Data-Driven Auction Design II
 Progress via Statistical Learning Theory

Zhiyi Huang

University of Hong Kong

Recap

Data-Driven Single-Item Auction

A Glimpse of Statistical Learning Theory

Sample Complexity of Single-Item Auctions
Upper Bound
Lower Bound

Recap: Single-Item Auctions

\square Sell 1 item to n bidders, to maximize revenue
\square Bidder i 's value v_{i} is drawn independently from D_{i}

Recap: Single-Item Auctions

\square Sell 1 item to n bidders, to maximize revenue
\square Bidder i 's value v_{i} is drawn independently from D_{i}
\square Direct revelation auction

1. Bidders bid $b_{1}, b_{2}, \ldots, b_{n}$
2. Seller picks allocations $x_{1}, x_{2}, \ldots, x_{n}$ and payments $p_{1}, p_{2}, \ldots, p_{n}$
3. Bidder i wins the item w.p. x_{i}, pays p_{i}, gets utility $v_{i} x_{i}-p_{i}$

Recap: Single-Item Auctions

\square Sell 1 item to n bidders, to maximize revenue
\square Bidder i 's value v_{i} is drawn independently from D_{i}
\square Direct revelation auction

1. Bidders bid $b_{1}, b_{2}, \ldots, b_{n}$
2. Seller picks allocations $x_{1}, x_{2}, \ldots, x_{n}$ and payments $p_{1}, p_{2}, \ldots, p_{n}$
3. Bidder i wins the item w.p. x_{i}, pays p_{i}, gets utility $v_{i} x_{i}-p_{i}$
\square Dominant-Strategy Incentive Compatible (DSIC)

$$
\forall i, v_{i}, b_{i}, b_{-i}: \quad v_{i} x_{i}\left(v_{i}, b_{-i}\right)-p_{i}\left(v_{i}, b_{-i}\right) \geq v_{i} x_{i}\left(b_{i}, b_{-i}\right)-p_{i}\left(b_{i}, b_{-i}\right)
$$

Recap: Single-Item Auctions

\square Sell 1 item to n bidders, to maximize revenue
\square Bidder i 's value v_{i} is drawn independently from D_{i}
\square Direct revelation auction

1. Bidders bid $b_{1}, b_{2}, \ldots, b_{n}$
2. Seller picks allocations $x_{1}, x_{2}, \ldots, x_{n}$ and payments $p_{1}, p_{2}, \ldots, p_{n}$
3. Bidder i wins the item w.p. x_{i}, pays p_{i}, gets utility $v_{i} x_{i}-p_{i}$
\square Dominant-Strategy Incentive Compatible (DSIC)

$$
\forall i, v_{i}, b_{i}, b_{-i}: \quad v_{i} x_{i}\left(v_{i}, b_{-i}\right)-p_{i}\left(v_{i}, b_{-i}\right) \geq v_{i} x_{i}\left(b_{i}, b_{-i}\right)-p_{i}\left(b_{i}, b_{-i}\right)
$$

\square Individually Rational (IR)

$$
\forall i, v_{i}, b_{-i}: \quad v_{i} x_{i}\left(v_{i}, b_{-i}\right)-p_{i}\left(v_{i}, b_{-i}\right) \geq 0
$$

Recap: Myerson's Theory

\square DSIC and IR are equivalent to

1. $x_{i}\left(v_{i}, b_{-i}\right)$ is monotone (e.g., step function)
2. $p_{i}\left(v_{i}, b_{-i}\right)$ is the area on the left of $x_{i}\left(v_{i}, b_{-i}\right)$ as a function of v_{i} (e.g., threshold price above which $x_{i}=1$, if x_{i} is a step function)

Recap: Myerson's Theory

\square DSIC and IR are equivalent to

1. $x_{i}\left(v_{i}, b_{-i}\right)$ is monotone (e.g., step function)
2. $p_{i}\left(v_{i}, b_{-i}\right)$ is the area on the left of $x_{i}\left(v_{i}, b_{-i}\right)$ as a function of v_{i} (e.g., threshold price above which $x_{i}=1$, if x_{i} is a step function)
\square Expected revenue is equivalent to expected virtual welfare

$$
\mathbf{E} \sum_{i=1}^{n} \varphi_{i}\left(v_{i}\right) x_{i}
$$

where the virtual value φ_{i} is

$$
\varphi_{i}\left(v_{i}\right)=v_{i}-\frac{1-F_{i}\left(v_{i}\right)}{f_{i}\left(v_{i}\right)}
$$

Recap: Optimal Pricing

\square Sell 1 item to 1 bidder, whose value v is drawn from D
\square Every DSIC and IR auction is equivalent to posting a price p
\square Revenue of price p is $p \cdot q(p)$, where $q(p)=1-F(p)$ is p 's quantile
\square Revenue curve in quantile space $R(q)=v(q) \cdot q$

Recap: Data-Driven Optimal Pricing

\square Sample Complexity/Statistical Learning Model

- Take m i.i.d. samples from D as input
- Output a price p

Recap: Data-Driven Optimal Pricing

\square Sample Complexity/Statistical Learning Model

- Take m i.i.d. samples from D as input
- Output a price p
\square How many samples are needed to pick a near optimal p "up to an ε margin"?
- ε additive approximation
[0,1]-bounded distributions
- $1-\varepsilon$ (multiplicative) approximation

Regular distributions
MHR distributions
(i.e., concave revenue curve)
[$1, H$]-bounded distributions

Recap: Data-Driven Optimal Pricing

\square Sample Complexity/Statistical Learning Model

- Take m i.i.d. samples from D as input
- Output a price p
\square How many samples are needed to pick a near optimal p "up to an ε margin"?
- ε additive approximation
[0,1]-bounded distributions
- $1-\varepsilon$ (multiplicative) approximation

Regular distributions (i.e., concave revenue curve)
MHR distributions (i.e., "strongly concave" revenue curve)
[$1, H$]-bounded distributions
\square The sample complexity is smallest number of samples needed

Recap: Data-Driven Optimal Pricing (Cont'd)

Distributions	Sample Complexity
$[0,1]$-Bounded	$\frac{1}{\varepsilon^{2}}$
Regular distributions	$\frac{1}{\varepsilon^{3}}$
MHR distributions	$\frac{1}{\varepsilon^{1.5}}$
$[1, H]$-bounded distributions	$\frac{H}{\varepsilon^{2}}$

\square Upper Bound:
Concentration inequality + covering of price space + union bound
\square Lower Bound:
Reduction to sample complexity of distinguishing two distributions

Recap: Concentration Inequalities

Theorem (Chernoff-Hoeffding, User-Friendly Version)
$X_{1}, X_{2}, \ldots, X_{m}$ are i.i.d. $R V$ over $[0,1]$. Let $\mu=\mathbf{E} X_{i}$. With probability $1-\delta$ we have

$$
\left|\frac{1}{m} \sum_{i=1}^{m} X_{i}-\mu\right| \lesssim \sqrt{\frac{\log \frac{1}{\delta}}{m}}
$$

Theorem (Bernstein Inequality, User-Friendly Version)

$X_{1}, X_{2}, \ldots, X_{m}$ are i.i.d. $R V$ over $[0,1]$. Let $\mu=\mathbf{E} X_{i}$. With probability $1-\delta$ we have

$$
\left|\frac{1}{m} \sum_{i=1}^{m} X_{i}-\mu\right| \lesssim \max \left\{\sqrt{\frac{\mu(1-\mu) \log \frac{1}{\delta}}{m}}, \frac{\log \frac{1}{\delta}}{m}\right\}
$$

