Data-Driven Auction Design I
 Model and Basic Techniques

Zhiyi Huang
University of Hong Kong

Model

Basic Techniques

Upper Bound Techniques
Lower Bound Techniques

Settling the Single-Item Single-Bidder Case

Single-Item Auction

\square Sell 1 item to n bidders, to maximize revenue
\square Bidder i 's value v_{i} is drawn independently from D_{i}

Single-Item Auction

\square Sell 1 item to n bidders, to maximize revenue
\square Bidder i 's value v_{i} is drawn independently from D_{i}
\square Direct revelation auction

1. Bidders bid $b_{1}, b_{2}, \ldots, b_{n}$
2. Seller picks allocations $x_{1}, x_{2}, \ldots, x_{n}$ and payments $p_{1}, p_{2}, \ldots, p_{n}$
3. Bidder i wins the item w.p. x_{i}, pays p_{i}, gets utility $v_{i} x_{i}-p_{i}$

Single-Item Auction

\square Sell 1 item to n bidders, to maximize revenue
\square Bidder i 's value v_{i} is drawn independently from D_{i}
\square Direct revelation auction

1. Bidders bid $b_{1}, b_{2}, \ldots, b_{n}$
2. Seller picks allocations $x_{1}, x_{2}, \ldots, x_{n}$ and payments $p_{1}, p_{2}, \ldots, p_{n}$
3. Bidder i wins the item w.p. x_{i}, pays p_{i}, gets utility $v_{i} x_{i}-p_{i}$
\square Dominant-Strategy Incentive Compatible (DSIC)

$$
\forall i, v_{i}, b_{i}, b_{-i}: \quad v_{i} x_{i}\left(v_{i}, b_{-i}\right)-p_{i}\left(v_{i}, b_{-i}\right) \geq v_{i} x_{i}\left(b_{i}, b_{-i}\right)-p_{i}\left(b_{i}, b_{-i}\right)
$$

Single-Item Auction

\square Sell 1 item to n bidders, to maximize revenue
\square Bidder i 's value v_{i} is drawn independently from D_{i}
\square Direct revelation auction

1. Bidders bid $b_{1}, b_{2}, \ldots, b_{n}$
2. Seller picks allocations $x_{1}, x_{2}, \ldots, x_{n}$ and payments $p_{1}, p_{2}, \ldots, p_{n}$
3. Bidder i wins the item w.p. x_{i}, pays p_{i}, gets utility $v_{i} x_{i}-p_{i}$
\square Dominant-Strategy Incentive Compatible (DSIC)

$$
\forall i, v_{i}, b_{i}, b_{-i}: \quad v_{i} x_{i}\left(v_{i}, b_{-i}\right)-p_{i}\left(v_{i}, b_{-i}\right) \geq v_{i} x_{i}\left(b_{i}, b_{-i}\right)-p_{i}\left(b_{i}, b_{-i}\right)
$$

\square Individually Rational (IR)

$$
\forall i, v_{i}, b_{-i}: \quad v_{i} x_{i}\left(v_{i}, b_{-i}\right)-p_{i}\left(v_{i}, b_{-i}\right) \geq 0
$$

Myerson's Theory

\square DSIC and IR are equivalent to

1. $x_{i}\left(v_{i}, b_{-i}\right)$ is monotone (e.g., step function)
2. $p_{i}\left(v_{i}, b_{-i}\right)$ is the area on the left of $x_{i}\left(v_{i}, b_{-i}\right)$ as a function of v_{i} (e.g., threshold price above which $x_{i}=1$, if x_{i} is a step function)

Myerson's Theory

\square DSIC and IR are equivalent to

1. $x_{i}\left(v_{i}, b_{-i}\right)$ is monotone (e.g., step function)
2. $p_{i}\left(v_{i}, b_{-i}\right)$ is the area on the left of $x_{i}\left(v_{i}, b_{-i}\right)$ as a function of v_{i} (e.g., threshold price above which $x_{i}=1$, if x_{i} is a step function)
\square Expected revenue is equivalent to expected virtual welfare

$$
\mathbf{E} \sum_{i=1}^{n} \varphi_{i}\left(v_{i}\right) x_{i}(v)
$$

where the virtual value φ_{i} is

$$
\varphi_{i}\left(v_{i}\right)=v_{i}-\frac{1-F_{i}\left(v_{i}\right)}{f_{i}\left(v_{i}\right)}
$$

Myerson's Theory

\square DSIC and IR are equivalent to

1. $x_{i}\left(v_{i}, b_{-i}\right)$ is monotone (e.g., step function)
2. $p_{i}\left(v_{i}, b_{-i}\right)$ is the area on the left of $x_{i}\left(v_{i}, b_{-i}\right)$ as a function of v_{i} (e.g., threshold price above which $x_{i}=1$, if x_{i} is a step function)
\square Expected revenue is equivalent to expected virtual welfare

$$
\mathbf{E} \sum_{i=1}^{n} \varphi_{i}\left(v_{i}\right) x_{i}(v)
$$

where the virtual value φ_{i} is

$$
\varphi_{i}\left(v_{i}\right)=v_{i}-\frac{1-F_{i}\left(v_{i}\right)}{f_{i}\left(v_{i}\right)}
$$

\square Myerson's optimal auction deferred to next lecture

Optimal Pricing in the Single-Bidder Case

\square Sell 1 item to 1 bidder, whose value v is drawn from D
\square Every DSIC and IR auction is equivalent to posting a price p
\square Revenue of price p is $p \cdot q(p)$, where $q(p)=1-F(p)$ is p 's quantile
\square Revenue curve in quantile space $R(q)=v(q) \cdot q$

Data-Driven Optimal Pricing

Optimal pricing is easy..

