, p_n
 - 3. Bidder *i* wins the item w.p. x_i , pays p_i , gets utility $v_i x_i p_i$

- □ Sell 1 item to *n* bidders, to maximize revenue
- \square Bidder *i*'s value v_i is drawn independently from D_i
- Direct revelation auction
 - 1. Bidders bid b_1, b_2, \ldots, b_n
 - 2. Seller picks allocations x_1, x_2, \ldots, x_n and payments p_1, p_2, \ldots, p_n
 - 3. Bidder *i* wins the item w.p. x_i , pays p_i , gets utility $v_i x_i p_i$
- Dominant-Strategy Incentive Compatible (DSIC)

$$\forall i, v_i, b_i, b_{-i} : \quad v_i x_i(v_i, b_{-i}) - p_i(v_i, b_{-i}) \ge v_i x_i(\frac{b_i}{b_i}, b_{-i}) - p_i(\frac{b_i}{b_i}, b_{-i})$$

- □ Sell 1 item to *n* bidders, to maximize revenue
- \square Bidder *i*'s value v_i is drawn independently from D_i
- Direct revelation auction
 - 1. Bidders bid b_1, b_2, \ldots, b_n
 - 2. Seller picks allocations x_1, x_2, \ldots, x_n and payments p_1, p_2, \ldots, p_n
 - 3. Bidder *i* wins the item w.p. x_i , pays p_i , gets utility $v_i x_i p_i$
- Dominant-Strategy Incentive Compatible (DSIC)

$$\forall i, v_i, b_i, b_{-i} : \quad v_i x_i(v_i, b_{-i}) - p_i(v_i, b_{-i}) \ge v_i x_i(\frac{b_i}{b_i}, b_{-i}) - p_i(\frac{b_i}{b_i}, b_{-i})$$

Individually Rational (IR)

$$\forall i, v_i, b_{-i}: \quad v_i x_i (v_i, b_{-i}) - p_i (v_i, b_{-i}) \geq 0$$

Myerson's Theory

□ DSIC and IR are equivalent to

- 1. $x_i(v_i, b_{-i})$ is monotone (e.g., step function)
- 2. $p_i(v_i, b_{-i})$ is the area on the left of $x_i(v_i, b_{-i})$ as a function of v_i (e.g., threshold price above which $x_i = 1$, if x_i is a step function)

Myerson's Theory

□ DSIC and IR are equivalent to

- 1. $x_i(v_i, b_{-i})$ is monotone (e.g., step function)
- 2. $p_i(v_i, b_{-i})$ is the area on the left of $x_i(v_i, b_{-i})$ as a function of v_i (e.g., threshold price above which $x_i = 1$, if x_i is a step function)

 $\hfill\square$ Expected revenue is equivalent to expected virtual welfare

$$\mathsf{E}\sum_{i=1}^{n}\varphi_{i}(v_{i})x_{i}(v)$$

where the virtual value φ_i is

$$\varphi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$$

Myerson's Theory

DSIC and IR are equivalent to

- 1. $x_i(v_i, b_{-i})$ is monotone (e.g., step function)
- 2. $p_i(v_i, b_{-i})$ is the area on the left of $x_i(v_i, b_{-i})$ as a function of v_i (e.g., threshold price above which $x_i = 1$, if x_i is a step function)

Expected revenue is equivalent to expected virtual welfare

$$\mathsf{E}\sum_{i=1}^{n}\varphi_{i}(v_{i})x_{i}(v)$$

where the virtual value φ_i is

$$\varphi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$$

Myerson's optimal auction deferred to next lecture

Optimal Pricing in the Single-Bidder Case

- \square Sell 1 item to 1 bidder, whose value v is drawn from D
- \square Every DSIC and IR auction is equivalent to posting a price p
- □ Revenue of price p is $p \cdot q(p)$, where q(p) = 1 F(p) is p's quantile
- □ Revenue curve in quantile space $R(q) = v(q) \cdot q$

Optimal pricing is easy...

Optimal pricing is easy... but how much information is needed?

Optimal pricing is easy... but how much information is needed?

- Sample Complexity/Statistical Learning Model
 - Take *m* i.i.d. samples from *D* as input
 - Output a price p

Optimal pricing is easy... but how much information is needed?

- Sample Complexity/Statistical Learning Model
 - Take *m* i.i.d. samples from *D* as input
 - Output a price p

□ How many samples are needed to pick a near optimal p "up to an ε margin"?

Optimal pricing is easy... but how much information is needed?

Sample Complexity/Statistical Learning Model

- Take *m* i.i.d. samples from *D* as input
- Output a price p

 \square How many samples are needed to pick a near optimal p "up to an ε margin"?