Recap

Data-Driven Single-Item Auction

A Glimpse of Statistical Learning Theory
Sample Complexity of Single-Item Auctions
Upper Bound
Lower Bound

Myerson's Optimal (Single-Item) Auction

$\square \bar{R}(q)$ is concave closure of revenue curve
\square Ironed virtual value $\bar{\varphi}_{i}\left(v_{i}\right)$ is $\bar{R}(q)$'s derivative

Myerson's Optimal (Single-Item) Auction

$\square \bar{R}(q)$ is concave closure of revenue curve

- Max expected revenue given sale prob. q
\square Ironed virtual value $\bar{\varphi}_{i}\left(v_{i}\right)$ is $\bar{R}(q)$'s derivative

Myerson's Optimal (Single-Item) Auction

$\square \bar{R}(q)$ is concave closure of revenue curve

- Max expected revenue given sale prob. q
\square Ironed virtual value $\bar{\varphi}_{i}\left(v_{i}\right)$ is $\bar{R}(q)$'s derivative
- Quantile q's marginal revenue contribution

Myerson's Optimal (Single-Item) Auction

$\square \bar{R}(q)$ is concave closure of revenue curve

- Max expected revenue given sale prob. q
\square Ironed virtual value $\bar{\varphi}_{i}\left(v_{i}\right)$ is $\bar{R}(q)$'s derivative
- Quantile q's marginal revenue contribution
\square Highest non-negative virtual value wins
- Winner pays threshold winning bid i.e., lowest bid above which he/she wins

Myerson's Optimal (Single-Item) Auction

$\square \bar{R}(q)$ is concave closure of revenue curve

- Max expected revenue given sale prob. q
- Ironed virtual value $\bar{\varphi}_{i}\left(v_{i}\right)$ is $\bar{R}(q)$'s derivative
- Quantile q 's marginal revenue contribution
\square Highest non-negative virtual value wins
\square Winner pays threshold winning bid i.e., lowest bid above which he/she wins
\square Expected revenue is at most $\mathbf{E} \sum_{i=1}^{n} \bar{\varphi}_{i}\left(v_{i}\right) x_{i}$
 with equality if values in an ironed interval are treated as the same

Data-Driven Optimal (Single-Item) Auction

\square Sample Complexity/Statistical Learning Model

- Take m i.i.d. samples from $D=D_{1} \times D_{2} \times \cdots \times D_{m}$ as input
- Output a DSIC and IR auction A

Data-Driven Optimal (Single-Item) Auction

\square Sample Complexity/Statistical Learning Model

- Take m i.i.d. samples from $D=D_{1} \times D_{2} \times \cdots \times D_{m}$ as input
- Output a DSIC and IR auction A
\square How many samples are needed to pick a near optimal A "up to an ε margin"?
- ε additive approximation
[0, 1]-bounded distributions (illustrative example)
- $1-\varepsilon$ (multiplicative) approximation

Regular distributions
MHR distributions
[$1, H$]-bounded distributions
(i.e., concave revenue curve)
(i.e., "strongly concave" revenue curve)

Data-Driven Optimal (Single-Item) Auction

\square Sample Complexity/Statistical Learning Model

- Take m i.i.d. samples from $D=D_{1} \times D_{2} \times \cdots \times D_{m}$ as input
- Output a DSIC and IR auction A
\square How many samples are needed to pick a near optimal A "up to an ε margin"?
- ε additive approximation
[0,1$]$-bounded distributions (illustrative example)
- $1-\varepsilon$ (multiplicative) approximation

Regular distributions
(i.e., concave revenue curve)

MHR distributions
(i.e., "strongly concave" revenue curve)
[$1, H]$-bounded distributions
\square The sample complexity is smallest number of samples needed

Recap

Data-Driven Single-Item Auction

A Glimpse of Statistical Learning Theory

```
Sample Complexity of Single-Item Auctions
    Upper Bound
    Lower Bound
```


General Learning Problem

The learning process is a process of choosing an appropriate function from a given set of functions.
—Vladimir Vapnik

General Learning Problem

The learning process is a process of choosing an appropriate function from a given set of functions.
—Vladimir Vapnik
\square Type space \mathcal{T}

- Distribution D over \mathcal{T}

General Learning Problem

The learning process is a process of choosing an appropriate function from a given set of functions.
—Vladimir Vapnik
\square Type space \mathcal{T}

- Distribution D over \mathcal{T}
\square Hypothesis space \mathcal{H}
- Each hypothesis $h \in \mathcal{H}$ is a function from \mathcal{T} to $[0,1]$

General Learning Problem

The learning process is a process of choosing an appropriate function from a given set of functions.
-Vladimir Vapnik
\square Type space \mathcal{T}

- Distribution D over \mathcal{T}
\square Hypothesis space \mathcal{H}
- Each hypothesis $h \in \mathcal{H}$ is a function from \mathcal{T} to $[0,1]$
\square Learn $h \in \mathcal{H}$ from i.i.d. samples from D to minimize/maximize

$$
\mathbf{E}_{t \sim D} h(t)
$$

Example: Linear Binary Classification

\square Type space consists of feature-label pairs

$$
\mathcal{T}=\{(x, y): \underbrace{x \in \mathbb{R}^{n}}_{\text {feature }}, \underbrace{y= \pm 1}_{\text {label }}\}
$$

Example: Linear Binary Classification

\square Type space consists of feature-label pairs

$$
\mathcal{T}=\{(x, y): \underbrace{x \in \mathbb{R}^{n}}_{\text {feature }}, \underbrace{y= \pm 1}_{\text {label }}\}
$$

\square Hypothesis space consists of linear classifiers

- Each $h \in \mathcal{H}$ corresponds to a linear function $\langle a, x\rangle+b, a \in \mathbb{R}^{n}, b \in \mathbb{R}$

$$
h(x, y)= \begin{cases}0 & \text { if }\langle a, x\rangle+b \text { and } y \text { have the same sign } \\ 1 & \text { otherwise }\end{cases}
$$

Example: Linear Binary Classification

\square Type space consists of feature-label pairs

$$
\mathcal{T}=\{(x, y): \underbrace{x \in \mathbb{R}^{n}}_{\text {feature }}, \underbrace{y= \pm 1}_{\text {label }}\}
$$

\square Hypothesis space consists of linear classifiers

- Each $h \in \mathcal{H}$ corresponds to a linear function $\langle a, x\rangle+b, a \in \mathbb{R}^{n}, b \in \mathbb{R}$

$$
h(x, y)= \begin{cases}0 & \text { if }\langle a, x\rangle+b \text { and } y \text { have the same sign } \\ 1 & \text { otherwise }\end{cases}
$$

\square Learn $h \in \mathcal{H}$ from i.i.d. samples from D to minimize $\underbrace{\mathbf{E}_{(x, y) \sim D} h(x, y)}_{\text {classfication error }}$

Example: Data-Driven Optimal Auction

\square Type space consists of value profiles of n bidders

$$
\mathcal{T}=[0,1]^{n}
$$

Example: Data-Driven Optimal Auction

\square Type space consists of value profiles of n bidders

$$
\mathcal{T}=[0,1]^{n}
$$

\square Hypothesis space consists of DSIC and IR auctions

- Each $h \in \mathcal{H}$ corresponds to a DSIC and IR auciton A
- $h(v)$ equals the expected revenue of running A on values v