Data-Driven Optimal Pricing

Optimal pricing is easy... but how much information is needed?

Data-Driven Optimal Pricing

Optimal pricing is easy... but how much information is needed?
\square Sample Complexity/Statistical Learning Model

- Take m i.i.d. samples from D as input
- Output a price p

Data-Driven Optimal Pricing

Optimal pricing is easy... but how much information is needed?
\square Sample Complexity/Statistical Learning Model

- Take m i.i.d. samples from D as input
- Output a price p
\square How many samples are needed to pick a near optimal p "up to an ε margin"?

Data-Driven Optimal Pricing

Optimal pricing is easy... but how much information is needed?
\square Sample Complexity/Statistical Learning Model

- Take m i.i.d. samples from D as input
- Output a price p
\square How many samples are needed to pick a near optimal p "up to an ε margin"?
- ε additive approximation
[0, 1]-bounded distributions
(illustrative example)

Data-Driven Optimal Pricing

Optimal pricing is easy... but how much information is needed?
\square Sample Complexity/Statistical Learning Model

- Take m i.i.d. samples from D as input
- Output a price p
\square How many samples are needed to pick a near optimal p "up to an ε margin"?
- ε additive approximation [0,1$]$-bounded distributions
(illustrative example)
- $1-\varepsilon$ (multiplicative) approximation

Regular distributions
MHR distributions
[1, H]-bounded distributions
(i.e., concave revenue curve)
(i.e., "strongly concave" revenue curve)

Data-Driven Optimal Pricing

Optimal pricing is easy... but how much information is needed?
\square Sample Complexity/Statistical Learning Model

- Take m i.i.d. samples from D as input
- Output a price p
\square How many samples are needed to pick a near optimal p "up to an ε margin"?
- ε additive approximation [0,1$]$-bounded distributions (illustrative example)
- $1-\varepsilon$ (multiplicative) approximation

Regular distributions (i.e., concave revenue curve)
MHR distributions (i.e., "strongly concave" revenue curve)
[$1, H$]-bounded distributions
\square The sample complexity is smallest number of samples needed

Model

Basic Techniques
Upper Bound Techniques
Lower Bound Techniques

Settling the Single-Item Single-Bidder Case

Basic Upper Bound Techniques

Empirical Revenue Maximizer (ERM). Choose the price p that maximizes revenue w.r.t. uniform distribution over the samples (empirical distribution).

Basic Upper Bound Techniques

Empirical Revenue Maximizer (ERM). Choose the price p that maximizes revenue w.r.t. uniform distribution over the samples (empirical distribution).
\square Consider a $[0,1]$-bounded distribution, and ε additive approximation
\square Plan: Estimate the revenue of every price up to ε additive error

Basic Upper Bound Techniques

Empirical Revenue Maximizer (ERM). Choose the price p that maximizes revenue w.r.t. uniform distribution over the samples (empirical distribution).
\square Consider a $[0,1]$-bounded distribution, and ε additive approximation
\square Plan: Estimate the revenue of every price up to ε additive error

1. Estimate the revenue of one price p up to ε

Basic Upper Bound Techniques

Empirical Revenue Maximizer (ERM). Choose the price p that maximizes revenue w.r.t. uniform distribution over the samples (empirical distribution).
\square Consider a $[0,1]$-bounded distribution, and ε additive approximation
\square Plan: Estimate the revenue of every price up to ε additive error

1. Estimate the revenue of one price p up to ε
2. Prices "close to" p cannot yield much higher revenue (up to ε)

Basic Upper Bound Techniques

Empirical Revenue Maximizer (ERM). Choose the price p that maximizes revenue w.r.t. uniform distribution over the samples (empirical distribution).
\square Consider a $[0,1]$-bounded distribution, and ε additive approximation
\square Plan: Estimate the revenue of every price up to ε additive error

1. Estimate the revenue of one price p up to ε
2. Prices "close to" p cannot yield much higher revenue (up to ε)
\Rightarrow Consider finitely many prices whose "neighborhoods" cover $[0,1]$

Basic Upper Bound Techniques

Empirical Revenue Maximizer (ERM). Choose the price p that maximizes revenue w.r.t. uniform distribution over the samples (empirical distribution).
\square Consider a $[0,1]$-bounded distribution, and ε additive approximation
\square Plan: Estimate the revenue of every price up to ε additive error

1. Estimate the revenue of one price p up to ε
2. Prices "close to" p cannot yield much higher revenue (up to ε)
\Rightarrow Consider finitely many prices whose "neighborhoods" cover $[0,1]$
3. Estimate the revenue of all these representative prices up to ε

Step 1: Estimate the Revenue of One Price p

It suffices to estimate quantile $q(p)=1-F(p)$

Step 1: Estimate the Revenue of One Price p

It suffices to estimate quantile $q(p)=1-F(p)$
Theorem (Chernoff-Hoeffding, User-Friendly Version)
$X_{1}, X_{2}, \ldots, X_{m}$ are i.i.d. $R V$ over $[0,1]$. Let $\mu=\mathbf{E} X_{i}$. With probability $1-\delta$ we have

$$
\left|\frac{1}{m} \sum_{i=1}^{m} X_{i}-\mu\right| \lesssim \sqrt{\frac{\log \frac{1}{\delta}}{m}}
$$