• ε additive approximation

[0,1]-bounded distributions

(illustrative example)

Optimal pricing is easy... but how much information is needed?

Sample Complexity/Statistical Learning Model

- Take *m* i.i.d. samples from *D* as input
- Output a price p

 \square How many samples are needed to pick a near optimal p "up to an ε margin"?

• ε additive approximation

[0,1]-bounded distributions

(illustrative example)

- - [1, *H*]-bounded distributions

Optimal pricing is easy... but how much information is needed?

Sample Complexity/Statistical Learning Model

- Take *m* i.i.d. samples from *D* as input
- Output a price p

 \square How many samples are needed to pick a near optimal p "up to an ε margin"?

• ε additive approximation

[0,1]-bounded distributions

(illustrative example)

- □ The sample complexity is smallest number of samples needed

Model

Basic Techniques

Upper Bound Techniques Lower Bound Techniques

Settling the Single-Item Single-Bidder Case

- \square Consider a [0,1]-bounded distribution, and ε additive approximation
- **Plan:** Estimate the revenue of every price up to ε additive error

- \square Consider a [0,1]-bounded distribution, and ε additive approximation
- **Plan:** Estimate the revenue of every price up to ε additive error
 - 1. Estimate the revenue of one price p up to ε

- \square Consider a [0,1]-bounded distribution, and ε additive approximation
- **Plan:** Estimate the revenue of every price up to ε additive error
 - 1. Estimate the revenue of one price p up to ε
 - 2. Prices "close to" p cannot yield much higher revenue (up to ε)

- \square Consider a [0,1]-bounded distribution, and ε additive approximation
- **Plan:** Estimate the revenue of every price up to ε additive error
 - 1. Estimate the revenue of one price p up to ε
 - 2. Prices "close to" p cannot yield much higher revenue (up to ε)
 - \Rightarrow Consider finitely many prices whose "neighborhoods" cover [0,1]

- \square Consider a [0,1]-bounded distribution, and ε additive approximation
- **□ Plan:** Estimate the revenue of every price up to ε additive error
 - 1. Estimate the revenue of one price p up to ε
 - 2. Prices "close to" p cannot yield much higher revenue (up to ε)
 - \Rightarrow Consider finitely many prices whose "neighborhoods" cover [0,1]
 - 3. Estimate the revenue of all these representative prices up to ε

Step 1: Estimate the Revenue of One Price *p*

It suffices to estimate quantile q(p) = 1 - F(p)

Step 1: Estimate the Revenue of One Price p

It suffices to estimate quantile q(p) = 1 - F(p)

Theorem (Chernoff-Hoeffding, User-Friendly Version) X_1, X_2, \ldots, X_m are *i.i.d.* RV over [0, 1]. Let $\mu = \mathbf{E} X_i$. With probability $1 - \delta$ we have

$$\left|\frac{1}{m}\sum_{i=1}^m X_i - \mu\right| \lesssim \sqrt{\frac{\log \frac{1}{\delta}}{m}}$$

Step 1: Estimate the Revenue of One Price p

It suffices to estimate quantile q(p) = 1 - F(p)

Theorem (Chernoff-Hoeffding, User-Friendly Version) X_1, X_2, \ldots, X_m are *i.i.d.* RV over [0, 1]. Let $\mu = \mathbf{E} X_i$. With probability $1 - \delta$ we have

$$\left|\frac{1}{m}\sum_{i=1}^m X_i - \mu\right| \lesssim \sqrt{\frac{\log \frac{1}{\delta}}{m}}$$

Conclusion: Using $m \gtrsim \frac{\log \frac{1}{\delta}}{\varepsilon^2}$ samples $v_1, v_2, \ldots, v_m \stackrel{\text{i.i.d.}}{\sim} D$ and letting $X_i = \mathbf{1}_{v_i \ge p}$, we can estimate q(p) (and thus p's revenue) up to ε additive error w.p. $1 - \delta$

Consider \tilde{p} that is "close to" p. Can \tilde{p} 's revenue be much larger than p's?

 $\tilde{p} \cdot q(\tilde{p})$ v.s. $p \cdot q(p)$

Consider \tilde{p} that is "close to" p. Can \tilde{p} 's revenue be much larger than p's?

 $\tilde{p} \cdot q(\tilde{p})$ v.s. $p \cdot q(p)$

1. If $p + \varepsilon \geq \tilde{p} > p$, then:

 $egin{aligned} & ilde{p} \cdot q(ilde{p}) \leq ilde{p} \cdot q(p) \ &\leq (p+arepsilon) \cdot q(p) \ &\leq p \cdot q(p) + arepsilon \end{aligned}$

Consider \tilde{p} that is "close to" p. Can \tilde{p} 's revenue be much larger than p's?

