Data-Driven Auction Design II Progress via Statistical Learning Theory

Zhiyi Huang

University of Hong Kong

Recap

Data-Driven Single-Item Auction

A Glimpse of Statistical Learning Theory

Sample Complexity of Single-Item Auctions Upper Bound Lower Bound

 \square Sell 1 item to *n* bidders, to maximize revenue

 \square Bidder *i*'s value v_i is drawn independently from D_i

- □ Sell 1 item to *n* bidders, to maximize revenue
- \square Bidder *i*'s value v_i is drawn independently from D_i
- Direct revelation auction
 - 1. Bidders bid b_1, b_2, \ldots, b_n
 - 2. Seller picks allocations x_1, x_2, \ldots, x_n and payments p_1, p_2, \ldots, p_n
 - 3. Bidder *i* wins the item w.p. x_i , pays p_i , gets utility $v_i x_i p_i$

- □ Sell 1 item to *n* bidders, to maximize revenue
- \square Bidder *i*'s value v_i is drawn independently from D_i
- Direct revelation auction
 - 1. Bidders bid b_1, b_2, \ldots, b_n
 - 2. Seller picks allocations x_1, x_2, \ldots, x_n and payments p_1, p_2, \ldots, p_n
 - 3. Bidder *i* wins the item w.p. x_i , pays p_i , gets utility $v_i x_i p_i$
- Dominant-Strategy Incentive Compatible (DSIC)

$$\forall i, v_i, b_i, b_{-i} : \quad v_i x_i(v_i, b_{-i}) - p_i(v_i, b_{-i}) \ge v_i x_i(\frac{b_i}{b_i}, b_{-i}) - p_i(\frac{b_i}{b_i}, b_{-i})$$

- □ Sell 1 item to *n* bidders, to maximize revenue
- \square Bidder *i*'s value v_i is drawn independently from D_i
- Direct revelation auction
 - 1. Bidders bid b_1, b_2, \ldots, b_n
 - 2. Seller picks allocations x_1, x_2, \ldots, x_n and payments p_1, p_2, \ldots, p_n
 - 3. Bidder *i* wins the item w.p. x_i , pays p_i , gets utility $v_i x_i p_i$
- Dominant-Strategy Incentive Compatible (DSIC)

$$\forall i, v_i, b_i, b_{-i} : \quad v_i x_i(v_i, b_{-i}) - p_i(v_i, b_{-i}) \ge v_i x_i(\frac{b_i}{b_i}, b_{-i}) - p_i(\frac{b_i}{b_i}, b_{-i})$$

Individually Rational (IR)

$$\forall i, v_i, b_{-i}: \quad v_i x_i (v_i, b_{-i}) - p_i (v_i, b_{-i}) \geq 0$$

Recap: Myerson's Theory

□ DSIC and IR are equivalent to

- 1. $x_i(v_i, b_{-i})$ is monotone (e.g., step function)
- 2. $p_i(v_i, b_{-i})$ is the area on the left of $x_i(v_i, b_{-i})$ as a function of v_i (e.g., threshold price above which $x_i = 1$, if x_i is a step function)

Recap: Myerson's Theory

□ DSIC and IR are equivalent to

- 1. $x_i(v_i, b_{-i})$ is monotone (e.g., step function)
- 2. $p_i(v_i, b_{-i})$ is the area on the left of $x_i(v_i, b_{-i})$ as a function of v_i (e.g., threshold price above which $x_i = 1$, if x_i is a step function)
- Expected revenue is equivalent to expected virtual welfare

$$\mathsf{E}\sum_{i=1}^{n}\varphi_{i}(v_{i})x_{i}$$

where the virtual value φ_i is

$$\varphi_i(\mathbf{v}_i) = \mathbf{v}_i - \frac{1 - F_i(\mathbf{v}_i)}{f_i(\mathbf{v}_i)}$$

Recap: Optimal Pricing

- \square Sell 1 item to 1 bidder, whose value v is drawn from D
- \square Every DSIC and IR auction is equivalent to posting a price p
- □ Revenue of price p is $p \cdot q(p)$, where q(p) = 1 F(p) is p's quantile
- □ Revenue curve in quantile space $R(q) = v(q) \cdot q$

Recap: Data-Driven Optimal Pricing

$\hfill\square$ Sample Complexity/Statistical Learning Model

- Take *m* i.i.d. samples from *D* as input
- Output a price p

Recap: Data-Driven Optimal Pricing

- Sample Complexity/Statistical Learning Model
 - Take *m* i.i.d. samples from *D* as input
 - Output a price p
- \square How many samples are needed to pick a near optimal p "up to an ε margin"?
 - ε additive approximation
 - [0,1]-bounded distributions

Recap: Data-Driven Optimal Pricing

- Sample Complexity/Statistical Learning Model
 - Take *m* i.i.d. samples from *D* as input
 - Output a price p
- \square How many samples are needed to pick a near optimal p "up to an ε margin"?
 - ε additive approximation
 - $\left[0,1
 ight] ext{-bounded distributions}$
- □ The sample complexity is smallest number of samples needed

Recap: Data-Driven Optimal Pricing (Cont'd)

Distributions	Sample Complexity
[0, 1]-Bounded	$\frac{1}{\varepsilon^2}$
Regular distributions	$\frac{1}{arepsilon^3}$
MHR distributions	$\frac{1}{\varepsilon^{1.5}}$
[1, H]-bounded distributions	$\frac{H}{\varepsilon^2}$

Upper Bound:

Concentration inequality + covering of price space + union bound

Lower Bound:

Reduction to sample complexity of distinguishing two distributions

Recap: Concentration Inequalities

Theorem (Chernoff-Hoeffding, User-Friendly Version)

 X_1, X_2, \ldots, X_m are *i.i.d.* RV over [0, 1]. Let $\mu = \mathbf{E} X_i$. With probability $1 - \delta$ we have

$$\left|\frac{1}{m}\sum_{i=1}^m X_i - \mu\right| \lesssim \sqrt{\frac{\log \frac{1}{\delta}}{m}}$$