Step 1: Estimate the Revenue of One Price p

It suffices to estimate quantile $q(p)=1-F(p)$
Theorem (Chernoff-Hoeffding, User-Friendly Version)
$X_{1}, X_{2}, \ldots, X_{m}$ are i.i.d. $R V$ over $[0,1]$. Let $\mu=\mathbf{E} X_{i}$. With probability $1-\delta$ we have

$$
\left|\frac{1}{m} \sum_{i=1}^{m} X_{i}-\mu\right| \lesssim \sqrt{\frac{\log \frac{1}{\delta}}{m}}
$$

Conclusion: Using $m \gtrsim \frac{\log \frac{1}{\delta}}{\varepsilon^{2}}$ samples $v_{1}, v_{2}, \ldots, v_{m} \stackrel{\text { i.i.d. }}{\sim} D$ and letting $X_{i}=\mathbf{1}_{v_{i} \geq p}$, we can estimate $q(p)$ (and thus p 's revenue) up to ε additive error w.p. $1-\delta$

Step 2: Covering the Price Space

Consider \tilde{p} that is "close to" p. Can \tilde{p} 's revenue be much larger than p 's?

$$
\tilde{p} \cdot q(\tilde{p}) \quad \text { v.s. } \quad p \cdot q(p)
$$

Step 2: Covering the Price Space

Consider \tilde{p} that is "close to" p. Can \tilde{p} 's revenue be much larger than p 's?

$$
\tilde{p} \cdot q(\tilde{p}) \quad \text { v.s. } \quad p \cdot q(p)
$$

1. If $p+\varepsilon \geq \tilde{p}>p$, then:

$$
\begin{aligned}
\tilde{p} \cdot q(\tilde{p}) & \leq \tilde{p} \cdot q(p) \\
& \leq(p+\varepsilon) \cdot q(p) \\
& \leq p \cdot q(p)+\varepsilon
\end{aligned}
$$

Step 2: Covering the Price Space

Consider \tilde{p} that is "close to" p. Can \tilde{p} 's revenue be much larger than p 's?

$$
\tilde{p} \cdot q(\tilde{p}) \quad \text { v.s. } \quad p \cdot q(p)
$$

1. If $p+\varepsilon \geq \tilde{p}>p$, then:

$$
\begin{aligned}
\tilde{p} \cdot q(\tilde{p}) & \leq \tilde{p} \cdot q(p) \\
& \leq(p+\varepsilon) \cdot q(p) \\
& \leq p \cdot q(p)+\varepsilon
\end{aligned}
$$

2. If $p>\tilde{p} \geq p-\varepsilon$, then $\tilde{p} \cdot q(\tilde{p})$ could be almost $p \cdot q(p)$ e.g., $p=1, \tilde{p}=0.98$, and D is point mass at 0.99

Step 2: Covering the Price Space

Consider \tilde{p} that is "close to" p. Can \tilde{p} 's revenue be much larger than p 's?

$$
\tilde{p} \cdot q(\tilde{p}) \quad \text { v.s. } \quad p \cdot q(p)
$$

1. If $p+\varepsilon \geq \tilde{p}>p$, then:

$$
\begin{aligned}
\tilde{p} \cdot q(\tilde{p}) & \leq \tilde{p} \cdot q(p) \\
& \leq(p+\varepsilon) \cdot q(p) \\
& \leq p \cdot q(p)+\varepsilon
\end{aligned}
$$

2. If $p>\tilde{p} \geq p-\varepsilon$, then $\tilde{p} \cdot q(\tilde{p})$ could be almost $p \cdot q(p)$ e.g., $p=1, \tilde{p}=0.98$, and D is point mass at 0.99

Conclusion: p covers $[p, p+\varepsilon]$; prices $0, \varepsilon, 2 \varepsilon, \ldots, 1-\varepsilon$ cover the price space $[0,1]$

Step 3: Estimate Revenue of All Representative Prices

\square Using $m \gtrsim \frac{\log \frac{1}{\delta}}{\varepsilon^{2}}$ i.i.d. samples, we can estimate $q(p)$ (and thus p 's revenue) up to ε additive error w.p. $1-\delta$
\square Prices $0, \varepsilon, 2 \varepsilon, \ldots, 1-\varepsilon$ cover the price space $[0,1]$

Step 3: Estimate Revenue of All Representative Prices

\square Using $m \gtrsim \frac{\log \frac{1}{\delta}}{\varepsilon^{2}}$ i.i.d. samples, we can estimate $q(p)$ (and thus p 's revenue) up to ε additive error w.p. $1-\delta$
\square Prices $0, \varepsilon, 2 \varepsilon, \ldots, 1-\varepsilon$ cover the price space $[0,1]$
Theorem (Union Bound)
For any (bad) events $E_{1}, E_{2}, \ldots, E_{n}$, we have $\operatorname{Pr}\left[E_{1} \cup E_{2} \cup \cdots \cup E_{n}\right] \leq \sum_{i=1}^{n} \operatorname{Pr}\left[E_{i}\right]$

Step 3: Estimate Revenue of All Representative Prices

\square Using $m \gtrsim \frac{\log \frac{1}{\delta}}{\varepsilon^{2}}$ i.i.d. samples, we can estimate $q(p)$ (and thus p 's revenue) up to ε additive error w.p. $1-\delta$
\square Prices $0, \varepsilon, 2 \varepsilon, \ldots, 1-\varepsilon$ cover the price space $[0,1]$

Theorem (Union Bound)

For any (bad) events $E_{1}, E_{2}, \ldots, E_{n}$, we have $\operatorname{Pr}\left[E_{1} \cup E_{2} \cup \cdots \cup E_{n}\right] \leq \sum_{i=1}^{n} \operatorname{Pr}\left[E_{i}\right]$
\square If we estimate each representative price's revenue up to ε w.p. $1-\varepsilon \delta$, then we estimate all of them w.p. at least $1-\delta$