 $\tilde{p} \cdot q(\tilde{p})$ v.s. $p \cdot q(p)$

1. If $p + \varepsilon \geq \tilde{p} > p$, then:

$$egin{aligned} & ilde{p} \cdot q(ilde{p}) \leq ilde{p} \cdot q(p) \ &\leq ig(p+arepsilon) \cdot q(p) \ &\leq p \cdot q(p) + arepsilon \end{aligned}$$

2. If $p > \tilde{p} \ge p - \varepsilon$, then $\tilde{p} \cdot q(\tilde{p})$ could be almost $p \cdot q(p)$ e.g., p = 1, $\tilde{p} = 0.98$, and D is point mass at 0.99

Consider \tilde{p} that is "close to" p. Can \tilde{p} 's revenue be much larger than p's?

 $\tilde{p} \cdot q(\tilde{p})$ v.s. $p \cdot q(p)$

1. If $p + \varepsilon \geq \tilde{p} > p$, then:

$$egin{aligned} & ilde{p} \cdot q(ilde{p}) \leq ilde{p} \cdot q(p) \ &\leq ig(p+arepsilon) \cdot q(p) \ &\leq p \cdot q(p) + arepsilon \end{aligned}$$

2. If $p > \tilde{p} \ge p - \varepsilon$, then $\tilde{p} \cdot q(\tilde{p})$ could be almost $p \cdot q(p)$ e.g., p = 1, $\tilde{p} = 0.98$, and D is point mass at 0.99

Conclusion: *p* covers $[p, p + \varepsilon]$; prices $0, \varepsilon, 2\varepsilon, \ldots, 1 - \varepsilon$ cover the price space [0, 1]

□ Using $m \gtrsim \frac{\log \frac{1}{\delta}}{\varepsilon^2}$ i.i.d. samples, we can estimate q(p) (and thus p's revenue) up to ε additive error w.p. $1 - \delta$

 \square Prices $0, \varepsilon, 2\varepsilon, \ldots, 1 - \varepsilon$ cover the price space [0, 1]

□ Using $m \gtrsim \frac{\log \frac{1}{\delta}}{\varepsilon^2}$ i.i.d. samples, we can estimate q(p) (and thus p's revenue) up to ε additive error w.p. $1 - \delta$

 $\hfill\square$ Prices $0,\varepsilon,2\varepsilon,\ldots,1-\varepsilon$ cover the price space [0,1]

Theorem (Union Bound)

For any (bad) events E_1, E_2, \ldots, E_n , we have $\Pr[E_1 \cup E_2 \cup \cdots \cup E_n] \leq \sum_{i=1}^n \Pr[E_i]$

□ Using $m \gtrsim \frac{\log \frac{1}{\delta}}{\varepsilon^2}$ i.i.d. samples, we can estimate q(p) (and thus p's revenue) up to ε additive error w.p. $1 - \delta$

 $\hfill\square$ Prices $0,\varepsilon,2\varepsilon,\ldots,1-\varepsilon$ cover the price space [0,1]

Theorem (Union Bound)

For any (bad) events E_1, E_2, \ldots, E_n , we have $\Pr[E_1 \cup E_2 \cup \cdots \cup E_n] \leq \sum_{i=1}^n \Pr[E_i]$

 $\label{eq:constraint} \Box \mbox{ If we estimate each representative price's revenue up to ε w.p. $1-\varepsilon\delta$, then we estimate all of them w.p. at least $1-\delta$$

□ Using $m \gtrsim \frac{\log \frac{1}{\delta}}{\varepsilon^2}$ i.i.d. samples, we can estimate q(p) (and thus p's revenue) up to ε additive error w.p. $1 - \delta$

 $\hfill\square$ Prices $0,\varepsilon,2\varepsilon,\ldots,1-\varepsilon$ cover the price space [0,1]

Theorem (Union Bound)

For any (bad) events E_1, E_2, \ldots, E_n , we have $\Pr[E_1 \cup E_2 \cup \cdots \cup E_n] \leq \sum_{i=1}^n \Pr[E_i]$

□ If we estimate each representative price's revenue up to ε w.p. $1 - \varepsilon \delta$, then we estimate all of them w.p. at least $1 - \delta$

Conclusion: Using $m \ge \frac{\log \frac{1}{\varepsilon \delta}}{\varepsilon^2}$ i.i.d. samples, we can estimate the revenue of all prices up to ε additive error w.p. $1 - \delta$

Upper Bound for [0, 1]-Bounded Distribution

Empirical Revenue Maximizer (ERM). Return price *p* that maximizes revenue w.r.t. uniform distribution over the samples (empirical distribution).