Example: Data-Driven Optimal Auction

\square Type space consists of value profiles of n bidders

$$
\mathcal{T}=[0,1]^{n}
$$

\square Hypothesis space consists of DSIC and IR auctions

- Each $h \in \mathcal{H}$ corresponds to a DSIC and IR auciton A
- $h(v)$ equals the expected revenue of running A on values v
\square Learn $h \in \mathcal{H}$ from i.i.d. samples from D to maximize

Sample Complexity and "Degree of Freedom": Informal Introduction

Recall the three-step approach

1. Estimate the expectation of a single hypothesis $h \in \mathcal{H}$ up to ε
2. Finitely many hypotheses whose "neighborhoods" cover the hypothesis space \mathcal{H}
3. Estimate the expectations of all these representative hypotheses up to ε

Sample Complexity and "Degree of Freedom": Informal Introduction

Recall the three-step approach

1. Estimate the expectation of a single hypothesis $h \in \mathcal{H}$ up to ε Solution: Chernoff-Hoeffding Bound, Bernstein Inequality Takeaway: $m \gtrsim \frac{\log \frac{1}{\delta}}{\varepsilon^{2}}$ samples give ε additive approximation w.p. $1-\delta$
2. Finitely many hypotheses whose "neighborhoods" cover the hypothesis space \mathcal{H}
3. Estimate the expectations of all these representative hypotheses up to ε

Sample Complexity and "Degree of Freedom": Informal Introduction

Recall the three-step approach

1. Estimate the expectation of a single hypothesis $h \in \mathcal{H}$ up to ε Solution: Chernoff-Hoeffding Bound, Bernstein Inequality Takeaway: $m \gtrsim \frac{\log \frac{1}{\delta}}{\varepsilon^{2}}$ samples give ε additive approximation w.p. $1-\delta$
2. Finitely many hypotheses whose "neighborhoods" cover the hypothesis space \mathcal{H}
3. Estimate the expectations of all these representative hypotheses up to ε Solution: Union Bound
Takeaway: $m \gtrsim \frac{\log \frac{R}{\delta}}{\varepsilon^{2}}$ samples suffice when there are R representative hypotheses

Sample Complexity and "Degree of Freedom": Informal Introduction

Recall the three-step approach

1. Estimate the expectation of a single hypothesis $h \in \mathcal{H}$ up to ε Solution: Chernoff-Hoeffding Bound, Bernstein Inequality Takeaway: $m \gtrsim \frac{\log \frac{1}{\delta}}{\varepsilon^{2}}$ samples give ε additive approximation w.p. $1-\delta$
2. Finitely many hypotheses whose "neighborhoods" cover the hypothesis space \mathcal{H} Conventional wisdom: If the hypothesis space \mathcal{H} has "degree of freedom" d (a.k.a., "dimension"), then $R=2^{O(d)}$ representative hypotheses suffice
3. Estimate the expectations of all these representative hypotheses up to ε Solution: Union Bound
Takeaway: $m \gtrsim \frac{\log \frac{R}{\delta}}{\varepsilon^{2}}$ samples suffice when there are R representative hypotheses

Sample Complexity and "Degree of Freedom": Informal Introduction

Recall the three-step approach

1. Estimate the expectation of a single hypothesis $h \in \mathcal{H}$ up to ε Solution: Chernoff-Hoeffding Bound, Bernstein Inequality Takeaway: $m \gtrsim \frac{\log \frac{1}{\delta}}{\varepsilon^{2}}$ samples give ε additive approximation w.p. $1-\delta$
2. Finitely many hypotheses whose "neighborhoods" cover the hypothesis space \mathcal{H} Conventional wisdom: If the hypothesis space \mathcal{H} has "degree of freedom" d (a.k.a., "dimension"), then $R=2^{O(d)}$ representative hypotheses suffice
3. Estimate the expectations of all these representative hypotheses up to ε Solution: Union Bound
Takeaway: $m \gtrsim \frac{\log \frac{R}{\delta}}{\varepsilon^{2}}$ samples suffice when there are R representative hypotheses
i.e., $m \gtrsim \frac{d \log \frac{1}{8}}{\varepsilon^{2}}$ samples suffice

Binary Classification and Vapnik-Chervonenkis Dimension

\square Type space consists of feature-label pairs

$$
\mathcal{T}=\{(x, y): \underbrace{x \in \mathbb{R}^{n}}_{\text {feature }}, \underbrace{y= \pm 1}_{\text {label }}\}
$$

\square Hypothesis space is a set of classifiers

- Each $h \in \mathcal{H}$ corresponds to a classifier $c: \mathbb{R}^{n} \rightarrow\{-1,+1\}$

$$
h(x, y)= \begin{cases}0 & \text { if } c(x)=y \\ 1 & \text { otherwise }\end{cases}
$$

Binary Classification and Vapnik-Chervonenkis Dimension

\square Type space consists of feature-label pairs

$$
\mathcal{T}=\{(x, y): \underbrace{x \in \mathbb{R}^{n}}_{\text {feature }}, \underbrace{y= \pm 1}_{\text {label }}\}
$$

\square Hypothesis space is a set of classifiers

- Each $h \in \mathcal{H}$ corresponds to a classifier $c: \mathbb{R}^{n} \rightarrow\{-1,+1\}$

$$
h(x, y)= \begin{cases}0 & \text { if } c(x)=y \\ 1 & \text { otherwise }\end{cases}
$$

$\square \mathrm{VC}$ dimension of \mathcal{H} is the largest number of features vectors $x_{1}, x_{2}, \ldots, x_{d}$ such that for any labeling $y_{1}, y_{2}, \ldots, y_{d}$, there is $h \in H$ such that $h\left(x_{i}, y_{i}\right)=0$

Binary Classification and Vapnik-Chervonenkis Dimension

\square Type space consists of feature-label pairs

$$
\mathcal{T}=\{(x, y): \underbrace{x \in \mathbb{R}^{n}}_{\text {feature }}, \underbrace{y= \pm 1}_{\text {label }}\}
$$

\square Hypothesis space is a set of classifiers

- Each $h \in \mathcal{H}$ corresponds to a classifier $c: \mathbb{R}^{n} \rightarrow\{-1,+1\}$

$$
h(x, y)= \begin{cases}0 & \text { if } c(x)=y \\ 1 & \text { otherwise }\end{cases}
$$

$\square \mathrm{VC}$ dimension of \mathcal{H} is the largest number of features vectors $x_{1}, x_{2}, \ldots, x_{d}$ such that for any labeling $y_{1}, y_{2}, \ldots, y_{d}$, there is $h \in H$ such that $h\left(x_{i}, y_{i}\right)=0$
$\square m \approx \frac{d+\log \frac{1}{\delta}}{\varepsilon^{2}}$ samples are sufficient and necessary

"Degree of Freedom" for General Learning Problem

\square Type space \mathcal{T}

- Distribution D over \mathcal{T}
\square Hypothesis space \mathcal{H}
- Each hypothesis $h \in \mathcal{H}$ is a function from \mathcal{T} to $[0,1]$