Step 3: Estimate Revenue of All Representative Prices

\square Using $m \gtrsim \frac{\log \frac{1}{8}}{\varepsilon^{2}}$ i.i.d. samples, we can estimate $q(p)$ (and thus p 's revenue) up to ε additive error w.p. $1-\delta$
\square Prices $0, \varepsilon, 2 \varepsilon, \ldots, 1-\varepsilon$ cover the price space $[0,1]$

Theorem (Union Bound)

For any (bad) events $E_{1}, E_{2}, \ldots, E_{n}$, we have $\operatorname{Pr}\left[E_{1} \cup E_{2} \cup \cdots \cup E_{n}\right] \leq \sum_{i=1}^{n} \operatorname{Pr}\left[E_{i}\right]$
\square If we estimate each representative price's revenue up to ε w.p. $1-\varepsilon \delta$, then we estimate all of them w.p. at least $1-\delta$

Conclusion: Using $m \gtrsim \frac{\log \frac{1}{\delta \delta}}{\varepsilon^{2}}$ i.i.d. samples, we can estimate the revenue of all prices up to ε additive error w.p. $1-\delta$

Upper Bound for [0, 1]-Bounded Distribution

Empirical Revenue Maximizer (ERM). Return price p that maximizes revenue w.r.t. uniform distribution over the samples (empirical distribution).

Theorem
ERM using $m \gtrsim \frac{\log \frac{1}{\varepsilon \delta}}{\varepsilon^{2}}$ samples is an ε additiive approximation w.p. $1-\delta$.

Basic Techniques
Upper Bound Techniques
Lower Bound Techniques

Settling the Single-Item Single-Bidder Case

Le Cam's Method (a.k.a., the Two-Point Method)

\square Consider two value distributions P and Q that are

1. Sufficiently "similar"

One needs $m \gtrsim \frac{1}{\varepsilon^{2}}$ samples to distinguish P and Q, say, w.p. $\frac{2}{3}$

Le Cam's Method (a.k.a., the Two-Point Method)

\square Consider two value distributions P and Q that are

1. Sufficiently "similar"

One needs $m \gtrsim \frac{1}{\varepsilon^{2}}$ samples to distinguish P and Q, say, w.p. $\frac{2}{3}$
2. Sufficiently "different"

No price p is an ε additive approximation for both P and Q

Le Cam's Method (a.k.a., the Two-Point Method)

\square Consider two value distributions P and Q that are

1. Sufficiently "similar"

One needs $m \gtrsim \frac{1}{\varepsilon^{2}}$ samples to distinguish P and Q, say, w.p. $\frac{2}{3}$
2. Sufficiently "different"

No price p is an ε additive approximation for both P and Q
\square We next present

1. Statistical distances that characterize the number of samples needed to distinguish two distributions
2. Sufficient condition under which two distributions are "similar" enough
3. Construction of P and Q

Distinguish P and Q with One Sample

	a	b	c	d
P	0.1	0.2	0.3	0.4
Q	0.4	0.3	0.2	0.1

Distinguish P and Q with One Sample

	a	b	c	d
P	0.1	0.2	0.3	0.4
Q	0.4	0.3	0.2	0.1

Suppose that $D \in\{P, Q\}$ and you draw one sample $s \sim D$
\square If $s=a$, would you predict $D=P$ or $D=Q$?

Distinguish P and Q with One Sample

	a	b	c	d
P	0.1	0.2	0.3	0.4
Q	0.4	0.3	0.2	0.1

Suppose that $D \in\{P, Q\}$ and you draw one sample $s \sim D$
\square If $s=a$, would you predict $D=P$ or $D=Q$? What if $s=c$?

Distinguish P and Q with One Sample

	a	b	c	d
P	0.1	0.2	0.3	0.4
Q	0.4	0.3	0.2	0.1

Suppose that $D \in\{P, Q\}$ and you draw one sample $s \sim D$
\square If $s=a$, would you predict $D=P$ or $D=Q$? What if $s=c$?
\square Following this strategy, what is the total error?

$$
\operatorname{Pr}[\text { predict } P \mid D=Q]+\operatorname{Pr}[\text { predict } Q \mid D=P]
$$

Distinguish P and Q with One Sample

	a	b	c	d
P	0.1	0.2	0.3	0.4
Q	0.4	0.3	0.2	0.1

Suppose that $D \in\{P, Q\}$ and you draw one sample $s \sim D$
\square If $s=a$, would you predict $D=P$ or $D=Q$? What if $s=c$?
\square Following this strategy, what is the total error?

$$
\operatorname{Pr}[\text { predict } P \mid D=Q]+\operatorname{Pr}[\text { predict } Q \mid D=P]
$$

\square Total variation distance

$$
\operatorname{TV}(P, Q)=\frac{1}{2}\|P-Q\|_{1}
$$

Distinguish P and Q with One Sample

	a	b	c	d
P	0.1	0.2	0.3	0.4
Q	0.4	0.3	0.2	0.1

Suppose that $D \in\{P, Q\}$ and you draw one sample $s \sim D$
\square If $s=a$, would you predict $D=P$ or $D=Q$? What if $s=c$?
\square Following this strategy, what is the total error?

$$
\operatorname{Pr}[\text { predict } P \mid D=Q]+\operatorname{Pr}[\text { predict } Q \mid D=P]
$$