Theorem ERM using $m \gtrsim \frac{\log \frac{1}{\varepsilon \delta}}{\varepsilon^2}$ samples is an ε additiive approximation w.p. $1 - \delta$.

Model

Basic Techniques Upper Bound Techniques Lower Bound Techniques

Settling the Single-Item Single-Bidder Case

Le Cam's Method (a.k.a., the Two-Point Method)

 $\hfill\square$ Consider two value distributions P and Q that are

1. Sufficiently "similar"

One needs $m \gtrsim \frac{1}{\epsilon^2}$ samples to distinguish P and Q, say, w.p. $\frac{2}{3}$

Le Cam's Method (a.k.a., the Two-Point Method)

 $\hfill\square$ Consider two value distributions P and Q that are

1. Sufficiently "similar"

One needs $m \gtrsim \frac{1}{\epsilon^2}$ samples to distinguish P and Q, say, w.p. $\frac{2}{3}$

2. Sufficiently "different"

No price p is an ε additive approximation for both P and Q

Le Cam's Method (a.k.a., the Two-Point Method)

 $\hfill\square$ Consider two value distributions P and Q that are

1. Sufficiently "similar"

One needs $m \gtrsim \frac{1}{\epsilon^2}$ samples to distinguish P and Q, say, w.p. $\frac{2}{3}$

2. Sufficiently "different"

No price p is an ε additive approximation for both P and Q

□ We next present

- 1. Statistical distances that characterize the number of samples needed to distinguish two distributions
- 2. Sufficient condition under which two distributions are "similar" enough
- 3. Construction of P and Q

	а	b	с	d
Ρ	0.1	0.2	0.3	0.4
Q	0.4	0.3	0.2	0.1

	а	b	с	d
Ρ	0.1	0.2	0.3	0.4
Q	0.4	0.3	0.2	0.1

Suppose that $D \in \{P, Q\}$ and you draw one sample $s \sim D$ \Box If s = a, would you predict D = P or D = Q?

	а	b	с	d
Ρ	0.1	0.2	0.3	0.4
Q	0.4	0.3	0.2	0.1

Suppose that $D \in \{P, Q\}$ and you draw one sample $s \sim D$ \Box If s = a, would you predict D = P or D = Q? What if s = c?

	а	b	с	d
Ρ	0.1	0.2	0.3	0.4
Q	0.4	0.3	0.2	0.1

Suppose that $D \in \{P, Q\}$ and you draw one sample $s \sim D$ \Box If s = a, would you predict D = P or D = Q? What if s = c? \Box Following this strategy, what is the total error?

$$\Pr[\operatorname{predict} P \mid D = Q] + \Pr[\operatorname{predict} Q \mid D = P]$$

	а	b	с	d
Ρ	0.1	0.2	0.3	0.4
Q	0.4	0.3	0.2	0.1

Suppose that $D \in \{P, Q\}$ and you draw one sample $s \sim D$ \Box If s = a, would you predict D = P or D = Q? What if s = c? \Box Following this strategy, what is the total error?

$$\Pr[\text{predict } P \mid D = Q] + \Pr[\text{predict } Q \mid D = P]$$

□ Total variation distance

$$ext{TV}(P,Q) = rac{1}{2} \left\| P - Q \right\|_1$$

	а	b	с	d
Ρ	0.1	0.2	0.3	0.4
Q	0.4	0.3	0.2	0.1

Suppose that $D \in \{P, Q\}$ and you draw one sample $s \sim D$ \Box If s = a, would you predict D = P or D = Q? What if s = c? \Box Following this strategy, what is the total error?

$$\Pr[\text{predict } P \mid D = Q] + \Pr[\text{predict } Q \mid D = P]$$

Total variation distance

$$TV(P, Q) = \frac{1}{2} ||P - Q||_1 = \frac{1}{2} \sum_{v} |P(v) - Q(v)|$$

	а	b	с	d
Ρ	0.1	0.2	0.3	0.4
Q	0.4	0.3	0.2	0.1

Suppose that $D \in \{P, Q\}$ and you draw one sample $s \sim D$

□ If s = a, would you predict D = P or D = Q? What if s = c?