Theorem (Bernstein Inequality, User-Friendly Version) X_1, X_2, \ldots, X_m are *i.i.d.* RV over [0, 1]. Let $\mu = \mathbf{E} X_i$. With probability $1 - \delta$ we have

$$\left|\frac{1}{m}\sum_{i=1}^{m}X_{i}-\mu\right| \lesssim \max\left\{ \sqrt{\frac{\mu(1-\mu)\log\frac{1}{\delta}}{m}}, \frac{\log\frac{1}{\delta}}{m} \right\}$$

Recap

Data-Driven Single-Item Auction

A Glimpse of Statistical Learning Theory

Sample Complexity of Single-Item Auctions Upper Bound Lower Bound

 $\Box \bar{R}(q)$ is concave closure of revenue curve

□ Ironed virtual value $\bar{\varphi}_i(v_i)$ is $\bar{R}(q)$'s derivative

Highest non-negative virtual value wins

Winner pays threshold winning bid i.e., lowest bid above which he/she wins

- Highest non-negative virtual value wins
- Winner pays threshold winning bid i.e., lowest bid above which he/she wins
- □ Expected revenue is at most $\mathbf{E} \sum_{i=1}^{n} \bar{\varphi}_i(v_i) x_i$ with equality if values in an ironed interval are treated as the same

Data-Driven Optimal (Single-Item) Auction

Sample Complexity/Statistical Learning Model

- Take *m* i.i.d. samples from $D = D_1 \times D_2 \times \cdots \times D_m$ as input
- Output a DSIC and IR auction A

Data-Driven Optimal (Single-Item) Auction

- Sample Complexity/Statistical Learning Model
 - Take *m* i.i.d. samples from $D = D_1 \times D_2 \times \cdots \times D_m$ as input
 - Output a DSIC and IR auction A
- \square How many samples are needed to pick a near optimal A "up to an ε margin"?
 - ε additive approximation
 [0, 1]-bounded distributions

(illustrative example)

Data-Driven Optimal (Single-Item) Auction

- Sample Complexity/Statistical Learning Model
 - Take *m* i.i.d. samples from $D = D_1 \times D_2 \times \cdots \times D_m$ as input
 - Output a DSIC and IR auction A
- \square How many samples are needed to pick a near optimal A "up to an ε margin"?
 - ε additive approximation
 [0, 1]-bounded distributions

(illustrative example)

- □ The sample complexity is smallest number of samples needed

Recap

Data-Driven Single-Item Auction

A Glimpse of Statistical Learning Theory

Sample Complexity of Single-Item Auctions Upper Bound Lower Bound

The learning process is a process of choosing an appropriate function from a given set of functions. —Vladimir Vapnik

The learning process is a process of choosing an appropriate function from a given set of functions. —Vladimir Vapnik

 \square Type space ${\mathcal T}$

• Distribution D over \mathcal{T}

The learning process is a process of choosing an appropriate function from a given set of functions. —Vladimir Vapnik

- \square Type space ${\mathcal T}$
 - Distribution D over T
- \square Hypothesis space ${\cal H}$
 - Each hypothesis $h \in \mathcal{H}$ is a function from \mathcal{T} to [0, 1]

The learning process is a process of choosing an appropriate function from a given set of functions. —Vladimir Vapnik

- \square Type space \mathcal{T}
 - Distribution D over T
- \Box Hypothesis space \mathcal{H}
 - Each hypothesis $h \in \mathcal{H}$ is a function from \mathcal{T} to [0, 1]
- \square Learn $h \in \mathcal{H}$ from i.i.d. samples from D to minimize/maximize

 $\mathbf{E}_{t\sim D} h(t)$

Example: Linear Binary Classification

□ Type space consists of feature-label pairs

$$\mathcal{T} = \left\{ (x, y) : \underbrace{x \in \mathbb{R}^n}_{\text{feature}}, \underbrace{y = \pm 1}_{\text{label}} \right\}$$

Example: Linear Binary Classification

□ Type space consists of feature-label pairs

$$\mathcal{T} = \left\{ (x, y) : \underbrace{x \in \mathbb{R}^n}_{\text{feature}}, \underbrace{y = \pm 1}_{\text{label}} \right\}$$

□ Hypothesis space consists of linear classifiers

• Each $h \in \mathcal{H}$ corresponds to a linear function $\langle a, x \rangle + b$, $a \in \mathbb{R}^n$, $b \in \mathbb{R}$

$$h(x,y) = \begin{cases} 0 & \text{if } \langle a,x
angle + b \text{ and } y \text{ have the same sign} \\ 1 & \text{otherwise} \end{cases}$$

Example: Linear Binary Classification

□ Type space consists of feature-label pairs

$$\mathcal{T} = \left\{ (x, y) : \underbrace{x \in \mathbb{R}^n}_{\text{feature}}, \underbrace{y = \pm 1}_{\text{label}} \right\}$$

□ Hypothesis space consists of linear classifiers

• Each $h \in \mathcal{H}$ corresponds to a linear function $\langle a, x \rangle + b$, $a \in \mathbb{R}^n$, $b \in \mathbb{R}$

$$h(x,y) = egin{cases} 0 & ext{if } \langle a,x
angle + b ext{ and } y ext{ have the same sign} \ 1 & ext{otherwise} \end{cases}$$

□ Learn $h \in \mathcal{H}$ from i.i.d. samples from *D* to minimize $\underbrace{\mathbf{E}_{(x,y)\sim D} h(x,y)}_{\text{classfication error}}$

Example: Data-Driven Optimal Auction

 \square Type space consists of value profiles of *n* bidders

 $\mathcal{T} = [0,1]^n$

Example: Data-Driven Optimal Auction

 \Box Type space consists of value profiles of *n* bidders

 $\mathcal{T} = [0,1]^n$

- □ Hypothesis space consists of DSIC and IR auctions
 - Each $h \in \mathcal{H}$ corresponds to a DSIC and IR auciton A
 - h(v) equals the expected revenue of running A on values v