\square Total variation distance

$$
\mathrm{TV}(P, Q)=\frac{1}{2}\|P-Q\|_{1}=\frac{1}{2} \sum_{v}|P(v)-Q(v)|
$$

Distinguish P and Q with One Sample

	a	b	c	d
P	0.1	0.2	0.3	0.4
Q	0.4	0.3	0.2	0.1

Suppose that $D \in\{P, Q\}$ and you draw one sample $s \sim D$
\square If $s=a$, would you predict $D=P$ or $D=Q$? What if $s=c$?
\square Following this strategy, what is the total error?

$$
\operatorname{Pr}[\text { predict } P \mid D=Q]+\operatorname{Pr}[\text { predict } Q \mid D=P]=1-\operatorname{TV}(P, Q)
$$

\square Total variation distance

$$
\mathrm{TV}(P, Q)=\frac{1}{2}\|P-Q\|_{1}=\frac{1}{2} \sum_{v}|P(v)-Q(v)|
$$

Distinguish P and Q with Multiple Samples

\square Observation: m samples from $D \Leftrightarrow$ one sample from D^{m}

Distinguish P and Q with Multiple Samples

\square Observation: m samples from $D \Leftrightarrow$ one sample from D^{m}
\square Minimum total error for distinguishing P and Q with m samples is:

$$
1-\operatorname{TV}\left(P^{m}, Q^{m}\right)
$$

Distinguish P and Q with Multiple Samples

\square Observation: m samples from $D \Leftrightarrow$ one sample from D^{m}
\square Minimum total error for distinguishing P and Q with m samples is:

$$
1-\operatorname{TV}\left(P^{m}, Q^{m}\right)
$$

\square Hard to reason about $\operatorname{TV}\left(P^{m}, Q^{m}\right)$ directly... We need a manageable proxy

Distinguish P and Q with Multiple Samples

\square Observation: m samples from $D \Leftrightarrow$ one sample from D^{m}
\square Minimum total error for distinguishing P and Q with m samples is:

$$
1-\operatorname{TV}\left(P^{m}, Q^{m}\right)
$$

\square Hard to reason about $\operatorname{TV}\left(P^{m}, Q^{m}\right)$ directly... We need a manageable proxy
\square Kullback-Leibler (KL) divergence

$$
\mathrm{KL}(P \| Q)=\sum_{v} P(v) \log \frac{P(v)}{Q(v)}
$$

Distinguish P and Q with Multiple Samples

\square Observation: m samples from $D \Leftrightarrow$ one sample from D^{m}
\square Minimum total error for distinguishing P and Q with m samples is:

$$
1-\operatorname{TV}\left(P^{m}, Q^{m}\right)
$$

\square Hard to reason about $\operatorname{TV}\left(P^{m}, Q^{m}\right)$ directly... We need a manageable proxy
\square Kullback-Leibler (KL) divergence

$$
\mathrm{KL}(P \| Q)=\sum_{v} P(v) \log \frac{P(v)}{Q(v)}
$$

- Relation to TV (Pinsker's inequality) $\quad \mathrm{TV}(P, Q) \leq \sqrt{\frac{1}{2} \mathrm{KL}(P \| Q)}$

Distinguish P and Q with Multiple Samples

\square Observation: m samples from $D \Leftrightarrow$ one sample from D^{m}
\square Minimum total error for distinguishing P and Q with m samples is:

$$
1-\operatorname{TV}\left(P^{m}, Q^{m}\right)
$$

\square Hard to reason about $\operatorname{TV}\left(P^{m}, Q^{m}\right)$ directly... We need a manageable proxy
\square Kullback-Leibler (KL) divergence

$$
\mathrm{KL}(P \| Q)=\sum_{v} P(v) \log \frac{P(v)}{Q(v)}
$$

- Relation to TV (Pinsker's inequality) $\quad \mathrm{TV}(P, Q) \leq \sqrt{\frac{1}{2} \mathrm{KL}(P \| Q)}$
- Direct sum

$$
\mathrm{KL}\left(P^{m} \| Q^{m}\right)=m \cdot \mathrm{KL}(P \| Q)
$$

Distinguish P and Q with Samples: a Summary

What we want: One needs $m \gtrsim \frac{1}{\varepsilon^{2}}$ samples to distinguish P and Q w.p. $\frac{2}{3}$

Distinguish P and Q with Samples: a Summary

\square What we want: One needs $m \gtrsim \frac{1}{\varepsilon^{2}}$ samples to distinguish P and Q w.p. $\frac{2}{3}$
\square Contrapositive: If we have less than $m \approx \frac{1}{\varepsilon^{2}}$ samples, then

$$
\operatorname{Pr}[\text { predict } P \mid D=Q]+\operatorname{Pr}[\text { predict } Q \mid D=P]>\frac{2}{3}
$$

Distinguish P and Q with Samples: a Summary

\square What we want: One needs $m \gtrsim \frac{1}{\varepsilon^{2}}$ samples to distinguish P and Q w.p. $\frac{2}{3}$
\square Contrapositive: If we have less than $m \approx \frac{1}{\varepsilon^{2}}$ samples, then

$$
\operatorname{Pr}[\text { predict } P \mid D=Q]+\operatorname{Pr}[\text { predict } Q \mid D=P]>\frac{2}{3}
$$

\square Characterization via TV:

$$
\operatorname{TV}\left(P^{m}, Q^{m}\right) \leq \frac{1}{3}
$$

Distinguish P and Q with Samples: a Summary

\square What we want: One needs $m \gtrsim \frac{1}{\varepsilon^{2}}$ samples to distinguish P and Q w.p. $\frac{2}{3}$
\square Contrapositive: If we have less than $m \approx \frac{1}{\varepsilon^{2}}$ samples, then

$$
\operatorname{Pr}[\text { predict } P \mid D=Q]+\operatorname{Pr}[\text { predict } Q \mid D=P]>\frac{2}{3}
$$