□ Following this strategy, what is the total error?

$$\Pr[\text{predict } P \mid D = Q] + \Pr[\text{predict } Q \mid D = P] = 1 - TV(P, Q)$$

Total variation distance

$$TV(P, Q) = \frac{1}{2} ||P - Q||_1 = \frac{1}{2} \sum_{v} |P(v) - Q(v)|$$

Observation: *m* samples from $D \Leftrightarrow$ one sample from D^m

Description: *m* samples from $D \Leftrightarrow$ one sample from D^m

 \square Minimum total error for distinguishing P and Q with m samples is:

 $1 - \mathrm{TV}(P^m, Q^m)$

Observation: *m* samples from $D \Leftrightarrow$ one sample from D^m

 \square Minimum total error for distinguishing P and Q with m samples is:

 $1 - \mathrm{TV}(P^m, Q^m)$

 \square Hard to reason about $TV(P^m, Q^m)$ directly... We need a manageable proxy

Observation: *m* samples from $D \Leftrightarrow$ one sample from D^m

 \square Minimum total error for distinguishing P and Q with m samples is:

 $1 - \mathrm{TV}(P^m, Q^m)$

Hard to reason about TV(P^m, Q^m) directly... We need a manageable proxy
 Kullback-Leibler (KL) divergence

$$\operatorname{KL}(P \| Q) = \sum_{v} P(v) \log rac{P(v)}{Q(v)}$$

Observation: *m* samples from $D \Leftrightarrow$ one sample from D^m

 \square Minimum total error for distinguishing P and Q with m samples is:

 $1 - \mathrm{TV}(P^m, Q^m)$

Hard to reason about TV(P^m, Q^m) directly... We need a manageable proxy
 Kullback-Leibler (KL) divergence

$$\mathrm{KL}(P \| Q) = \sum_{v} P(v) \log \frac{P(v)}{Q(v)}$$

• Relation to TV (Pinsker's inequality) $TV(P,Q) \le \sqrt{\frac{1}{2}KL(P||Q)}$

- **Observation:** *m* samples from $D \Leftrightarrow$ one sample from D^m
- \square Minimum total error for distinguishing P and Q with m samples is:

 $1 - \mathrm{TV}(P^m, Q^m)$

Hard to reason about TV(P^m, Q^m) directly... We need a manageable proxy
 Kullback-Leibler (KL) divergence

$$\mathrm{KL}(P \| Q) = \sum_{v} P(v) \log \frac{P(v)}{Q(v)}$$

Relation to TV (Pinsker's inequality)

Direct sum

 $\frac{\mathrm{TV}(P, Q)}{\mathrm{KL}(P^m \| Q^m)} \leq \sqrt{\frac{1}{2} \mathrm{KL}(P \| Q)}$

D What we want: One needs $m \gtrsim \frac{1}{\varepsilon^2}$ samples to distinguish P and Q w.p. $\frac{2}{3}$

□ What we want: One needs $m \gtrsim \frac{1}{\varepsilon^2}$ samples to distinguish *P* and *Q* w.p. $\frac{2}{3}$ □ Contrapositive: If we have less than $m \approx \frac{1}{\varepsilon^2}$ samples, then

$$\Pr[\text{predict } P \mid D = Q] + \Pr[\text{predict } Q \mid D = P] > \frac{2}{3}$$

□ What we want: One needs $m \gtrsim \frac{1}{\varepsilon^2}$ samples to distinguish *P* and *Q* w.p. $\frac{2}{3}$ □ Contrapositive: If we have less than $m \approx \frac{1}{\varepsilon^2}$ samples, then

$$\Pr[\text{predict } P \mid D = Q] + \Pr[\text{predict } Q \mid D = P] > \frac{2}{3}$$

□ Characterization via TV:

 $\mathrm{TV}(P^m,Q^m)\leq \frac{1}{3}$

□ What we want: One needs $m \gtrsim \frac{1}{\varepsilon^2}$ samples to distinguish *P* and *Q* w.p. $\frac{2}{3}$ □ Contrapositive: If we have less than $m \approx \frac{1}{\varepsilon^2}$ samples, then

$$\Pr[\text{predict } P \mid D = Q] + \Pr[\text{predict } Q \mid D = P] > \frac{2}{3}$$

□ Characterization via TV: $TV(P^m, Q^m) \le \frac{1}{3}$

Characterization via KL:

$$\operatorname{KL}(P^m \| Q^m) \lesssim 1 \quad \Rightarrow \quad \operatorname{KL}(P \| Q) \lesssim \frac{1}{m} \approx \varepsilon^2$$

Reminder KL(P || Q) = $\sum_{v} P(v) \log \frac{P(v)}{Q(v)}$

Lemma Suppose that $e^{-\varepsilon} \leq \frac{P(v)}{Q(v)} \leq e^{\varepsilon}$ for any v. We have:

Sufficient Condition for $KL(P||Q) \leq \varepsilon^2$

Reminder KL($P \| Q$) = $\sum_{v} P(v) \log \frac{P(v)}{Q(v)}$

Lemma Suppose that $e^{-\varepsilon} \leq \frac{P(v)}{Q(v)} \leq e^{\varepsilon}$ for any v. We have: $\operatorname{KL}(P \| Q) \lesssim \varepsilon^2$