Example: Data-Driven Optimal Auction

 \Box Type space consists of value profiles of *n* bidders

 $\mathcal{T} = [0,1]^n$

□ Hypothesis space consists of DSIC and IR auctions

- Each $h \in \mathcal{H}$ corresponds to a DSIC and IR auciton A
- h(v) equals the expected revenue of running A on values v

 \square Learn $h \in \mathcal{H}$ from i.i.d. samples from D to maximize

expected revenue

Sample Complexity and "Degree of Freedom": Informal Introduction

Recall the three-step approach

1. Estimate the expectation of a single hypothesis $h \in \mathcal{H}$ up to arepsilon

2. Finitely many hypotheses whose "neighborhoods" cover the hypothesis space ${\mathcal H}$

3. Estimate the expectations of all these representative hypotheses up to ε

Sample Complexity and "Degree of Freedom": Informal Introduction

Recall the three-step approach

1. Estimate the expectation of a single hypothesis $h \in \mathcal{H}$ up to arepsilon

Solution: Chernoff-Hoeffding Bound, Bernstein Inequality **Takeaway:** $m \gtrsim \frac{\log \frac{1}{\delta}}{\varepsilon^2}$ samples give ε additive approximation w.p. $1 - \delta$

2. Finitely many hypotheses whose "neighborhoods" cover the hypothesis space ${\mathcal H}$

3. Estimate the expectations of all these representative hypotheses up to ε

Sample Complexity and "Degree of Freedom": Informal Introduction

Recall the three-step approach

1. Estimate the expectation of a single hypothesis $h \in \mathcal{H}$ up to arepsilon

Solution: Chernoff-Hoeffding Bound, Bernstein Inequality **Takeaway:** $m \gtrsim \frac{\log \frac{1}{\delta}}{\varepsilon^2}$ samples give ε additive approximation w.p. $1 - \delta$

2. Finitely many hypotheses whose "neighborhoods" cover the hypothesis space ${\mathcal H}$

3. Estimate the expectations of all these representative hypotheses up to ε Solution: Union Bound Takeaway: $m \gtrsim \frac{\log \frac{R}{\delta}}{\varepsilon^2}$ samples suffice when there are R representative hypotheses Sample Complexity and "Degree of Freedom": Informal Introduction

Recall the three-step approach

1. Estimate the expectation of a single hypothesis $h \in \mathcal{H}$ up to arepsilon

Solution: Chernoff-Hoeffding Bound, Bernstein Inequality **Takeaway:** $m \gtrsim \frac{\log \frac{1}{\delta}}{\varepsilon^2}$ samples give ε additive approximation w.p. $1 - \delta$

- 2. Finitely many hypotheses whose "neighborhoods" cover the hypothesis space \mathcal{H} **Conventional wisdom:** If the hypothesis space \mathcal{H} has "degree of freedom" d (a.k.a., "dimension"), then $R = 2^{\tilde{O}(d)}$ representative hypotheses suffice
- Estimate the expectations of all these representative hypotheses up to ε
 Solution: Union Bound
 Takeaway: m ≥ log R/δ / ε² samples suffice when there are R representative hypotheses

Sample Complexity and "Degree of Freedom": Informal Introduction

Recall the three-step approach

1. Estimate the expectation of a single hypothesis $h \in \mathcal{H}$ up to arepsilon

Solution: Chernoff-Hoeffding Bound, Bernstein Inequality **Takeaway:** $m \gtrsim \frac{\log \frac{1}{\delta}}{\varepsilon^2}$ samples give ε additive approximation w.p. $1 - \delta$

- 2. Finitely many hypotheses whose "neighborhoods" cover the hypothesis space \mathcal{H} **Conventional wisdom:** If the hypothesis space \mathcal{H} has "degree of freedom" d (a.k.a., "dimension"), then $R = 2^{\tilde{O}(d)}$ representative hypotheses suffice
- Estimate the expectations of all these representative hypotheses up to ε
 Solution: Union Bound
 Takeaway: m ≥ log R/δ samples suffice when there are R representative hypotheses
 i.e., m ≥ d log 1/ε² samples suffice

Binary Classification and Vapnik-Chervonenkis Dimension

□ Type space consists of feature-label pairs

$$\mathcal{T} = \left\{ (x, y) : \underbrace{x \in \mathbb{R}^n}_{\text{feature}}, \underbrace{y = \pm 1}_{\text{label}} \right\}$$

□ Hypothesis space is a set of classifiers

• Each $h \in \mathcal{H}$ corresponds to a classifier $c : \mathbb{R}^n \to \{-1, +1\}$

$$h(x,y) = \begin{cases} 0 & \text{if } c(x) = y \\ 1 & \text{otherwise} \end{cases}$$

Binary Classification and Vapnik-Chervonenkis Dimension

□ Type space consists of feature-label pairs

$$\mathcal{T} = \left\{ (x, y) : \underbrace{x \in \mathbb{R}^n}_{\text{feature}}, \underbrace{y = \pm 1}_{\text{label}} \right\}$$

□ Hypothesis space is a set of classifiers

• Each $h \in \mathcal{H}$ corresponds to a classifier $c : \mathbb{R}^n \to \{-1, +1\}$

$$h(x,y) = egin{cases} 0 & ext{if } c(x) = y \ 1 & ext{otherwise} \end{cases}$$

□ VC dimension of \mathcal{H} is the largest number of features vectors x_1, x_2, \ldots, x_d such that for any labeling y_1, y_2, \ldots, y_d , there is $h \in H$ such that $h(x_i, y_i) = 0$

Binary Classification and Vapnik-Chervonenkis Dimension

Type space consists of feature-label pairs

$$\mathcal{T} = \left\{ (x, y) : \underbrace{x \in \mathbb{R}^n}_{\text{feature}}, \underbrace{y = \pm 1}_{\text{label}} \right\}$$

