Data-Driven Auction Design III Learnability of Product Distributions and Strong Revenue Monotonicity

Zhiyi Huang

University of Hong Kong

Recap

Two Different Viewpoints

Learnability of Product Distributions

Strong (Revenue) Monotonicity

Further Extensions and Open Questions

 \square Sell 1 item to *n* bidders, to maximize revenue

 \square Bidder *i*'s value v_i is drawn independently from D_i

- □ Sell 1 item to *n* bidders, to maximize revenue
- \square Bidder *i*'s value v_i is drawn independently from D_i
- Direct revelation auction
 - 1. Bidders bid b_1, b_2, \ldots, b_n
 - 2. Seller picks allocations x_1, x_2, \ldots, x_n and payments p_1, p_2, \ldots, p_n
 - 3. Bidder *i* wins the item w.p. x_i , pays p_i , gets utility $v_i x_i p_i$

- □ Sell 1 item to *n* bidders, to maximize revenue
- \square Bidder *i*'s value v_i is drawn independently from D_i
- Direct revelation auction
 - 1. Bidders bid b_1, b_2, \ldots, b_n
 - 2. Seller picks allocations x_1, x_2, \ldots, x_n and payments p_1, p_2, \ldots, p_n
 - 3. Bidder *i* wins the item w.p. x_i , pays p_i , gets utility $v_i x_i p_i$
- Dominant-Strategy Incentive Compatible (DSIC)

$$\forall i, v_i, b_i, b_{-i} : \quad v_i x_i(v_i, b_{-i}) - p_i(v_i, b_{-i}) \ge v_i x_i(\frac{b_i}{b_i}, b_{-i}) - p_i(\frac{b_i}{b_i}, b_{-i})$$

- □ Sell 1 item to *n* bidders, to maximize revenue
- \square Bidder *i*'s value v_i is drawn independently from D_i
- Direct revelation auction
 - 1. Bidders bid b_1, b_2, \ldots, b_n
 - 2. Seller picks allocations x_1, x_2, \ldots, x_n and payments p_1, p_2, \ldots, p_n
 - 3. Bidder *i* wins the item w.p. x_i , pays p_i , gets utility $v_i x_i p_i$
- Dominant-Strategy Incentive Compatible (DSIC)

$$\forall i, v_i, b_i, b_{-i} : \quad v_i x_i(v_i, b_{-i}) - p_i(v_i, b_{-i}) \ge v_i x_i(\frac{b_i}{b_i}, b_{-i}) - p_i(\frac{b_i}{b_i}, b_{-i})$$

Individually Rational (IR)

$$\forall i, v_i, b_{-i}: \quad v_i x_i (v_i, b_{-i}) - p_i (v_i, b_{-i}) \geq 0$$

Recap: Myerson's Theory

□ DSIC and IR are equivalent to

- 1. $x_i(v_i, b_{-i})$ is monotone (e.g., step function)
- 2. $p_i(v_i, b_{-i})$ is the area on the left of $x_i(v_i, b_{-i})$ as a function of v_i (e.g., threshold price above which $x_i = 1$, if x_i is a step function)

Recap: Myerson's Theory

□ DSIC and IR are equivalent to

- 1. $x_i(v_i, b_{-i})$ is monotone (e.g., step function)
- 2. $p_i(v_i, b_{-i})$ is the area on the left of $x_i(v_i, b_{-i})$ as a function of v_i (e.g., threshold price above which $x_i = 1$, if x_i is a step function)
- Expected revenue is equivalent to expected virtual welfare

$$\mathsf{E}\sum_{i=1}^{n}\varphi_{i}(v_{i})x_{i}$$

where the virtual value φ_i is

$$\varphi_i(\mathbf{v}_i) = \mathbf{v}_i - \frac{1 - F_i(\mathbf{v}_i)}{f_i(\mathbf{v}_i)}$$

Recap: Myerson's Optimal (Single-Item) Auction

- Highest non-negative ironed virtual value wins
- Winner pays threshold winning bid i.e., lowest bid above which he/she wins
- □ Expected revenue is at most $\mathbf{E} \sum_{i=1}^{n} \bar{\varphi}_i(v_i) x_i$ with equality if values in an ironed interval are treated as the same