 $\operatorname{KL}(P \| Q) \leq \operatorname{KL}(P \| Q) + \operatorname{KL}(Q \| P)$

Reminder
KL(
$$P || Q$$
) = $\sum_{v} P(v) \log \frac{P(v)}{Q(v)}$

Lemma Suppose that $e^{-\varepsilon} \leq \frac{P(v)}{Q(v)} \leq e^{\varepsilon}$ for any v. We have:

$$\begin{split} \operatorname{KL}(P \| Q) &\leq \operatorname{KL}(P \| Q) + \operatorname{KL}(Q \| P) \\ &= \sum_{v} \left(P(v) - Q(v) \right) \log \frac{P(v)}{Q(v)} \end{split}$$

Reminder

$$\operatorname{KL}(P \| Q) = \sum_{v} P(v) \log \frac{P(v)}{Q(v)}$$

Lemma Suppose that $e^{-\varepsilon} \leq \frac{P(v)}{Q(v)} \leq e^{\varepsilon}$ for any v. We have:

$$\begin{split} \operatorname{KL}(P \| Q) &\leq \operatorname{KL}(P \| Q) + \operatorname{KL}(Q \| P) \\ &= \sum_{v} \left(P(v) - Q(v) \right) \log \frac{P(v)}{Q(v)} \\ &\leq \sum_{v} \left(e^{\varepsilon} - 1 \right) \min \left\{ P(v), Q(v) \right\} \cdot \varepsilon \end{split}$$

Reminder
KL(
$$P || Q$$
) = $\sum_{v} P(v) \log \frac{P(v)}{Q(v)}$

Lemma Suppose that $e^{-\varepsilon} \leq \frac{P(v)}{Q(v)} \leq e^{\varepsilon}$ for any v. We have:

$$\begin{split} \operatorname{KL}(P \| Q) &\leq \operatorname{KL}(P \| Q) + \operatorname{KL}(Q \| P) \\ &= \sum_{v} \left(P(v) - Q(v) \right) \log \frac{P(v)}{Q(v)} \\ &\leq \sum_{v} \left(e^{\varepsilon} - 1 \right) \min \left\{ P(v), Q(v) \right\} \cdot \varepsilon \\ &\leq (e^{\varepsilon} - 1) \varepsilon \end{split}$$

Lower Bound for [0, 1]-Bounded Distributions

Theorem

Any ε additive approximation algorithm uses at least $m \gtrsim \frac{1}{\varepsilon^2}$ samples.

 $\hfill\square$ Construct two [0,1] -bounded value distributions P and Q that are

1. "Similar": For any v,
$$e^{-\varepsilon} \leq rac{P(v)}{Q(v)} \leq e^{\varepsilon}$$

2. "Different": No price p is an ε additive approximation for both P and Q

Lower Bound for [0, 1]-Bounded Distributions

Theorem

Any ε additive approximation algorithm uses at least $m \gtrsim \frac{1}{\varepsilon^2}$ samples.

- $\hfill\square$ Construct two [0,1] -bounded value distributions P and Q that are
 - 1. "Similar": For any v, $e^{-\varepsilon} \leq \frac{P(v)}{Q(v)} \leq e^{\varepsilon}$
 - 2. "Different": No price p is an ε additive approximation for both P and Q

Model

Basic Techniques Upper Bound Technique Lower Bound Technique

Settling the Single-Item Single-Bidder Case

Distributions	Sample Complexity
[0, 1]-Bounded	$\frac{1}{\varepsilon^2}$
Regular distributions	
MHR distributions	
[1, H]-bounded distributions	

Regular Distributions

□ Value distribution *D* is regular if $\varphi_D(v)$ is nondecreasing \Leftrightarrow The revenue curve R(q) is concave

Regular Distributions

 \square Value distribution D is regular if $\varphi_D(v)$ is nondecreasing

 \Leftrightarrow The revenue curve R(q) is concave

ERM does not converge for some regular distribution

• With constant probability we get two samples with quantiles less than $\frac{1}{m}$

- 1. Estimate the revenue of one price p up to $1 \varepsilon \approx e^{-\varepsilon}$ approximation
- 2. Prices between p and $e^{\varepsilon}p$ cannot yield much higher revenue
 - \Rightarrow Consider finitely(?) many prices whose "neighborhoods" cover $[0, \infty)$

3. Estimate the revenue of all these representative prices

1. Estimate the revenue of one price p up to $1 - \varepsilon \approx e^{-\varepsilon}$ approximation

Theorem (Bernstein Inequality, User-Friendly Version) X_1, X_2, \ldots, X_m are *i.i.d.* RV over [0, 1]. Let $\mu = \mathbf{E} X_i$. With probability $1 - \delta$ we have

$$\left|\frac{1}{m}\sum_{i=1}^{m}X_{i}-\mu\right| \lesssim \max\left\{\left|\sqrt{\frac{\mu(1-\mu)\lograc{1}{\delta}}{m}}, \frac{\lograc{1}{\delta}}{m}
ight\}
ight\}$$