□ Hypothesis space is a set of classifiers

• Each $h \in \mathcal{H}$ corresponds to a classifier $c : \mathbb{R}^n \to \{-1, +1\}$

$$h(x,y) = egin{cases} 0 & ext{if } c(x) = y \ 1 & ext{otherwise} \end{cases}$$

□ VC dimension of *H* is the largest number of features vectors x₁, x₂,..., x_d such that for any labeling y₁, y₂,..., y_d, there is h ∈ H such that h(x_i, y_i) = 0
 □ m ≂ d+log 1/ε² samples are sufficient and necessary

- \square Type space ${\mathcal T}$
 - Distribution D over T
- \square Hypothesis space ${\cal H}$
 - Each hypothesis $h \in \mathcal{H}$ is a function from \mathcal{T} to [0,1]

- \square Type space \mathcal{T}
 - Distribution D over T
- \Box Hypothesis space \mathcal{H}
 - Each hypothesis $h \in \mathcal{H}$ is a function from \mathcal{T} to [0, 1]

 \square Pseudo dimension of ${\cal H}$ is the largest number d for which we have

- Types $t_1, t_2, \ldots, t_d \in \mathcal{T}$ and
- Witnesses $r_1, r_2, \ldots, r_d \in (0, 1)$ such that
- For any signs $y_1, y_2, \dots, y_d \in \{1, -1\}$ there is $h \in \mathcal{H}$ satisfying

 $\operatorname{sign}(h(t_i) - r_i) = y_i$

- \square Type space ${\mathcal T}$
 - Distribution D over T
- \Box Hypothesis space \mathcal{H}
 - Each hypothesis $h \in \mathcal{H}$ is a function from \mathcal{T} to [0,1]

 \square Pseudo dimension of ${\cal H}$ is the largest number d for which we have

- Types $t_1, t_2, \ldots, t_d \in \mathcal{T}$ and
- Witnesses $r_1, r_2, \ldots, r_d \in (0, 1)$ such that
- For any signs $y_1, y_2, \dots, y_d \in \{1, -1\}$ there is $h \in \mathcal{H}$ satisfying

$$sign(h(t_i) - r_i) = y_i$$

 $\Box \ m \gtrsim \frac{d \log \frac{1}{\varepsilon} + \log \frac{1}{\delta}}{\varepsilon^2} \text{ samples are sufficient}$

- \square Type space \mathcal{T}
 - Distribution D over T
- \Box Hypothesis space \mathcal{H}
 - Each hypothesis $h \in \mathcal{H}$ is a function from \mathcal{T} to [0,1]

 \square Pseudo dimension of ${\cal H}$ is the largest number d for which we have

- Types $t_1, t_2, \ldots, t_d \in \mathcal{T}$ and
- Witnesses $r_1, r_2, \ldots, r_d \in (0, 1)$ such that
- For any signs $y_1, y_2, \dots, y_d \in \{1, -1\}$ there is $h \in \mathcal{H}$ satisfying

$$sign(h(t_i) - r_i) = y_i$$

 $\square m \gtrsim \frac{d \log \frac{1}{\varepsilon} + \log \frac{1}{\delta}}{\varepsilon^2}$ samples are sufficient

Pseudo dimension equals VC dimension for binary classification

- \square Type space \mathcal{T}
 - Distribution D over T
- \Box Hypothesis space \mathcal{H}
 - Each hypothesis $h \in \mathcal{H}$ is a function from \mathcal{T} to [0, 1]

 \square ($\varepsilon\text{-})Fat$ shattering dimension of $\mathcal H$ is the largest number d for which we have

- Types $t_1, t_2, \ldots, t_d \in \mathcal{T}$ and
- Witnesses $r_1, r_2, \ldots, r_d \in (0, 1)$ such that
- For any signs $y_1, y_2, \dots, y_d \in \{1, -1\}$ there is $h \in \mathcal{H}$ satisfying

$$y_i(h(t_i)-r_i)\geq \varepsilon$$

- \square Type space ${\mathcal T}$
 - Distribution D over T
- \Box Hypothesis space \mathcal{H}
 - Each hypothesis $h \in \mathcal{H}$ is a function from \mathcal{T} to [0,1]

 \square (ε -)Fat shattering dimension of $\mathcal H$ is the largest number d for which we have

- Types $t_1, t_2, \ldots, t_d \in \mathcal{T}$ and
- Witnesses $r_1, r_2, \ldots, r_d \in (0, 1)$ such that
- For any signs $y_1, y_2, \dots, y_d \in \{1, -1\}$ there is $h \in \mathcal{H}$ satisfying

$$y_i(h(t_i)-r_i) \geq \varepsilon$$

 $\Box \ m \gtrsim \frac{d \log \frac{1}{\varepsilon} + \log \frac{1}{\delta}}{\varepsilon^2} \text{ samples are sufficient}$

- \square Type space \mathcal{T}
 - Distribution D over T
- \Box Hypothesis space \mathcal{H}
 - Each hypothesis $h \in \mathcal{H}$ is a function from \mathcal{T} to [0,1]

 \square ($\varepsilon\text{-})Fat$ shattering dimension of $\mathcal H$ is the largest number d for which we have

- Types $t_1, t_2, \ldots, t_d \in \mathcal{T}$ and
- Witnesses $r_1, r_2, \ldots, r_d \in (0, 1)$ such that
- For any signs $y_1, y_2, \dots, y_d \in \{1, -1\}$ there is $h \in \mathcal{H}$ satisfying

$$y_i(h(t_i)-r_i)\geq \varepsilon$$

 $\square \ m \gtrsim \frac{d \log \frac{1}{\varepsilon} + \log \frac{1}{\delta}}{\varepsilon^2} \text{ samples are sufficient}$