Recap: Data-Driven Optimal (Single-Item) Auction

- Sample Complexity/Statistical Learning Model
 - Take *m* i.i.d. samples from $D = D_1 \times D_2 \times \cdots \times D_m$ as input
 - Output a DSIC and IR auction A
- \square How many samples are needed to pick a near optimal A "up to an ε margin"?
 - ε additive approximation
 [0, 1]-bounded distributions

(illustrative example)

- □ The sample complexity is smallest number of samples needed

Recap: Summary of Upper and Lower Bounds So Far

Distributions	Upper Bound	Lower Bound
[0, 1]-Bounded	$\frac{n}{\varepsilon^3}$	$\frac{n}{\varepsilon^2}$
Regular distributions	$\frac{n}{\varepsilon^4}$	$\frac{n}{\varepsilon^3}$
MHR distributions	$\frac{n}{\varepsilon^3}$	$\frac{n}{\varepsilon^2}$
[1, H]-bounded distributions	$\frac{Hn}{\varepsilon^3}$	$\frac{Hn}{\varepsilon^2}$

Upper Bound:

Concentration inequality + covering of auction space + union bound

□ Lower Bound:

Assouad's method

Recap: Concentration Inequalities

Theorem (Chernoff-Hoeffding, User-Friendly Version)

 X_1, X_2, \ldots, X_m are *i.i.d.* RV over [0, 1]. Let $\mu = \mathbf{E} X_i$. With probability $1 - \delta$ we have

$$\left|\frac{1}{m}\sum_{i=1}^m X_i - \mu\right| \lesssim \sqrt{\frac{\log \frac{1}{\delta}}{m}}$$

Theorem (Bernstein Inequality, User-Friendly Version) X_1, X_2, \ldots, X_m are *i.i.d.* RV over [0, 1]. Let $\mu = \mathbf{E} X_i$. With probability $1 - \delta$ we have

$$\left|\frac{1}{m}\sum_{i=1}^{m}X_{i}-\mu\right| \lesssim \max\left\{ \sqrt{\frac{\mu(1-\mu)\log\frac{1}{\delta}}{m}}, \frac{\log\frac{1}{\delta}}{m}\right\}$$

Recap

Two Different Viewpoints

Learnability of Product Distributions

Strong (Revenue) Monotonicity

Further Extensions and Open Questions

Recall our approach for data-driven optimal pricing

- It suffices to learn the revenue of every price up to ε
- For each price, estimating its revenue reduces to estimating its quantile

Recall our approach for data-driven optimal pricing

- $\hfill\blacksquare$ It suffices to learn the revenue of every price up to ε
- For each price, estimating its revenue reduces to estimating its quantile
- $\hfill\square$ Next consider an alternative approach

Recall our approach for data-driven optimal pricing

- $\hfill\blacksquare$ It suffices to learn the revenue of every price up to ε
- For each price, estimating its revenue reduces to estimating its quantile
- Next consider an alternative approach
 - It suffices to learn the distribution up to ε w.r.t. its CDF/quantile, i.e.

$$\sup_{v \in [0,1]} \left| \underbrace{F_D(v)}_{\text{true CDF}} - \underbrace{F_E(v)}_{\text{estimated CDF}} \right| \leq \varepsilon \quad \text{(Kolmogorov distance)}$$

Recall our approach for data-driven optimal pricing

- $\hfill\blacksquare$ It suffices to learn the revenue of every price up to ε
- For each price, estimating its revenue reduces to estimating its quantile
- Next consider an alternative approach
 - It suffices to learn the distribution up to ε w.r.t. its CDF/quantile, i.e.

$$\sup_{v \in [0,1]} \left| \underbrace{F_D(v)}_{\text{true CDF}} - \underbrace{F_E(v)}_{\text{estimated CDF}} \right| \leq \varepsilon \quad \text{(Kolmogorov distance)}$$

 \blacksquare Then, for each price, we know its revenue up to ε

Recall our approach for data-driven optimal pricing

- \blacksquare It suffices to learn the revenue of every price up to ε
- For each price, estimating its revenue reduces to estimating its quantile
- Next consider an alternative approach
 - It suffices to learn the distribution up to ε w.r.t. its CDF/quantile, i.e.

$$\sup_{v \in [0,1]} \left| \underbrace{F_D(v)}_{\text{true CDF}} - \underbrace{F_E(v)}_{\text{estimated CDF}} \right| \leq \varepsilon \quad \text{(Kolmogorov distance)}$$

 $\hfill\blacksquare$ Then, for each price, we know its revenue up to ε

□ Two approaches coincide for pricing...