"Degree of Freedom" for General Learning Problem

\square Type space \mathcal{T}

- Distribution D over \mathcal{T}
\square Hypothesis space \mathcal{H}
- Each hypothesis $h \in \mathcal{H}$ is a function from \mathcal{T} to $[0,1]$
\square Pseudo dimension of \mathcal{H} is the largest number d for which we have
- Types $t_{1}, t_{2}, \ldots, t_{d} \in \mathcal{T}$ and
- Witnesses $r_{1}, r_{2}, \ldots, r_{d} \in(0,1)$ such that
- For any signs $y_{1}, y_{2}, \ldots, y_{d} \in\{1,-1\}$ there is $h \in \mathcal{H}$ satisfying

$$
\operatorname{sign}\left(h\left(t_{i}\right)-r_{i}\right)=y_{i}
$$

"Degree of Freedom" for General Learning Problem

\square Type space \mathcal{T}

- Distribution D over \mathcal{T}
\square Hypothesis space \mathcal{H}
- Each hypothesis $h \in \mathcal{H}$ is a function from \mathcal{T} to $[0,1]$
\square Pseudo dimension of \mathcal{H} is the largest number d for which we have
- Types $t_{1}, t_{2}, \ldots, t_{d} \in \mathcal{T}$ and
- Witnesses $r_{1}, r_{2}, \ldots, r_{d} \in(0,1)$ such that
- For any signs $y_{1}, y_{2}, \ldots, y_{d} \in\{1,-1\}$ there is $h \in \mathcal{H}$ satisfying

$$
\operatorname{sign}\left(h\left(t_{i}\right)-r_{i}\right)=y_{i}
$$

$\square m \gtrsim \frac{d \log \frac{1}{\varepsilon}+\log \frac{1}{\delta}}{\varepsilon^{2}}$ samples are sufficient

"Degree of Freedom" for General Learning Problem

\square Type space \mathcal{T}

- Distribution D over \mathcal{T}
\square Hypothesis space \mathcal{H}
- Each hypothesis $h \in \mathcal{H}$ is a function from \mathcal{T} to $[0,1]$
\square Pseudo dimension of \mathcal{H} is the largest number d for which we have
- Types $t_{1}, t_{2}, \ldots, t_{d} \in \mathcal{T}$ and
- Witnesses $r_{1}, r_{2}, \ldots, r_{d} \in(0,1)$ such that
- For any signs $y_{1}, y_{2}, \ldots, y_{d} \in\{1,-1\}$ there is $h \in \mathcal{H}$ satisfying

$$
\operatorname{sign}\left(h\left(t_{i}\right)-r_{i}\right)=y_{i}
$$

$\square m \gtrsim \frac{d \log \frac{1}{\varepsilon}+\log \frac{1}{\delta}}{\varepsilon^{2}}$ samples are sufficient
\square Pseudo dimension equals VC dimension for binary classification

"Degree of Freedom" for General Learning Problem

\square Type space \mathcal{T}

- Distribution D over \mathcal{T}
\square Hypothesis space \mathcal{H}
- Each hypothesis $h \in \mathcal{H}$ is a function from \mathcal{T} to $[0,1]$
$\square(\varepsilon-)$ Fat shattering dimension of \mathcal{H} is the largest number d for which we have
- Types $t_{1}, t_{2}, \ldots, t_{d} \in \mathcal{T}$ and
- Witnesses $r_{1}, r_{2}, \ldots, r_{d} \in(0,1)$ such that
- For any signs $y_{1}, y_{2}, \ldots, y_{d} \in\{1,-1\}$ there is $h \in \mathcal{H}$ satisfying

$$
y_{i}\left(h\left(t_{i}\right)-r_{i}\right) \geq \varepsilon
$$

"Degree of Freedom" for General Learning Problem

\square Type space \mathcal{T}

- Distribution D over \mathcal{T}
\square Hypothesis space \mathcal{H}
- Each hypothesis $h \in \mathcal{H}$ is a function from \mathcal{T} to $[0,1]$
$\square(\varepsilon-)$ Fat shattering dimension of \mathcal{H} is the largest number d for which we have
- Types $t_{1}, t_{2}, \ldots, t_{d} \in \mathcal{T}$ and
- Witnesses $r_{1}, r_{2}, \ldots, r_{d} \in(0,1)$ such that
- For any signs $y_{1}, y_{2}, \ldots, y_{d} \in\{1,-1\}$ there is $h \in \mathcal{H}$ satisfying

$$
y_{i}\left(h\left(t_{i}\right)-r_{i}\right) \geq \varepsilon
$$

$\square m \gtrsim \frac{d \log \frac{1}{\varepsilon}+\log \frac{1}{\delta}}{\varepsilon^{2}}$ samples are sufficient

"Degree of Freedom" for General Learning Problem

\square Type space \mathcal{T}

- Distribution D over \mathcal{T}
\square Hypothesis space \mathcal{H}
- Each hypothesis $h \in \mathcal{H}$ is a function from \mathcal{T} to $[0,1]$
$\square(\varepsilon-)$ Fat shattering dimension of \mathcal{H} is the largest number d for which we have
- Types $t_{1}, t_{2}, \ldots, t_{d} \in \mathcal{T}$ and
- Witnesses $r_{1}, r_{2}, \ldots, r_{d} \in(0,1)$ such that
- For any signs $y_{1}, y_{2}, \ldots, y_{d} \in\{1,-1\}$ there is $h \in \mathcal{H}$ satisfying

$$
y_{i}\left(h\left(t_{i}\right)-r_{i}\right) \geq \varepsilon
$$

$\square m \gtrsim \frac{d \log \frac{1}{\varepsilon}+\log \frac{1}{\delta}}{\varepsilon^{2}}$ samples are sufficient
\square Fat shattering dimension equals VC dimension for binary classification

"Degree of Freedom" for General Learning Problem

\square Type space \mathcal{T}

- Distribution D over \mathcal{T}
\square Hypothesis space \mathcal{H}
- Each hypothesis $h \in \mathcal{H}$ is a function from \mathcal{T} to $[0,1]$
\square Rademacher complexity of \mathcal{H} (with m samples) is

$$
R_{m}(\mathcal{H})=\mathbf{E}_{\text {random types }}^{t_{1}, \ldots, t_{m} \sim D}, \underbrace{y_{1}, y_{2}, \ldots, y_{m}{ }^{\text {unif }} \sim\{1,-1\}}_{\text {random noise }} \sup _{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} y_{i} h\left(t_{i}\right)
$$

"Degree of Freedom" for General Learning Problem

\square Type space \mathcal{T}

- Distribution D over \mathcal{T}
\square Hypothesis space \mathcal{H}
- Each hypothesis $h \in \mathcal{H}$ is a function from \mathcal{T} to $[0,1]$
\square Rademacher complexity of \mathcal{H} (with m samples) is

$$
R_{m}(\mathcal{H})=\mathbf{E}_{\text {random types }}^{t_{1}, \ldots, t_{m} \sim D}, \underbrace{y_{1}, y_{2}, \ldots, y_{m}{ }^{\text {unif }} \sim\{1,-1\}}_{\text {random noise }} \sup _{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} y_{i} h\left(t_{i}\right)
$$

\square Intuitively, it captures how well hypothesis class \mathcal{H} can fit random noise