Fat shattering dimension equals VC dimension for binary classification

- \square Type space ${\mathcal T}$
 - Distribution D over T
- \square Hypothesis space ${\cal H}$
 - Each hypothesis $h \in \mathcal{H}$ is a function from \mathcal{T} to [0,1]
- \square Rademacher complexity of $\mathcal H$ (with *m* samples) is

$$R_m(\mathcal{H}) = \mathbf{E}_{\underbrace{t_1, \dots, t_m \sim D}_{\text{random types}}, \underbrace{y_1, y_2, \dots, y_m \overset{\text{unif}}{\sim} \{1, -1\}}_{\text{random noise}}} \sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^m y_i h(t_i)$$

- \square Type space ${\mathcal T}$
 - Distribution D over T
- \square Hypothesis space ${\cal H}$
 - Each hypothesis $h \in \mathcal{H}$ is a function from \mathcal{T} to [0,1]
- \square Rademacher complexity of $\mathcal H$ (with *m* samples) is

$$R_m(\mathcal{H}) = \mathbf{E}_{\underbrace{t_1, \dots, t_m \sim D}_{\text{random types}}, \underbrace{y_1, y_2, \dots, y_m}_{\text{random noise}}} \sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^m y_i h(t_i)$$

 \square Intuitively, it captures how well hypothesis class ${\mathcal H}$ can fit random noise

- \square Type space ${\mathcal T}$
 - Distribution D over T
- \square Hypothesis space \mathcal{H}
 - Each hypothesis $h \in \mathcal{H}$ is a function from \mathcal{T} to [0,1]
- \Box Rademacher complexity of $\mathcal H$ (with *m* samples) is

$$R_m(\mathcal{H}) = \mathbf{E}_{\underbrace{t_1, \dots, t_m \sim D}_{\text{random types}}, \underbrace{y_1, y_2, \dots, y_m}_{\text{random noise}}}^{\text{unif}} \sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^m y_i h(t_i)$$

Intuitively, it captures how well hypothesis class \$\mathcal{H}\$ can fit random noise
 It suffices to have \$m \ge \frac{\log \frac{1}{\delta}}{\varepsilon^2}\$ and \$R_m(\mathcal{H}) \le \varepsilon\$

Recap

Data-Driven Single-Item Auction

A Glimpse of Statistical Learning Theory

Sample Complexity of Single-Item Auctions Upper Bound Lower Bound

Recall Myerson's optimal auction

- Highest non-negative virtual value wins
- □ Winner pays threshold winning bid
 - i.e., lowest bid above which he/she wins

Narrowing down the representitive auctions in three steps

Recall Myerson's optimal auction

- Highest non-negative virtual value wins
- Winner pays threshold winning bid
 - i.e., lowest bid above which he/she wins

Narrowing down the representitive auctions in three steps

1. Focus on auctions defined by n non-decreasing "ironed virtual value functions"

 $f_i:[0,1]
ightarrow (-\infty,1]$

Recall Myerson's optimal auction

- Highest non-negative virtual value wins
- Winner pays threshold winning bid
 - i.e., lowest bid above which he/she wins

Narrowing down the representitive auctions in three steps

- 1. Focus on auctions defined by n non-decreasing "ironed virtual value functions"
- 2. Discretize the value space

$$f_i: \{0, arepsilon, 2arepsilon, \ldots, 1\}
ightarrow (-\infty, 1]$$

Recall Myerson's optimal auction

- Highest non-negative virtual value wins
- Winner pays threshold winning bid
 - i.e., lowest bid above which he/she wins

Narrowing down the representitive auctions in three steps

- 1. Focus on auctions defined by n non-decreasing "ironed virtual value functions"
- 2. Discretize the value space
- 3. Discretize the virtual value space

$$f_i: \{0, \varepsilon, 2\varepsilon, \dots, 1\} \rightarrow \{-\infty, 0, \varepsilon, 2\varepsilon, \dots, 1\}$$

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

- 1. Negative $f_i(v_i)$ may be treated as $-\infty$ without loss of generality.
- 2. Allocating to the bidder i with the largest $\lfloor \overline{\varphi}_i(v_i) \rfloor_{\varepsilon}$ breaking ties, say, lexicographically, (and letting it pay threshold bid) is optimal up to ε .

Lemma

- 1. Negative $f_i(v_i)$ may be treated as $-\infty$ without loss of generality.
- 2. Allocating to the bidder *i* with the largest $\lfloor \overline{\varphi}_i(v_i) \rfloor_{\varepsilon}$ breaking ties, say, lexicographically, (and letting it pay threshold bid) is optimal up to ε .

Recall: Expected revenue is

$$\mathsf{E}\sum_{i=1}^n \bar{\varphi}_i(v_i) x_i$$

if values in an ironed interval are treated as the same

Lemma

- 1. Negative $f_i(v_i)$ may be treated as $-\infty$ without loss of generality.
- 2. Allocating to the bidder *i* with the largest $\lfloor \overline{\varphi}_i(v_i) \rfloor_{\varepsilon}$ breaking ties, say, lexicographically, (and letting it pay threshold bid) is optimal up to ε .

Recall: Expected revenue is

$$\mathsf{E}\sum_{i=1}^n \bar{\varphi}_i(v_i) x_i$$

if values in an ironed interval are treated as the same

 \Box Allocating to largest $\lfloor \bar{\varphi}_i(v_i) \rfloor_{\varepsilon}$ still treats values in an ironed interval as the same

Lemma

- 1. Negative $f_i(v_i)$ may be treated as $-\infty$ without loss of generality.
- 2. Allocating to the bidder i with the largest $\lfloor \bar{\varphi}_i(v_i) \rfloor_{\varepsilon}$ breaking ties, say, lexicographically, (and letting it pay threshold bid) is optimal up to ε .