\square Characterization via TV:

$$
\operatorname{TV}\left(P^{m}, Q^{m}\right) \leq \frac{1}{3}
$$

\square Characterization via KL:

$$
\mathrm{KL}\left(P^{m} \| Q^{m}\right) \lesssim 1 \quad \Rightarrow \quad \mathrm{KL}(P \| Q) \lesssim \frac{1}{m} \bar{\sim} \varepsilon^{2}
$$

Lemma
Suppose that $e^{-\varepsilon} \leq \frac{P(v)}{Q(v)} \leq e^{\varepsilon}$ for any v. We have:

$$
\mathrm{KL}(P \| Q) \lesssim \varepsilon^{2}
$$

Sufficient Condition for $\mathrm{KL}(P \| Q) \leq \varepsilon^{2}$

Reminder
$\mathrm{KL}(P \| Q)=\sum_{v} P(v) \log \frac{P(v)}{Q(v)}$
Lemma
Suppose that $e^{-\varepsilon} \leq \frac{P(v)}{Q(v)} \leq e^{\varepsilon}$ for any v. We have:

$$
\mathrm{KL}(P \| Q) \lesssim \varepsilon^{2}
$$

$$
\mathrm{KL}(P \| Q) \leq \mathrm{KL}(P \| Q)+\mathrm{KL}(Q \| P)
$$

Sufficient Condition for $\mathrm{KL}(P \| Q) \leq \varepsilon^{2}$

Reminder
$\mathrm{KL}(P \| Q)=\sum_{v} P(v) \log \frac{P(v)}{Q(v)}$
Lemma
Suppose that $e^{-\varepsilon} \leq \frac{P(v)}{Q(v)} \leq e^{\varepsilon}$ for any v. We have:

$$
\mathrm{KL}(P \| Q) \lesssim \varepsilon^{2}
$$

$$
\begin{aligned}
\mathrm{KL}(P \| Q) & \leq \mathrm{KL}(P \| Q)+\mathrm{KL}(Q \| P) \\
& =\sum_{v}(P(v)-Q(v)) \log \frac{P(v)}{Q(v)}
\end{aligned}
$$

Sufficient Condition for $\mathrm{KL}(P \| Q) \leq \varepsilon^{2}$

Reminder
$\mathrm{KL}(P \| Q)=\sum_{v} P(v) \log \frac{P(v)}{Q(v)}$
Lemma
Suppose that $e^{-\varepsilon} \leq \frac{P(v)}{Q(v)} \leq e^{\varepsilon}$ for any v. We have:

$$
\mathrm{KL}(P \| Q) \lesssim \varepsilon^{2}
$$

$$
\begin{aligned}
\mathrm{KL}(P \| Q) & \leq \mathrm{KL}(P \| Q)+\mathrm{KL}(Q \| P) \\
& =\sum_{v}(P(v)-Q(v)) \log \frac{P(v)}{Q(v)} \\
& \leq \sum_{v}\left(e^{\varepsilon}-1\right) \min \{P(v), Q(v)\} \cdot \varepsilon
\end{aligned}
$$

Sufficient Condition for $\mathrm{KL}(P \| Q) \leq \varepsilon^{2}$

Reminder
$\mathrm{KL}(P \| Q)=\sum_{v} P(v) \log \frac{P(v)}{Q(v)}$
Lemma
Suppose that $e^{-\varepsilon} \leq \frac{P(v)}{Q(v)} \leq e^{\varepsilon}$ for any v. We have:

$$
\mathrm{KL}(P \| Q) \lesssim \varepsilon^{2}
$$

$$
\begin{aligned}
\mathrm{KL}(P \| Q) & \leq \mathrm{KL}(P \| Q)+\mathrm{KL}(Q \| P) \\
& =\sum_{v}(P(v)-Q(v)) \log \frac{P(v)}{Q(v)} \\
& \leq \sum_{v}\left(e^{\varepsilon}-1\right) \min \{P(v), Q(v)\} \cdot \varepsilon \\
& \leq\left(e^{\varepsilon}-1\right) \varepsilon
\end{aligned}
$$

Lower Bound for $[0,1]$-Bounded Distributions

Theorem

Any ε additive approximation algorithm uses at least $m \gtrsim \frac{1}{\varepsilon^{2}}$ samples.
\square Construct two $[0,1]$-bounded value distributions P and Q that are

1. "Similar": For any $v, e^{-\varepsilon} \leq \frac{P(v)}{Q(v)} \leq e^{\varepsilon}$
2. "Different": No price p is an ε additive approximation for both P and Q

Lower Bound for [0, 1]-Bounded Distributions

Theorem

Any ε additive approximation algorithm uses at least $m \gtrsim \frac{1}{\varepsilon^{2}}$ samples.
\square Construct two $[0,1]$-bounded value distributions P and Q that are

1. "Similar": For any $v, e^{-\varepsilon} \leq \frac{P(v)}{Q(v)} \leq e^{\varepsilon}$
2. "Different": No price p is an ε additive approximation for both P and Q

v	$\frac{1}{2}$	1
$P(v)$	$\frac{1}{2}+2 \varepsilon$	$\frac{1}{2}-2 \varepsilon$
$Q(v)$	$\frac{1}{2}-2 \varepsilon$	$\frac{1}{2}+2 \varepsilon$


```
Model
```


Basic Techniques

```
Upper Bound Techniques
Lower Bound Techniques
```

Settling the Single-Item Single-Bidder Case

Distributions	Sample Complexity
$[0,1]$-Bounded	$\frac{1}{\varepsilon^{2}}$
Regular distributions	
MHR distributions	
$[1, H]$-bounded distributions	

Regular Distributions

\square Value distribution D is regular if $\varphi_{D}(v)$ is nondecreasing $\Leftrightarrow \quad$ The revenue curve $R(q)$ is concave

Regular Distributions

\square Value distribution D is regular if $\varphi_{D}(v)$ is nondecreasing $\Leftrightarrow \quad$ The revenue curve $R(q)$ is concave

\square ERM does not converge for some regular distribution

- With constant probability we get two samples with quantiles less than $\frac{1}{m}$

What goes wrong?