"Degree of Freedom" for General Learning Problem

\square Type space \mathcal{T}

- Distribution D over \mathcal{T}
\square Hypothesis space \mathcal{H}
- Each hypothesis $h \in \mathcal{H}$ is a function from \mathcal{T} to $[0,1]$
\square Rademacher complexity of \mathcal{H} (with m samples) is

$$
R_{m}(\mathcal{H})=\mathbf{E}_{\text {random types }}^{t_{1}, \ldots, t_{m} \sim D}, \underbrace{y_{1}, y_{2}, \ldots, y_{m}{ }^{\text {unif }} \sim\{1,-1\}}_{\text {random noise }} \sup _{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} y_{i} h\left(t_{i}\right)
$$

\square Intuitively, it captures how well hypothesis class \mathcal{H} can fit random noise
\square It suffices to have $m \gtrsim \frac{\log \frac{1}{\delta}}{\varepsilon^{2}}$ and $R_{m}(\mathcal{H}) \lesssim \varepsilon$

```
Recap
Data-Driven Single-Item Auction
A Glimpse of Statistical Learning Theory
Sample Complexity of Single-Item Auctions
Upper Bound
Lower Bound
```


Explicit Covering for Single-Item Auction: $[0,1]$-Bounded Case

Recall Myerson's optimal auction
\square Highest non-negative virtual value wins
\square Winner pays threshold winning bid i.e., lowest bid above which he/she wins

Narrowing down the representitive auctions in three steps

Explicit Covering for Single-Item Auction: [0, 1]-Bounded Case

Recall Myerson's optimal auction
\square Highest non-negative virtual value wins
\square Winner pays threshold winning bid i.e., lowest bid above which he/she wins

Narrowing down the representitive auctions in three steps

1. Focus on auctions defined by n non-decreasing "ironed virtual value functions"

$$
f_{i}:[0,1] \rightarrow(-\infty, 1]
$$

Explicit Covering for Single-Item Auction: $[0,1]$-Bounded Case

Recall Myerson's optimal auction
\square Highest non-negative virtual value wins
\square Winner pays threshold winning bid i.e., lowest bid above which he/she wins

Narrowing down the representitive auctions in three steps

1. Focus on auctions defined by n non-decreasing "ironed virtual value functions"
2. Discretize the value space

$$
f_{i}:\{0, \varepsilon, 2 \varepsilon, \ldots, 1\} \rightarrow(-\infty, 1]
$$

Explicit Covering for Single-Item Auction: $[0,1]$-Bounded Case

Recall Myerson's optimal auction
\square Highest non-negative virtual value wins
\square Winner pays threshold winning bid i.e., lowest bid above which he/she wins

Narrowing down the representitive auctions in three steps

1. Focus on auctions defined by n non-decreasing "ironed virtual value functions"
2. Discretize the value space
3. Discretize the virtual value space

$$
f_{i}:\{0, \varepsilon, 2 \varepsilon, \ldots, 1\} \rightarrow\{-\infty, 0, \varepsilon, 2 \varepsilon, \ldots, 1\}
$$

Discretization of Value Space

Lemma

There is an auction A on value space $\{0, \varepsilon, 2 \varepsilon, \ldots, 1\}$ such that rounding each v_{i} to the closest multiple of ε from below, denoted as $\left\lfloor v_{i}\right\rfloor_{\varepsilon}$, and running A is optimal up to ε.

Discretization of Value Space

Lemma

There is an auction A on value space $\{0, \varepsilon, 2 \varepsilon, \ldots, 1\}$ such that rounding each v_{i} to the closest multiple of ε from below, denoted as $\left\lfloor v_{i}\right\rfloor_{\varepsilon}$, and running A is optimal up to ε.

$$
\text { quantiles } q_{1}, q_{2}, \ldots, q_{n}
$$

Discretization of Value Space

Lemma

There is an auction A on value space $\{0, \varepsilon, 2 \varepsilon, \ldots, 1\}$ such that rounding each v_{i} to the closest multiple of ε from below, denoted as $\left\lfloor v_{i}\right\rfloor_{\varepsilon}$, and running A is optimal up to ε.

$$
\text { quantiles } q_{1}, q_{2}, \ldots, q_{n}
$$

Discretization of Value Space

Lemma

There is an auction A on value space $\{0, \varepsilon, 2 \varepsilon, \ldots, 1\}$ such that rounding each v_{i} to the closest multiple of ε from below, denoted as $\left\lfloor v_{i}\right\rfloor_{\varepsilon}$, and running A is optimal up to ε.

$$
\text { quantiles } q_{1}, q_{2}, \ldots, q_{n}
$$

1. Values $v_{1}, v_{2}, \ldots, v_{n}$
2. Allocate to bidder i with highest non-negative $\bar{\varphi}_{\boldsymbol{i}}\left(\boldsymbol{v}_{\boldsymbol{i}}\right)$
3. Winner pays threshold bid
4. Values $\left\lfloor v_{1}\right\rfloor_{\varepsilon},\left\lfloor v_{2}\right\rfloor_{\varepsilon}, \ldots,\left\lfloor v_{n}\right\rfloor_{\varepsilon}$

Discretization of Value Space

Lemma

There is an auction A on value space $\{0, \varepsilon, 2 \varepsilon, \ldots, 1\}$ such that rounding each v_{i} to the closest multiple of ε from below, denoted as $\left\lfloor v_{i}\right\rfloor_{\varepsilon}$, and running A is optimal up to ε.

$$
\text { quantiles } q_{1}, q_{2}, \ldots, q_{n}
$$

1. Values $v_{1}, v_{2}, \ldots, v_{n}$
2. Allocate to bidder i with highest non-negative $\overline{\boldsymbol{\varphi}}_{\boldsymbol{i}}\left(\boldsymbol{v}_{\boldsymbol{i}}\right)$
3. Winner pays threshold bid
4. Values $\left\lfloor v_{1}\right\rfloor_{\varepsilon},\left\lfloor v_{2}\right\rfloor_{\varepsilon}, \ldots,\left\lfloor v_{n}\right\rfloor_{\varepsilon}$
5. Allocate to bidder i with highest non-negative $\overline{\boldsymbol{\varphi}}_{\boldsymbol{i}}\left(\boldsymbol{v}_{\boldsymbol{i}}\right)$

Discretization of Value Space

Lemma

There is an auction A on value space $\{0, \varepsilon, 2 \varepsilon, \ldots, 1\}$ such that rounding each v_{i} to the closest multiple of ε from below, denoted as $\left\lfloor v_{i}\right\rfloor_{\varepsilon}$, and running A is optimal up to ε.

$$
\text { quantiles } q_{1}, q_{2}, \ldots, q_{n}
$$

1. Values $v_{1}, v_{2}, \ldots, v_{n}$
2. Allocate to bidder i with highest non-negative $\overline{\boldsymbol{\varphi}}_{\boldsymbol{i}}\left(\boldsymbol{v}_{\boldsymbol{i}}\right)$
3. Winner pays threshold bid
4. Values $\left\lfloor v_{1}\right\rfloor_{\varepsilon},\left\lfloor v_{2}\right\rfloor_{\varepsilon}, \ldots,\left\lfloor v_{n}\right\rfloor_{\varepsilon}$
5. Allocate to bidder i with highest non-negative $\overline{\boldsymbol{\varphi}}_{\boldsymbol{i}}\left(\boldsymbol{v}_{\boldsymbol{i}}\right)$
6. Winner pays threshold bid, at worst smaller by ε

Discretization of Virtual Value Space

Lemma

1. Negative $f_{i}\left(v_{i}\right)$ may be treated as $-\infty$ without loss of generality.
2. Allocating to the bidder i with the largest $\left\lfloor\bar{\varphi}_{i}\left(v_{i}\right)\right\rfloor_{\varepsilon}$ breaking ties, say, lexicographically, (and letting it pay threshold bid) is optimal up to ε.