Recall: Expected revenue is

$$\mathsf{E}\sum_{i=1}^n \bar{\varphi}_i(v_i) x_i$$

if values in an ironed interval are treated as the same

□ Allocating to largest $\lfloor \bar{\varphi}_i(v_i) \rfloor_{\varepsilon}$ still treats values in an ironed interval as the same □ Lose at most ε in **E** $\sum_{i=1}^{n} \bar{\varphi}_i(v_i) x_i$

Theorem Using $m \gtrsim \frac{n\log \frac{1}{\varepsilon}}{\varepsilon^3} + \frac{\log \frac{1}{\delta}}{\varepsilon^2} = \tilde{O}(\frac{n}{\varepsilon^3})$ samples, we can find an auction that is an ε additive approximation with probability $1 - \delta$.

Theorem Using $m \gtrsim \frac{n\log \frac{1}{\varepsilon}}{\varepsilon^3} + \frac{\log \frac{1}{\delta}}{\varepsilon^2} = \tilde{O}(\frac{n}{\varepsilon^3})$ samples, we can find an auction that is an ε additive approximation with probability $1 - \delta$.

1. Estimate the expectation of a single hypothesis $h \in \mathcal{H}$ up to arepsilon

 $m \gtrsim rac{\log rac{1}{\delta}}{\varepsilon^2}$ samples give ε additive approximation w.p. $1 - \delta$

2. Finitely many hypotheses whose "neighborhoods" cover the hypothesis space ${\mathcal H}$

3. Estimate the expectations of all these representative hypotheses up to ε $m \gtrsim \frac{\log \frac{R}{\delta}}{\varepsilon^2}$ samples suffice when there are R representative hypotheses

Theorem Using $m \gtrsim \frac{n\log \frac{1}{\varepsilon}}{\varepsilon^3} + \frac{\log \frac{1}{\delta}}{\varepsilon^2} = \tilde{O}(\frac{n}{\varepsilon^3})$ samples, we can find an auction that is an ε additive approximation with probability $1 - \delta$.

- 1. Estimate the expectation of a single hypothesis $h \in \mathcal{H}$ up to ε $m \geq \frac{\log \frac{1}{\delta}}{2}$ samples give ε additive approximation w.p. $1 - \delta$
- 2. Finitely many hypotheses whose "neighborhoods" cover the hypothesis space \mathcal{H} Focus on $R \leq (\frac{1}{\varepsilon} + 2)^{n(\frac{1}{\varepsilon} + 1)}$ auctions defined by *n* non-decreasing functions

$$f_i: \{0, \varepsilon, 2\varepsilon, \ldots, 1\} \rightarrow \{-\infty, 0, \varepsilon, 2\varepsilon, \ldots, 1\}$$

3. Estimate the expectations of all these representative hypotheses up to ε $m \gtrsim \frac{\log \frac{R}{\delta}}{\varepsilon^2}$ samples suffice when there are R representative hypotheses

Theorem Using $m \gtrsim \frac{n\log \frac{1}{\varepsilon}}{\varepsilon^3} + \frac{\log \frac{1}{\delta}}{\varepsilon^2} = \tilde{O}(\frac{n}{\varepsilon^3})$ samples, we can find an auction that is an ε additive approximation with probability $1 - \delta$.

1. Estimate the expectation of a single hypothesis $h \in \mathcal{H}$ up to arepsilon

 $m \gtrsim rac{\log rac{1}{\delta}}{\varepsilon^2}$ samples give ε additive approximation w.p. $1 - \delta$

Why information theoretic?

- We estimate revenue by averaging over samples, i.e., empirical distribution
- Empirical distribution is not independent
- Optimal auction over dependent value distribution is hard

Upper Bound via Polynomial-Time Algorithm

Empirical Myerson's Auction (with Value Discretization)

 \square Given i.i.d. samples $v^i = (v_1^i, v_2^i, \dots, v_n^i)$, $1 \le i \le m$

□ Let E_j be the uniform distribution over $\lfloor v_i^1 \rfloor_{\varepsilon}, \lfloor v_i^2 \rfloor_{\varepsilon}, \ldots, \lfloor v_i^m \rfloor_{\varepsilon}$

□ Return Myerson's optimal auction w.r.t. $E = E_1 \times E_2 \times \cdots \times E_n$

Upper Bound via Polynomial-Time Algorithm

Empirical Myerson's Auction (with Value Discretization)

Given i.i.d. samples $v^i = (v_1^i, v_2^i, \dots, v_n^i)$, $1 \le i \le m$

□ Let E_j be the uniform distribution over $\lfloor v_i^1 \rfloor_{\varepsilon}, \lfloor v_i^2 \rfloor_{\varepsilon}, \dots, \lfloor v_i^m \rfloor_{\varepsilon}$

□ Return Myerson's optimal auction w.r.t. $E = E_1 \times E_2 \times \cdots \times E_n$

Theorem Using $m \gtrsim \frac{n \log \frac{1}{\epsilon}}{\epsilon^3} + \frac{\log \frac{1}{\delta}}{\epsilon^2} = \tilde{O}(\frac{n}{\epsilon^3})$ samples, Empirical Myerson's Auction is an ϵ additive approximation with probability $1 - \delta$.

Upper Bound via Polynomial-Time Algorithm

Empirical Myerson's Auction (with Value Discretization)

 \square Given i.i.d. samples $v^i = (v_1^i, v_2^i, \dots, v_n^i)$, $1 \le i \le m$

□ Let E_j be the uniform distribution over $\lfloor v_i^1 \rfloor_{\varepsilon}, \lfloor v_i^2 \rfloor_{\varepsilon}, \ldots, \lfloor v_i^m \rfloor_{\varepsilon}$

□ Return Myerson's optimal auction w.r.t. $E = E_1 \times E_2 \times \cdots \times E_n$

Theorem

Using $m \gtrsim \frac{n\log \frac{1}{\varepsilon}}{\varepsilon^3} + \frac{\log \frac{1}{\delta}}{\varepsilon^2} = \tilde{O}(\frac{n}{\varepsilon^3})$ samples, Empirical Myerson's Auction is an ε additive approximation with probability $1 - \delta$.