1. Estimate the revenue of one price p up to $1-\varepsilon \approx e^{-\varepsilon}$ approximation
2. Prices between p and $e^{\varepsilon} p$ cannot yield much higher revenue \Rightarrow Consider finitely(?) many prices whose "neighborhoods" cover $[0, \infty)$
3. Estimate the revenue of all these representative prices

What goes wrong?

1. Estimate the revenue of one price p up to $1-\varepsilon \approx e^{-\varepsilon}$ approximation

Theorem (Bernstein Inequality, User-Friendly Version)
$X_{1}, X_{2}, \ldots, X_{m}$ are i.i.d. RV over $[0,1]$. Let $\mu=\mathbf{E} X_{i}$. With probability $1-\delta$ we have

$$
\left|\frac{1}{m} \sum_{i=1}^{m} X_{i}-\mu\right| \lesssim \max \left\{\sqrt{\frac{\mu(1-\mu) \log \frac{1}{\delta}}{m}}, \frac{\log \frac{1}{\delta}}{m}\right\}
$$

What goes wrong?

1. Estimate the revenue of one price p up to $1-\varepsilon \approx e^{-\varepsilon}$ approximation

Theorem (Bernstein Inequality, User-Friendly Version)
$X_{1}, X_{2}, \ldots, X_{m}$ are i.i.d. RV over $[0,1]$. Let $\mu=\mathbf{E} X_{i}$. With probability $1-\delta$ we have

$$
\left|\frac{1}{m} \sum_{i=1}^{m} X_{i}-\mu\right| \lesssim \max \left\{\sqrt{\frac{\mu(1-\mu) \log \frac{1}{\delta}}{m}} \log \frac{1}{m}\right\}
$$

What goes wrong?

1. Estimate the revenue of one price p up to $1-\varepsilon \approx e^{-\varepsilon}$ approximation

- To get $\left|\frac{1}{m} \sum_{i=1}^{m} X_{i}-\mu\right| \leq \varepsilon \mu$ we need $m \gtrsim \frac{\log \frac{1}{\delta}}{\mu \varepsilon^{2}}$ samples

Theorem (Bernstein Inequality, User-Friendly Version)
$X_{1}, X_{2}, \ldots, X_{m}$ are i.i.d. RV over $[0,1]$. Let $\mu=\mathbf{E} X_{i}$. With probability $1-\delta$ we have

$$
\left|\frac{1}{m} \sum_{i=1}^{m} X_{i}-\mu\right| \lesssim \max \left\{\sqrt{\frac{\mu(1-\mu) \log \frac{1}{\delta}}{m}} \log \frac{1}{m}\right\}
$$

What goes wrong?

1. Estimate the revenue of one price p up to $1-\varepsilon \approx e^{-\varepsilon}$ approximation

- To get $\left|\frac{1}{m} \sum_{i=1}^{m} X_{i}-\mu\right| \leq \varepsilon \mu$ we need $m \gtrsim \frac{\log \frac{1}{\delta}}{\mu \varepsilon^{2}}$ samples
- Unbounded when for small quantile μ (i.e., high prices)

Theorem (Bernstein Inequality, User-Friendly Version)
$X_{1}, X_{2}, \ldots, X_{m}$ are i.i.d. $R V$ over $[0,1]$. Let $\mu=\mathbf{E} X_{i}$. With probability $1-\delta$ we have

$$
\left|\frac{1}{m} \sum_{i=1}^{m} X_{i}-\mu\right| \lesssim \max \left\{\sqrt{\frac{\mu(1-\mu) \log \frac{1}{\delta}}{m}} \log \frac{1}{m}\right\}
$$

What goes wrong?

2. Prices between p and $e^{\varepsilon} p$ cannot yield much higher revenue \Rightarrow Consider finitely(?) many prices whose "neighborhoods" cover $[0, \infty)$

What goes wrong?

2. Prices between p and $e^{\varepsilon} p$ cannot yield much higher revenue \Rightarrow Consider finitely(?) many prices whose "neighborhoods" cover $[0, \infty)$

What goes wrong?

2. Prices between p and $e^{\varepsilon} p$ cannot yield much higher revenue \Rightarrow Consider finitely(?) many prices whose "neighborhoods" cover $[0, \infty)$

What goes wrong?

2. Prices between p and $e^{\varepsilon} p$ cannot yield much higher revenue \Rightarrow Consider finitely(?) many prices whose "neighborhoods" cover $[0, \infty)$

What goes wrong?

2. Prices between p and $e^{\varepsilon} p$ cannot yield much higher revenue \Rightarrow Consider finitely(?) many prices whose "neighborhoods" cover $[0, \infty)$
infinitely many low prices infinitely many high prices

What goes wrong?