Discretization of Virtual Value Space

Lemma

1. Negative $f_{i}\left(v_{i}\right)$ may be treated as $-\infty$ without loss of generality.
2. Allocating to the bidder i with the largest $\left\lfloor\bar{\varphi}_{i}\left(v_{i}\right)\right\rfloor_{\varepsilon}$ breaking ties, say, lexicographically, (and letting it pay threshold bid) is optimal up to ε.

Recall: Expected revenue is

$$
\mathbf{E} \sum_{i=1}^{n} \bar{\varphi}_{i}\left(v_{i}\right) x_{i}
$$

if values in an ironed interval are treated as the same

Discretization of Virtual Value Space

Lemma

1. Negative $f_{i}\left(v_{i}\right)$ may be treated as $-\infty$ without loss of generality.
2. Allocating to the bidder i with the largest $\left\lfloor\bar{\varphi}_{i}\left(v_{i}\right)\right\rfloor_{\varepsilon}$ breaking ties, say, lexicographically, (and letting it pay threshold bid) is optimal up to ε.

Recall: Expected revenue is

$$
\mathbf{E} \sum_{i=1}^{n} \bar{\varphi}_{i}\left(v_{i}\right) x_{i}
$$

if values in an ironed interval are treated as the same
\square Allocating to largest $\left\lfloor\bar{\varphi}_{i}\left(v_{i}\right)\right\rfloor_{\varepsilon}$ still treats values in an ironed interval as the same

Discretization of Virtual Value Space

Lemma

1. Negative $f_{i}\left(v_{i}\right)$ may be treated as $-\infty$ without loss of generality.
2. Allocating to the bidder i with the largest $\left\lfloor\bar{\varphi}_{i}\left(v_{i}\right)\right\rfloor_{\varepsilon}$ breaking ties, say, lexicographically, (and letting it pay threshold bid) is optimal up to ε.

Recall: Expected revenue is

$$
\mathbf{E} \sum_{i=1}^{n} \bar{\varphi}_{i}\left(v_{i}\right) x_{i}
$$

if values in an ironed interval are treated as the same
\square Allocating to largest $\left\lfloor\bar{\varphi}_{i}\left(v_{i}\right)\right\rfloor_{\varepsilon}$ still treats values in an ironed interval as the same
\square Lose at most ε in $\mathbf{E} \sum_{i=1}^{n} \bar{\varphi}_{i}\left(v_{i}\right) x_{i}$

Information Theoretic Upper Bound

Theorem
Using $m \gtrsim \frac{n \log \frac{1}{\varepsilon}}{\varepsilon^{3}}+\frac{\log \frac{1}{8}}{\varepsilon^{2}}=\tilde{O}\left(\frac{n}{\varepsilon^{3}}\right)$ samples, we can find an auction that is an ε additive approximation with probability $1-\delta$.

Information Theoretic Upper Bound

Theorem

Using $m \gtrsim \frac{n \log \frac{1}{\varepsilon}}{\varepsilon^{3}}+\frac{\log \frac{1}{8}}{\varepsilon^{2}}=\tilde{O}\left(\frac{n}{\varepsilon^{3}}\right)$ samples, we can find an auction that is an ε additive approximation with probability $1-\delta$.

1. Estimate the expectation of a single hypothesis $h \in \mathcal{H}$ up to ε $m \gtrsim \frac{\log \frac{1}{\delta}}{\varepsilon^{2}}$ samples give ε additive approximation w.p. $1-\delta$
2. Finitely many hypotheses whose "neighborhoods" cover the hypothesis space \mathcal{H}
3. Estimate the expectations of all these representative hypotheses up to ε $m \gtrsim \frac{\log \frac{R}{\delta}}{\varepsilon^{2}}$ samples suffice when there are R representative hypotheses

Information Theoretic Upper Bound

Theorem

Using $m \gtrsim \frac{n \log \frac{1}{\varepsilon}}{\varepsilon^{3}}+\frac{\log \frac{1}{8}}{\varepsilon^{2}}=\tilde{O}\left(\frac{n}{\varepsilon^{3}}\right)$ samples, we can find an auction that is an ε additive approximation with probability $1-\delta$.

1. Estimate the expectation of a single hypothesis $h \in \mathcal{H}$ up to ε $m \gtrsim \frac{\log \frac{1}{\delta}}{\varepsilon^{2}}$ samples give ε additive approximation w.p. $1-\delta$
2. Finitely many hypotheses whose "neighborhoods" cover the hypothesis space \mathcal{H} Focus on $R \lesssim\left(\frac{1}{\varepsilon}+2\right)^{n\left(\frac{1}{\varepsilon}+1\right)}$ auctions defined by n non-decreasing functions

$$
f_{i}:\{0, \varepsilon, 2 \varepsilon, \ldots, 1\} \rightarrow\{-\infty, 0, \varepsilon, 2 \varepsilon, \ldots, 1\}
$$

3. Estimate the expectations of all these representative hypotheses up to ε $m \gtrsim \frac{\log \frac{R}{\delta}}{\varepsilon^{2}}$ samples suffice when there are R representative hypotheses

Information Theoretic Upper Bound

Theorem

Using $m \gtrsim \frac{n \log \frac{1}{\varepsilon}}{\varepsilon^{3}}+\frac{\log \frac{1}{8}}{\varepsilon^{2}}=\tilde{O}\left(\frac{n}{\varepsilon^{3}}\right)$ samples, we can find an auction that is an ε additive approximation with probability $1-\delta$.

1. Estimate the expectation of a single hypothesis $h \in \mathcal{H}$ up to ε
$m \gtrsim \frac{\log \frac{1}{\delta}}{\varepsilon^{2}}$ samples give ε additive approximation w.p. $1-\delta$

Why information theoretic?

\square We estimate revenue by averaging over samples, i.e., empirical distribution
\square Empirical distribution is not independent
\square Optimal auction over dependent value distribution is hard

Upper Bound via Polynomial-Time Algorithm

Empirical Myerson's Auction (with Value Discretization)

\square Given i.i.d. samples $v^{i}=\left(v_{1}^{i}, v_{2}^{i}, \ldots, v_{n}^{i}\right), 1 \leq i \leq m$
\square Let E_{j} be the uniform distribution over $\left\lfloor v_{j}^{1}\right\rfloor_{\varepsilon},\left\lfloor v_{j}^{2}\right\rfloor_{\varepsilon}, \ldots,\left\lfloor v_{j}^{m}\right\rfloor_{\varepsilon}$
\square Return Myerson's optimal auction w.r.t. $E=E_{1} \times E_{2} \times \cdots \times E_{n}$

Upper Bound via Polynomial-Time Algorithm

Empirical Myerson's Auction (with Value Discretization)

\square Given i.i.d. samples $v^{i}=\left(v_{1}^{i}, v_{2}^{i}, \ldots, v_{n}^{i}\right), 1 \leq i \leq m$
\square Let E_{j} be the uniform distribution over $\left\lfloor v_{j}^{1}\right\rfloor_{\varepsilon},\left\lfloor v_{j}^{2}\right\rfloor_{\varepsilon}, \ldots,\left\lfloor v_{j}^{m}\right\rfloor_{\varepsilon}$
\square Return Myerson's optimal auction w.r.t. $E=E_{1} \times E_{2} \times \cdots \times E_{n}$

Theorem

Using $m \gtrsim \frac{n \log \frac{1}{\varepsilon}}{\varepsilon^{3}}+\frac{\log \frac{1}{\delta}}{\varepsilon^{2}}=\tilde{O}\left(\frac{n}{\varepsilon^{3}}\right)$ samples, Empirical Myerson's Auction is an ε additive approximation with probability $1-\delta$.