Lemma (Bernstein Inequality for Product Distribution) For any function $f : [0,1]^n \to [0,1]$. Let $\mu = \mathbf{E}_{v \sim E} f(v)$. With probability $1 - \delta$

$$\Big| \mathbf{E}_{v \sim E} f(v) - \mu \Big| \lesssim \max \left\{ \sqrt{\frac{\mu(1-\mu)\log \frac{1}{\delta}}{m}}, \frac{\log \frac{1}{\delta}}{m} \right\}$$

Recap

Data-Driven Single-Item Auction

A Glimpse of Statistical Learning Theory

Sample Complexity of Single-Item Auctions Upper Bound Lower Bound

Theorem

Any ε additive approximation algorithm needs at least $m \gtrsim \frac{n}{\varepsilon^2}$ samples.

Theorem

Any ε additive approximation algorithm needs at least $m \geq \frac{n}{\varepsilon^2}$ samples.

□ Linear dependence in number of bidders *n*

Upshot: The multi-bidder problem is strictly harder

Theorem

Any ε additive approximation algorithm needs at least $m \gtrsim \frac{n}{\varepsilon^2}$ samples.

- □ Linear dependence in number of bidders *n*
 - Upshot: The multi-bidder problem is strictly harder
 - Note that we already let each sample be a vector of n values

Theorem

Any ε additive approximation algorithm needs at least $m \geq \frac{n}{\varepsilon^2}$ samples.

□ Linear dependence in number of bidders *n*

- **Upshot:** The multi-bidder problem is strictly harder
- Note that we already let each sample be a vector of *n* values
- We need more information about each bidder's value distribution

Theorem

Any ε additive approximation algorithm needs at least $m \geq \frac{n}{\varepsilon^2}$ samples.

□ Linear dependence in number of bidders *n*

- Upshot: The multi-bidder problem is strictly harder
- Note that we already let each sample be a vector of n values
- We need more information about each bidder's value distribution

 \square Dependence on ε does not match the upper bound, i.e., quadratic vs. cubic

Next lecture will resolve this gap

Le Cam's Method is Insufficient

- **Recap:** Consider two value distributions P and Q that are
 - 1. Sufficiently "similar"

One needs $m \gtrsim \frac{n}{\epsilon^2}$ samples to distinguish P and Q, say, w.p. $\frac{2}{3}$

2. Sufficiently "different"

No auction A is an ε additive approximation for both P and Q

Le Cam's Method is Insufficient

Recap: Consider two value distributions P and Q that are

1. Sufficiently "similar"

One needs $m \gtrsim \frac{n}{c^2}$ samples to distinguish P and Q, say, w.p. $\frac{2}{3}$

2. Sufficiently "different"

No auction A is an ε additive approximation for both P and Q

1st Attempt

- Make P, Q similar s.t. distinguishing them takes $m \geq \frac{n}{\epsilon^2}$ samples
- Any auction's revenue differ by $\lesssim \frac{\varepsilon}{\sqrt{n}}$ on P and Q

Le Cam's Method is Insufficient

Recap: Consider two value distributions P and Q that are

1. Sufficiently "similar"

One needs $m \gtrsim \frac{n}{c^2}$ samples to distinguish P and Q, say, w.p. $\frac{2}{3}$

2. Sufficiently "different"

No auction A is an ε additive approximation for both P and Q

1st Attempt

- Make P, Q similar s.t. distinguishing them takes $m \gtrsim \frac{n}{\varepsilon^2}$ samples
- Any auction's revenue differ by $\lesssim \frac{\varepsilon}{\sqrt{n}}$ on P and Q

2nd Attempt

- Make marginals P_i, Q_i similar s.t. distinguishing them takes $m \gtrsim \frac{n}{\epsilon^2}$ samples
- It takes much fewer samples to distinguish product distributions \check{P} and Q

 \square Two marginals P, Q for each bidder, distinguishing which needs $m\gtrsim \frac{n}{\varepsilon^2}$ samples

□ Two marginals *P*, *Q* for each bidder, distinguishing which needs $m \gtrsim \frac{n}{\varepsilon^2}$ samples □ Consider 2^n value distributions $D = D_1 \times D_2 \times \cdots \times D_n$, where $D_i \in \{P, Q\}$

- \Box Two marginals *P*, *Q* for each bidder, distinguishing which needs $m \gtrsim \frac{n}{c^2}$ samples
- □ Consider 2^n value distributions $D = D_1 \times D_2 \times \cdots \times D_n$, where $D_i \in \{P, Q\}$
- Argument sketch
 - For neighboring D, D' differing in bidder i's marginal, any algorithm "makes some mistake" in i's allocation, resulting in ≥ ^ε/_n total revenue loss to D, D'

- \Box Two marginals *P*, *Q* for each bidder, distinguishing which needs $m \gtrsim \frac{n}{c^2}$ samples
- □ Consider 2^n value distributions $D = D_1 \times D_2 \times \cdots \times D_n$, where $D_i \in \{P, Q\}$
- Argument sketch
 - For neighboring D, D' differing in bidder *i*'s marginal, any algorithm "makes some mistake" in *i*'s allocation, resulting in $\gtrsim \frac{\varepsilon}{n}$ total revenue loss to D, D'
 - $2^{n-1}n$ pairs of neighboring distributions

- \Box Two marginals *P*, *Q* for each bidder, distinguishing which needs $m \gtrsim \frac{n}{c^2}$ samples
- □ Consider 2^n value distributions $D = D_1 \times D_2 \times \cdots \times D_n$, where $D_i \in \{P, Q\}$
- Argument sketch
 - For neighboring D, D' differing in bidder i's marginal, any algorithm "makes some mistake" in i's allocation, resulting in ≥ ^ε/_n total revenue loss to D, D'
 - $2^{n-1}n$ pairs of neighboring distributions
 - Some distribution D has revenue loss at least