1. Estimate the revenue of one price p up to $1 - \varepsilon \approx e^{-\varepsilon}$ approximation

Theorem (Bernstein Inequality, User-Friendly Version) X_1, X_2, \ldots, X_m are *i.i.d.* RV over [0, 1]. Let $\mu = \mathbf{E} X_i$. With probability $1 - \delta$ we have

$$\left|\frac{1}{m}\sum_{i=1}^m X_i - \mu\right| \lesssim \max\left\{ \sqrt{\frac{\mu(1-\mu)\log \frac{1}{\delta}}{m}}, \frac{\log \frac{1}{\delta}}{m} \right\}$$

1. Estimate the revenue of one price p up to $1 - \varepsilon \approx e^{-\varepsilon}$ approximation

• To get
$$\left|\frac{1}{m}\sum_{i=1}^{m}X_{i}-\mu\right| \leq \varepsilon\mu$$
 we need $m \gtrsim \frac{\log \frac{1}{\delta}}{\mu\varepsilon^{2}}$ samples

Theorem (Bernstein Inequality, User-Friendly Version) X_1, X_2, \ldots, X_m are *i.i.d.* RV over [0, 1]. Let $\mu = \mathbf{E} X_i$. With probability $1 - \delta$ we have

$$\left|\frac{1}{m}\sum_{i=1}^{m}X_{i}-\mu\right| \lesssim \max\left\{\left|\sqrt{\frac{\mu(1-\mu)\log\frac{1}{\delta}}{m}}, \frac{\log\frac{1}{\delta}}{m}\right|\right\}$$

1. Estimate the revenue of one price p up to $1 - \varepsilon \approx e^{-\varepsilon}$ approximation

• To get
$$\left|\frac{1}{m}\sum_{i=1}^{m}X_{i}-\mu\right| \leq \varepsilon\mu$$
 we need $m \geq \frac{\log \frac{1}{\delta}}{\mu\varepsilon^{2}}$ samples

• **Unbounded** when for small quantile μ (i.e., high prices)

Theorem (Bernstein Inequality, User-Friendly Version) X_1, X_2, \ldots, X_m are *i.i.d.* RV over [0, 1]. Let $\mu = \mathbf{E} X_i$. With probability $1 - \delta$ we have

$$\left|\frac{1}{m}\sum_{i=1}^{m}X_{i}-\mu\right| \lesssim \max\left\{\left|\sqrt{\frac{\mu(1-\mu)\log\frac{1}{\delta}}{m}}, \frac{\log\frac{1}{\delta}}{m}\right|\right\}$$

- 2. Prices between p and $e^{\varepsilon}p$ cannot yield much higher revenue
 - \Rightarrow Consider finitely(?) many prices whose "neighborhoods" cover $[0,\infty)$

- 2. Prices between p and $e^{\varepsilon}p$ cannot yield much higher revenue
 - \Rightarrow Consider finitely(?) many prices whose "neighborhoods" cover $[0, \infty)$

- 2. Prices between p and $e^{\varepsilon}p$ cannot yield much higher revenue
 - \Rightarrow Consider finitely(?) many prices whose "neighborhoods" cover $[0,\infty)$

- 2. Prices between p and $e^{\varepsilon}p$ cannot yield much higher revenue
 - \Rightarrow Consider finitely(?) many prices whose "neighborhoods" cover $[0,\infty)$

- 2. Prices between p and $e^{\varepsilon}p$ cannot yield much higher revenue
 - \Rightarrow Consider finitely(?) many prices whose "neighborhoods" cover $[0,\infty)$

- 2. Prices between p and $e^{\varepsilon}p$ cannot yield much higher revenue
 - \Rightarrow Consider finitely(?) many prices whose "neighborhoods" cover $[0,\infty)$
 - "Extremely low" prices are not relevant anyway

infinitely many high prices

- 2. Prices between p and $e^{\varepsilon}p$ cannot yield much higher revenue
 - \Rightarrow Consider finitely(?) many prices whose "neighborhoods" cover $[0, \infty)$
 - "Extremely low" prices are not relevant anyway
 - "Extremely high" prices will be "truncated" algorithmically

Existence of a "Good Enough" Price with "Large" Quantile

Observation: By concavity of revenue curve, there exists a price *p* such that

- 1. It is an 1ε approximation
- 2. Its quantile is at least ε

Upper Bound for Regular Distributions

q-Guarded ERM. Return price p that maximizes the empirical revenue, among prices whose empirical quantiles are at least q.