Upper Bound via Polynomial-Time Algorithm

Empirical Myerson's Auction (with Value Discretization)

\square Given i.i.d. samples $v^{i}=\left(v_{1}^{i}, v_{2}^{i}, \ldots, v_{n}^{i}\right), 1 \leq i \leq m$
\square Let E_{j} be the uniform distribution over $\left\lfloor v_{j}^{1}\right\rfloor_{\varepsilon},\left\lfloor v_{j}^{2}\right\rfloor_{\varepsilon}, \ldots,\left\lfloor v_{j}^{m}\right\rfloor_{\varepsilon}$
\square Return Myerson's optimal auction w.r.t. $E=E_{1} \times E_{2} \times \cdots \times E_{n}$

Theorem

Using $m \gtrsim \frac{n \log \frac{1}{\varepsilon}}{\varepsilon^{3}}+\frac{\log \frac{1}{8}}{\varepsilon^{2}}=\tilde{O}\left(\frac{n}{\varepsilon^{3}}\right)$ samples, Empirical Myerson's Auction is an ε additive approximation with probability $1-\delta$.
Lemma (Bernstein Inequality for Product Distribution)
For any function $f:[0,1]^{n} \rightarrow[0,1]$. Let $\mu=\mathbf{E}_{v \sim E} f(v)$. With probability $1-\delta$

$$
\left|\mathbf{E}_{v \sim E} f(v)-\mu\right| \lesssim \max \left\{\sqrt{\frac{\mu(1-\mu) \log \frac{1}{\delta}}{m}}\right.
$$

Recap
Data-Driven Single-Item Auction
A Glimpse of Statistical Learning Theory
Sample Complexity of Single-Item Auctions
Upper Bound
Lower Bound

Lower Bound

Theorem
Any ε additive approximation algorithm needs at least $m \gtrsim \frac{n}{\varepsilon^{2}}$ samples.

Lower Bound

Theorem

Any ε additive approximation algorithm needs at least $m \gtrsim \frac{n}{\varepsilon^{2}}$ samples.
\square Linear dependence in number of bidders n

- Upshot: The multi-bidder problem is strictly harder

Lower Bound

Theorem

Any ε additive approximation algorithm needs at least $m \gtrsim \frac{n}{\varepsilon^{2}}$ samples.
\square Linear dependence in number of bidders n

- Upshot: The multi-bidder problem is strictly harder
- Note that we already let each sample be a vector of n values

Lower Bound

Theorem

Any ε additive approximation algorithm needs at least $m \gtrsim \frac{n}{\varepsilon^{2}}$ samples.
\square Linear dependence in number of bidders n

- Upshot: The multi-bidder problem is strictly harder
- Note that we already let each sample be a vector of n values
- We need more information about each bidder's value distribtuion

Lower Bound

Theorem

Any ε additive approximation algorithm needs at least $m \gtrsim \frac{n}{\varepsilon^{2}}$ samples.
\square Linear dependence in number of bidders n

- Upshot: The multi-bidder problem is strictly harder
- Note that we already let each sample be a vector of n values
- We need more information about each bidder's value distribtuion
\square Dependence on ε does not match the upper bound, i.e., quadratic vs. cubic
- Next lecture will resolve this gap

Le Cam's Method is Insufficient

\square Recap: Consider two value distributions P and Q that are

1. Sufficiently "similar"

One needs $m \gtrsim \frac{n}{\varepsilon^{2}}$ samples to distinguish P and Q, say, w.p. $\frac{2}{3}$
2. Sufficiently "different"

No auction A is an ε additive approximation for both P and Q

Le Cam's Method is Insufficient

\square Recap: Consider two value distributions P and Q that are

1. Sufficiently "similar"

One needs $m \gtrsim \frac{n}{\varepsilon^{2}}$ samples to distinguish P and Q, say, w.p. $\frac{2}{3}$
2. Sufficiently "different"

No auction A is an ε additive approximation for both P and Q
\square 1st Attempt

- Make P, Q similar s.t. distinguishing them takes $m \gtrsim \frac{n}{\varepsilon^{2}}$ samples
- Any auction's revenue differ by $\lesssim \frac{\varepsilon}{\sqrt{n}}$ on P and Q

Le Cam's Method is Insufficient

\square Recap: Consider two value distributions P and Q that are

1. Sufficiently "similar"

One needs $m \gtrsim \frac{n}{\varepsilon^{2}}$ samples to distinguish P and Q, say, w.p. $\frac{2}{3}$
2. Sufficiently "different"

No auction A is an ε additive approximation for both P and Q
\square 1st Attempt

- Make P, Q similar s.t. distinguishing them takes $m \gtrsim \frac{n}{\varepsilon^{2}}$ samples
- Any auction's revenue differ by $\lesssim \frac{\varepsilon}{\sqrt{n}}$ on P and Q
\square 2nd Attempt
- Make marginals P_{i}, Q_{i} similar s.t. distinguishing them takes $m \gtrsim \frac{n}{\varepsilon^{2}}$ samples
- It takes much fewer samples to distinguish product distributions P and Q

Assouad's Method

\square Two marginals P, Q for each bidder, distinguishing which needs $m \gtrsim \frac{n}{\varepsilon^{2}}$ samples

Assouad's Method

\square Two marginals P, Q for each bidder, distinguishing which needs $m \gtrsim \frac{n}{\varepsilon^{2}}$ samples
\square Consider 2^{n} value distributions $D=D_{1} \times D_{2} \times \cdots \times D_{n}$, where $D_{i} \in\{P, Q\}$

Assouad's Method

\square Two marginals P, Q for each bidder, distinguishing which needs $m \gtrsim \frac{n}{\varepsilon^{2}}$ samples
\square Consider 2^{n} value distributions $D=D_{1} \times D_{2} \times \cdots \times D_{n}$, where $D_{i} \in\{P, Q\}$
\square Argument sketch

- For neighboring D, D^{\prime} differing in bidder i's marginal, any algorithm "makes some mistake" in i's allocation, resulting in $\gtrsim \frac{\varepsilon}{n}$ total revenue loss to D, D^{\prime}

Assouad's Method

\square Two marginals P, Q for each bidder, distinguishing which needs $m \gtrsim \frac{n}{\varepsilon^{2}}$ samples
\square Consider 2^{n} value distributions $D=D_{1} \times D_{2} \times \cdots \times D_{n}$, where $D_{i} \in\{P, Q\}$
\square Argument sketch

- For neighboring D, D^{\prime} differing in bidder i's marginal, any algorithm "makes some mistake" in i 's allocation, resulting in $\gtrsim \frac{\varepsilon}{n}$ total revenue loss to D, D^{\prime}
- $2^{n-1} n$ pairs of neighboring distributions