 \square *P* and *Q* have support $\{0, \frac{1}{2}, 1\}$

 \square *P* and *Q* have support $\{0, \frac{1}{2}, 1\}$

V	1	$\frac{1}{2}$	0
P(v) Q(v)	$rac{1+arepsilon}{n} rac{1-arepsilon}{n}$	$rac{1-arepsilon}{n} rac{1+arepsilon}{n}$	$rac{1-rac{2}{n}}{1-rac{2}{n}}$

-

 $\hfill\square$ $\hfill P$ and $\hfill Q$ have support $\left\{0,\frac{1}{2},1\right\}$

 \square Distinguishing them takes $m\gtrsim \frac{n}{\varepsilon^2}$ samples

Differ only in $\frac{2}{n}$ of the mass Differ by at most $1 \pm \varepsilon$ for any v

Differ by at most 1 ± ε for any v
 KL(P,Q) \$\le \frac{ε^2}{n}\$ (last lecture)

V	1	$\frac{1}{2}$	0
P(v)	$\frac{1+\varepsilon}{n}$	$\frac{1-\varepsilon}{n}$	$1 - \frac{2}{n}$
Q(v)	$\frac{1-\varepsilon}{n}$	$rac{1+arepsilon}{n}$	$1 - \frac{2}{n}$

 $\hfill\square$ $\hfill P$ and $\hfill Q$ have support $\left\{0,\frac{1}{2},1\right\}$

 \square Distinguishing them takes $m \gtrsim \frac{n}{\varepsilon^2}$ samples

Differ only in ²/_n of the mass
Differ by at most 1 ± ε for any v
KL(P, Q) < ^{ε²}/_n (last lecture)

□ Revenue loss due to $D_i = P$ vs. $D_i = Q$

• w.p. $\approx \frac{1}{n}$, $v_i = \frac{1}{2}$ and other values are zero

	V	1	$\frac{1}{2}$	0	
	P(v) Q(v)	$rac{1+arepsilon}{n} rac{1-arepsilon}{n}$	$rac{1-arepsilon}{n} rac{1+arepsilon}{n}$	$egin{array}{l} 1-rac{2}{n} \ 1-rac{2}{n} \end{array}$	
R(q)					

q

2

-1

 $\hfill\square$ $\hfill P$ and $\hfill Q$ have support $\left\{0,\frac{1}{2},1\right\}$

 \square Distinguishing them takes $m \gtrsim \frac{n}{\varepsilon^2}$ samples

Differ only in ²/_n of the mass
Differ by at most 1 ± ε for any v
KL(P, Q) $\lesssim \frac{ε^2}{n}$ (last lecture)

□ Revenue loss due to $D_i = P$ vs. $D_i = Q$

• w.p. $\approx \frac{1}{n}$, $v_i = \frac{1}{2}$ and other values are zero

Bidder *i* should win iff. $D_i = Q$

$$\varphi_i(\frac{1}{2}) = \begin{cases} -\varepsilon & D_i = P \\ \varepsilon & D_i = Q \end{cases}$$

v	1	$\frac{1}{2}$	0
P(v)	$\frac{1+\varepsilon}{n}$	$\frac{1-\varepsilon}{n}$	$1 - \frac{2}{n}$
Q(v)	$\frac{1-\varepsilon}{n}$	$rac{1+arepsilon}{n}$	$1 - \frac{2}{n}$

 $\hfill\square$ $\hfill P$ and $\hfill Q$ have support $\left\{0,\frac{1}{2},1\right\}$

 \square Distinguishing them takes $m \gtrsim \frac{n}{\varepsilon^2}$ samples

Differ only in ²/_n of the mass
Differ by at most 1 ± ε for any v
KL(P, Q) $\lesssim \frac{ε^2}{n}$ (last lecture)

□ Revenue loss due to $D_i = P$ vs. $D_i = Q$

• w.p. $\approx \frac{1}{n}$, $v_i = \frac{1}{2}$ and other values are zero

Bidder *i* should win iff. $D_i = Q$

$$\varphi_i(\frac{1}{2}) = \begin{cases} -\varepsilon & D_i = P \\ \varepsilon & D_i = Q \end{cases}$$

• Lose $\geq \frac{\varepsilon}{n}$ if we cannot distinguish P, Q

V	1	$\frac{1}{2}$	0
P(v)	$rac{1+arepsilon}{n} \ 1-arepsilon$	$rac{1-arepsilon}{n} \ 1+arepsilon$	$\frac{1-\frac{2}{n}}{1-\frac{2}{2}}$
Q(v)	<u></u>	$\frac{1}{n}$	$1 - \frac{2}{n}$

Summary

Distributions	Upper Bound	Lower Bound
[0,1]-Bounded	$\frac{n}{\varepsilon^3}$	$\frac{n}{\varepsilon^2}$
Regular distributions	$\frac{n}{\varepsilon^4}$	$\frac{n}{\varepsilon^3}$
MHR distributions	$\frac{n}{\varepsilon^3}$	$\frac{n}{\varepsilon^2}$
[1, H]-bounded distributions	$\frac{Hn}{\varepsilon^3}$	$\frac{Hn}{\varepsilon^2}$

Upper Bound:

 $Concentration\ inequality\ +\ covering\ of\ auction\ space\ +\ union\ bound$

□ Lower Bound:

References

- 1. Jamie Morgenstern and Tim Roughgarden. *"The pseudo-dimension of near-optimal auctions."* In Proceedings of the 28th International Conference on Neural Information Processing Systems, pp. 136–144, 2015.
- 2. Nikhil R Devanur, Zhiyi Huang, and Christos-Alexandros Psomas. *"The sample complexity of auctions with side information."* In Proceedings of the 48th Annual ACM Symposium on Theory of Computing, ACM, pp. 426–439, 2016.
- 3. Yannai A Gonczarowski and Noam Nisan. "Efficient empirical revenue maximization in single-parameter auction environments." In Proceedings of the 49th Annual ACM Symposium on Theory of Computing, ACM, pp. 856–868, 2017.