Recall our approach for data-driven optimal pricing

- $\hfill\blacksquare$ It suffices to learn the revenue of every price up to ε
- For each price, estimating its revenue reduces to estimating its quantile
- Next consider an alternative approach
 - It suffices to learn the distribution up to ε w.r.t. its CDF/quantile, i.e.

$$\sup_{v \in [0,1]} \left| \underbrace{F_D(v)}_{\text{true CDF}} - \underbrace{F_E(v)}_{\text{estimated CDF}} \right| \leq \varepsilon \quad \text{(Kolmogorov distance)}$$

 $\hfill\blacksquare$ Then, for each price, we know its revenue up to ε

□ Two approaches coincide for pricing... but not for auctions

- Recall the take-home question regarding optimal pricing
 - Different value distributions require different regularization in Lecture I
 - Can we get all upper bounds using the same algorithm?

- Recall the take-home question regarding optimal pricing
 - Different value distributions require different regularization in Lecture I
 - Can we get all upper bounds using the same algorithm?
- \Box Lower Confidence Bound (LCB), e.g., choose *p* to maximize

$$p \cdot \left(\begin{array}{c} \left| \text{number of samples} \ge p \right| \\ \hline m \end{array} - \sqrt{\frac{\log rac{1}{\delta}}{m}} \end{array}
ight)$$

- Recall the take-home question regarding optimal pricing
 - Different value distributions require different regularization in Lecture I
 - Can we get all upper bounds using the same algorithm?
- \Box Lower Confidence Bound (LCB), e.g., choose p to maximize

$$p \cdot \left(egin{array}{c} rac{|\mathsf{number of samples} \geq p|}{m} - \sqrt{rac{\log rac{1}{\delta}}{m}} \end{array}
ight)$$

□ Alternatively, consider an underestimation of the value distribution, e.g.

$$F_E(v) = rac{| ext{number of samples} \le v|}{m} + \sqrt{rac{\log rac{1}{\delta}}{m}}$$

- Recall the take-home question regarding optimal pricing
 - Different value distributions require different regularization in Lecture I
 - Can we get all upper bounds using the same algorithm?
- \Box Lower Confidence Bound (LCB), e.g., choose p to maximize

$$p \cdot \left(\; rac{\left| \mathsf{number of samples} \geq p
ight|}{m} \; - \; \sqrt{rac{\log rac{1}{\delta}}{m}} \;
ight)$$

□ Alternatively, consider an underestimation of the value distribution, e.g.

$${\sf F}_{\sf E}(v) \;=\; rac{\left| {
m number of samples} \,\le\, v
ight|}{m} \,+\, \sqrt{rac{\log rac{1}{ar{\delta}}}{m}}$$

□ Two approaches coincide for pricing...

- Recall the take-home question regarding optimal pricing
 - Different value distributions require different regularization in Lecture I
 - Can we get all upper bounds using the same algorithm?
- \Box Lower Confidence Bound (LCB), e.g., choose p to maximize

$$p \cdot \left(egin{array}{c} rac{|\mathsf{number of samples} \geq p|}{m} - \sqrt{rac{\log rac{1}{\delta}}{m}} \end{array}
ight)$$

□ Alternatively, consider an underestimation of the value distribution, e.g.

$$F_E(v) = rac{| ext{number of samples} \le v|}{m} + \sqrt{rac{\log rac{1}{\delta}}{m}}$$

□ Two approaches coincide for pricing... but not for auctions

Data-Driven (Single-Item) Auction via Learning Value Distribution

 \square Product empirical distribution $E = E_1 \times E_2 \times \cdots \times E_n$