Assouad's Method

\square Two marginals P, Q for each bidder, distinguishing which needs $m \gtrsim \frac{n}{\varepsilon^{2}}$ samples
\square Consider 2^{n} value distributions $D=D_{1} \times D_{2} \times \cdots \times D_{n}$, where $D_{i} \in\{P, Q\}$
\square Argument sketch

- For neighboring D, D^{\prime} differing in bidder i's marginal, any algorithm "makes some mistake" in i 's allocation, resulting in $\gtrsim \frac{\varepsilon}{n}$ total revenue loss to D, D^{\prime}
- $2^{n-1} n$ pairs of neighboring distributions
- Some distribution D has revenue loss at least

Assouad's Method (cont'd)

- P and Q have support $\left\{0, \frac{1}{2}, 1\right\}$

Assouad's Method (cont'd)

$\square P$ and Q have support $\left\{0, \frac{1}{2}, 1\right\}$

v	1	$\frac{1}{2}$	0
$\mathrm{P}(\mathrm{v})$	$\frac{1+\varepsilon}{n}$	$\frac{1-\varepsilon}{n}$	$1-\frac{2}{n}$
$\mathrm{Q}(\mathrm{v})$	$\frac{1-\varepsilon}{n}$	$\frac{1+\varepsilon}{n}$	$1-\frac{2}{n}$

Assouad's Method (cont'd)

$\square P$ and Q have support $\left\{0, \frac{1}{2}, 1\right\}$
\square Distinguishing them takes $m \gtrsim \frac{n}{\varepsilon^{2}}$ samples

- Differ only in $\frac{2}{n}$ of the mass
- Differ by at most $1 \pm \varepsilon$ for any v

v	1	$\frac{1}{2}$	0
$P(v)$	$\frac{1+\varepsilon}{n}$	$\frac{1-\varepsilon}{n}$	$1-\frac{2}{n}$
$Q(v)$	$\frac{1-\varepsilon}{n}$	$\frac{1+\varepsilon}{n}$	$1-\frac{2}{n}$

- $\mathrm{KL}(P, Q) \lesssim \frac{\varepsilon^{2}}{n}$
(last lecture)

Assouad's Method (cont'd)

$\square P$ and Q have support $\left\{0, \frac{1}{2}, 1\right\}$
\square Distinguishing them takes $m \gtrsim \frac{n}{\varepsilon^{2}}$ samples

- Differ only in $\frac{2}{n}$ of the mass
- Differ by at most $1 \pm \varepsilon$ for any v

v	1	$\frac{1}{2}$	0
$P(v)$	$\frac{1+\varepsilon}{n}$	$\frac{1-\varepsilon}{n}$	$1-\frac{2}{n}$
$Q(v)$	$\frac{1-\varepsilon}{n}$	$\frac{1+\varepsilon}{n}$	$1-\frac{2}{n}$

- $\mathrm{KL}(P, Q) \lesssim \frac{\varepsilon^{2}}{n}$
(last lecture)
\square Revenue loss due to $D_{i}=P$ vs. $D_{i}=Q$
- w.p. $\bar{\sim} \frac{1}{n}, v_{i}=\frac{1}{2}$ and other values are zero

Assouad's Method (cont'd)

$\square P$ and Q have support $\left\{0, \frac{1}{2}, 1\right\}$
\square Distinguishing them takes $m \gtrsim \frac{n}{\varepsilon^{2}}$ samples

- Differ only in $\frac{2}{n}$ of the mass
- Differ by at most $1 \pm \varepsilon$ for any v

v	1	$\frac{1}{2}$	0
$\mathrm{P}(\mathrm{v})$	$\frac{1+\varepsilon}{n}$	$\frac{1-\varepsilon}{n}$	$1-\frac{2}{n}$
$\mathrm{Q}(\mathrm{v})$	$\frac{1-\varepsilon}{n}$	$\frac{1+\varepsilon}{n}$	$1-\frac{2}{n}$

- $\mathrm{KL}(P, Q) \lesssim \frac{\varepsilon^{2}}{n}$
(last lecture)
\square Revenue loss due to $D_{i}=P$ vs. $D_{i}=Q$
- w.p. $\bar{\sim} \frac{1}{n}, v_{i}=\frac{1}{2}$ and other values are zero
- Bidder i should win iff. $D_{i}=Q$

$$
\varphi_{i}\left(\frac{1}{2}\right) \bar{\sim}\left\{\begin{aligned}
-\varepsilon & D_{i}=P \\
\varepsilon & D_{i}=Q
\end{aligned}\right.
$$

Assouad's Method (cont'd)

$\square P$ and Q have support $\left\{0, \frac{1}{2}, 1\right\}$
\square Distinguishing them takes $m \gtrsim \frac{n}{\varepsilon^{2}}$ samples

- Differ only in $\frac{2}{n}$ of the mass
- Differ by at most $1 \pm \varepsilon$ for any v

v	1	$\frac{1}{2}$	0
$\mathrm{P}(\mathrm{v})$	$\frac{1+\varepsilon}{n}$	$\frac{1-\varepsilon}{n}$	$1-\frac{2}{n}$
$\mathrm{Q}(\mathrm{v})$	$\frac{1-\varepsilon}{n}$	$\frac{1+\varepsilon}{n}$	$1-\frac{2}{n}$

- $\mathrm{KL}(P, Q) \lesssim \frac{\varepsilon^{2}}{n}$
(last lecture)
\square Revenue loss due to $D_{i}=P$ vs. $D_{i}=Q$
- w.p. $\bar{\sim} \frac{1}{n}, v_{i}=\frac{1}{2}$ and other values are zero
- Bidder i should win iff. $D_{i}=Q$

$$
\varphi_{i}\left(\frac{1}{2}\right) \bar{\sim}\left\{\begin{aligned}
-\varepsilon & D_{i}=P \\
\varepsilon & D_{i}=Q
\end{aligned}\right.
$$

- Lose $\gtrsim \frac{\varepsilon}{n}$ if we cannot distinguish P, Q

Summary

Distributions	Upper Bound	Lower Bound
$[0,1]$-Bounded	$\frac{n}{\varepsilon^{3}}$	$\frac{n}{\varepsilon^{2}}$
Regular distributions	$\frac{n}{\varepsilon^{4}}$	$\frac{n}{\varepsilon^{3}}$
MHR distributions	$\frac{n}{\varepsilon^{3}}$	$\frac{n}{\varepsilon^{2}}$
$[1, H]$-bounded distributions	$\frac{H n}{\varepsilon^{3}}$	$\frac{H n}{\varepsilon^{2}}$

\square Upper Bound:
Concentration inequality + covering of auction space + union bound
\square Lower Bound:
Assouad's Method

References

1. Jamie Morgenstern and Tim Roughgarden. "The pseudo-dimension of near-optimal auctions." In Proceedings of the 28th International Conference on Neural Information Processing Systems, pp. 136-144, 2015.
2. Nikhil R Devanur, Zhiyi Huang, and Christos-Alexandros Psomas. "The sample complexity of auctions with side information." In Proceedings of the 48th Annual ACM Symposium on Theory of Computing, ACM, pp. 426-439, 2016.
3. Yannai A Gonczarowski and Noam Nisan. "Efficient empirical revenue maximization in single-parameter auction environments." In Proceedings of the 49th Annual ACM Symposium on Theory of Computing, ACM, pp. 856-868, 2017.