2. Prices between p and $e^{\varepsilon} p$ cannot yield much higher revenue \Rightarrow Consider finitely(?) many prices whose "neighborhoods" cover $[0, \infty)$

- "Extremely low" prices are not relevant anyway
infinitely many low prices infinitely many high prices

What goes wrong?

2. Prices between p and $e^{\varepsilon} p$ cannot yield much higher revenue \Rightarrow Consider finitely(?) many prices whose "neighborhoods" cover $[0, \infty)$

- "Extremely low" prices are not relevant anyway
- "Extremely high" prices will be "truncated" algorithimically
infinitely many low prices infinitely many high prices

Existence of a "Good Enough" Price with "Large" Quantile

Observation: By concavity of revenue curve, there exists a price p such that

1. It is an $1-\varepsilon$ approximation
2. Its quantile is at least ε

Upper Bound for Regular Distributions

q-Guarded ERM. Return price p that maximizes the empirical revenue, among prices whose empirical quantiles are at least q.

Upper Bound for Regular Distributions

q-Guarded ERM. Return price p that maximizes the empirical revenue, among prices whose empirical quantiles are at least q.

Theorem
ε-Guarded ERM using $m \gtrsim \frac{\log \frac{1}{\varepsilon \delta}}{\varepsilon^{3}}$ samples is an $1-\varepsilon$ approximation w.p. $1-\delta$.

Upper Bound for Regular Distributions

q-Guarded ERM. Return price p that maximizes the empirical revenue, among prices whose empirical quantiles are at least q.

Theorem

ε-Guarded ERM using $m \gtrsim \frac{\log \frac{1}{\varepsilon \delta}}{\varepsilon^{3}}$ samples is an $1-\varepsilon$ approximation w.p. $1-\delta$.
\square To get $\left|\frac{1}{m} \sum_{i=1}^{m} X_{i}-\mu\right| \leq \varepsilon \mu$ we need $m \gtrsim \frac{\log \frac{1}{\delta}}{\mu \varepsilon^{2}}$ samples
\square It suffices consider prices with quantiles at least ε

Lower Bound for Regular Distributions

Theorem

Any $1-\varepsilon$ approximation algorithm uses at least $m \gtrsim \frac{1}{\varepsilon^{3}}$ samples.
\square Construct two regular value distributions P and Q that are

1. "Similar": For ε fraciton of $v, e^{-\varepsilon} \leq \frac{P(v)}{Q(v)} \leq e^{\varepsilon}$; for the rest, $P(v)=Q(v)$
2. "Different": No price p is a $1-\varepsilon$ approximation for both P and Q

Lower Bound for Regular Distributions

Theorem

Any $1-\varepsilon$ approximation algorithm uses at least $m \gtrsim \frac{1}{\varepsilon^{3}}$ samples.
\square Construct two regular value distributions P and Q that are

1. "Similar": For ε fraciton of $v, e^{-\varepsilon} \leq \frac{P(v)}{Q(v)} \leq e^{\varepsilon}$; for the rest, $P(v)=Q(v)$
2. "Different": No price p is a $1-\varepsilon$ approximation for both P and Q

[1, H]-Bounded Distributions

Theorem
$\frac{1}{H}$-Guarded ERM using $m \gtrsim \frac{H \log \frac{1}{\varepsilon \delta}}{\varepsilon^{2}}$ samples is an $1-\varepsilon$ approximation w.p. $1-\delta$.

Theorem
Any $1-\varepsilon$ approximation algorithm uses at least $m \gtrsim \frac{H}{\varepsilon^{2}}$ samples.

MHR Distributions

Theorem
ERM using $m \gtrsim \frac{\log \frac{1}{\frac{\delta}{\delta}}}{\varepsilon^{1.5}}$ samples is an $1-\varepsilon$ approximation w.p. $1-\delta$.

Theorem
Any $1-\varepsilon$ approximation algorithm uses at least $m \gtrsim \frac{1}{\varepsilon^{1.5}}$ samples.

Summary

Distributions	Sample Complexity
$[0,1]$-Bounded	$\frac{1}{\varepsilon^{2}}$
Regular distributions	$\frac{1}{\varepsilon^{3}}$
MHR distributions	$\frac{1}{\varepsilon^{1.5}}$
$[1, H]$-bounded distributions	$\frac{H}{\varepsilon^{2}}$

\square Upper Bound:
Concentration inequality + covering of price space + union bound
\square Lower Bound:
Reduction to sample complexity of distinguishing two distributions

Summary

Distributions	Sample Complexity
$[0,1]$-Bounded	$\frac{1}{\varepsilon^{2}}$
Regular distributions	$\frac{1}{\varepsilon^{3}}$
MHR distributions	$\frac{1}{\varepsilon^{1.5}}$
$[1, H]$-bounded distributions	$\frac{H}{\varepsilon^{2}}$

\square Upper Bound:
Concentration inequality + covering of price space + union bound
\square Lower Bound:
Reduction to sample complexity of distinguishing two distributions
Take-Home Question: Can we get all upper bounds using the same algorithm?

References

1. Richard Cole and Tim Roughgarden. "The sample complexity of revenue maximization." In Proceedings of the 46th Annual ACM Symposium on Theory of Computing, ACM, pp. 243-252, 2014.
2. Peerapong Dhangwatnotai, Tim Roughgarden, Qiqi Yan. "Revenue maximization with a single sample." Games and Economic Behavior 91, pp. 318-333, 2015.
3. Zhiyi Huang, Yishay Mansour, and Tim Roughgarden. "Making the most of your samples." SIAM Journal on Computing, 47(3), pp. 651-674, 2018.