Upper Bound for Regular Distributions

q-Guarded ERM. Return price p that maximizes the empirical revenue, among prices whose empirical quantiles are at least q.

Theorem

 ε -Guarded ERM using $m \gtrsim \frac{\log \frac{1}{\varepsilon \delta}}{\varepsilon^3}$ samples is an $1 - \varepsilon$ approximation w.p. $1 - \delta$.

Upper Bound for Regular Distributions

q-Guarded ERM. Return price p that maximizes the empirical revenue, among prices whose empirical quantiles are at least q.

Theorem

 ε -Guarded ERM using $m \gtrsim \frac{\log \frac{1}{\varepsilon \delta}}{\varepsilon^3}$ samples is an $1 - \varepsilon$ approximation w.p. $1 - \delta$.

□ To get
$$\left|\frac{1}{m}\sum_{i=1}^{m}X_i - \mu\right| \leq \varepsilon\mu$$
 we need $m \gtrsim \frac{\log \frac{1}{\delta}}{\mu\varepsilon^2}$ samples

 \Box It suffices consider prices with quantiles at least ε

Lower Bound for Regular Distributions

Theorem

Any $1 - \varepsilon$ approximation algorithm uses at least $m \gtrsim \frac{1}{\varepsilon^3}$ samples.

- $\hfill\square$ Construct two regular value distributions P and Q that are
 - 1. "Similar": For ε fraction of v, $e^{-\varepsilon} \leq \frac{P(v)}{Q(v)} \leq e^{\varepsilon}$; for the rest, P(v) = Q(v)
 - 2. "Different": No price p is a 1ε approximation for both P and Q

Lower Bound for Regular Distributions

Theorem

Any $1 - \varepsilon$ approximation algorithm uses at least $m \gtrsim \frac{1}{c^3}$ samples.

- \Box Construct two regular value distributions *P* and *Q* that are
 - 1. "Similar": For ε fraction of v, $e^{-\varepsilon} \leq \frac{P(v)}{Q(v)} \leq e^{\varepsilon}$; for the rest, P(v) = Q(v)2. "Different": No price p is a 1ε approximation for both P and Q

[1, H]-Bounded Distributions

Theorem $\frac{1}{H}$ -Guarded ERM using $m \gtrsim \frac{H \log \frac{1}{\varepsilon \delta}}{\varepsilon^2}$ samples is an $1 - \varepsilon$ approximation w.p. $1 - \delta$.

Theorem

Any $1 - \varepsilon$ approximation algorithm uses at least $m \gtrsim \frac{H}{\varepsilon^2}$ samples.

MHR Distributions

Theorem ERM using $m \gtrsim \frac{\log \frac{1}{\varepsilon \delta}}{\varepsilon^{1.5}}$ samples is an $1 - \varepsilon$ approximation w.p. $1 - \delta$.

Theorem

Any $1 - \varepsilon$ approximation algorithm uses at least $m \gtrsim \frac{1}{\varepsilon^{1.5}}$ samples.

Summary

Distributions	Sample Complexity
[0, 1]-Bounded	$\frac{1}{\varepsilon^2}$
Regular distributions	$\frac{1}{arepsilon^3}$
MHR distributions	$rac{1}{arepsilon^{1.5}}$
[1, H]-bounded distributions	$\frac{H}{\varepsilon^2}$

Upper Bound:

Concentration inequality + covering of price space + union bound

□ Lower Bound:

Reduction to sample complexity of distinguishing two distributions

Summary

Distributions	Sample Complexity
[0,1]-Bounded	$\frac{1}{\varepsilon^2}$
Regular distributions	$\frac{1}{\varepsilon^3}$
MHR distributions	$\frac{1}{\varepsilon^{1.5}}$
[1, H]-bounded distributions	$\frac{H}{\varepsilon^2}$

Upper Bound:

Concentration inequality + covering of price space + union bound

□ Lower Bound:

Reduction to sample complexity of distinguishing two distributions

Take-Home Question: Can we get all upper bounds using the same algorithm?

References

- Richard Cole and Tim Roughgarden. "The sample complexity of revenue maximization." In Proceedings of the 46th Annual ACM Symposium on Theory of Computing, ACM, pp. 243–252, 2014.
- 2. Peerapong Dhangwatnotai, Tim Roughgarden, Qiqi Yan. *"Revenue maximization with a single sample."* Games and Economic Behavior 91, pp. 318–333, 2015.
- 3. Zhiyi Huang, Yishay Mansour, and Tim Roughgarden. *"Making the most of your samples."* SIAM Journal on Computing, 47(3), pp. 651–674, 2018.