• *E_i* is uniform distribution over bidder *i*'s value samples

Data-Driven (Single-Item) Auction via Learning Value Distribution

 $\square Product empirical distribution E = E_1 \times E_2 \times \cdots \times E_n$

• *E_i* is uniform distribution over bidder *i*'s value samples

 \square Dominated product empirical distribution $\bar{E} = \bar{E}_1 \times \bar{E}_2 \times \cdots \times \bar{E}_n$

$$F_{\bar{E}_i}(v) = F_{E_i}(v) + \sqrt{\frac{F_{E_i}(v)(1-F_{E_i}(v))}{m}}$$

(simplified incorrect form for illustration)

Data-Driven (Single-Item) Auction via Learning Value Distribution

 $\square Product empirical distribution E = E_1 \times E_2 \times \cdots \times E_n$

• *E_i* is uniform distribution over bidder *i*'s value samples

 \square Dominated product empirical distribution $\bar{E} = \bar{E}_1 \times \bar{E}_2 \times \cdots \times \bar{E}_n$

$$F_{\bar{E}_i}(v) = F_{E_i}(v) + \sqrt{\frac{F_{E_i}(v)(1-F_{E_i}(v))}{m}}$$

(simplified incorrect form for illustration)

 \square Return Myerson's optimal auction w.r.t. E or \overline{E}

Recap

Two Different Viewpoints

Learnability of Product Distributions

Strong (Revenue) Monotonicity

Further Extensions and Open Questions

Hellinger Distance

$$\mathrm{H}(P,Q) = \frac{1}{\sqrt{2}} \left\| \sqrt{P} - \sqrt{Q} \right\|_{2} = \sqrt{\frac{1}{2} \sum_{v} \left(\sqrt{P(v)} - \sqrt{Q(v)} \right)^{2}}$$

Hellinger Distance

$$H(P,Q) = \frac{1}{\sqrt{2}} \left\| \sqrt{P} - \sqrt{Q} \right\|_2 = \sqrt{\frac{1}{2} \sum_{v} \left(\sqrt{P(v)} - \sqrt{Q(v)} \right)^2}$$

□ Direct product

$$1 - \mathrm{H}(P_1 \times \cdots \times P_n, Q_1 \times \cdots \times Q_n)^2 = \prod_{i=1}^n (1 - \mathrm{H}(P_i, Q_i)^2)$$

Hellinger Distance

$$H(P,Q) = \frac{1}{\sqrt{2}} \left\| \sqrt{P} - \sqrt{Q} \right\|_2 = \sqrt{\frac{1}{2} \sum_{v} \left(\sqrt{P(v)} - \sqrt{Q(v)} \right)^2}$$

□ Direct product

$$1 - \mathrm{H}(P_1 imes \cdots imes P_n, Q_1 imes \cdots imes Q_n)^2 = \prod_{i=1}^n (1 - \mathrm{H}(P_i, Q_i)^2)$$

□ This implies sub-additivity

$$\mathrm{H}(P_1 \times \cdots \times P_n, Q_1 \times \cdots \times Q_n)^2 \leq \sum_{i=1}^n \mathrm{H}(P_i, Q_i)^2$$

Hellinger, Kullback–Leibler, and Total Variation

 $\hfill\square$ Relation to TV

$$\operatorname{H}(P,Q)^2 \leq \operatorname{TV}(P,Q) \leq \sqrt{2} \cdot \operatorname{H}(P,Q)$$

Hellinger, Kullback–Leibler, and Total Variation

Relation to
$$\mathrm{TV}$$
 $\mathrm{H}(P,Q)^2 \leq \mathrm{TV}(P,Q) \leq \sqrt{2} \cdot \mathrm{H}(P,Q)$

 $\hfill\square$ Relation to ${\rm KL}$

 $\operatorname{H}(P,Q)^2 \leq \operatorname{KL}(P \| Q)$

Hellinger, Kullback-Leibler, and Total Variation

$$\square$$
 Relation to TV
$$\mathrm{H}(P,Q)^2 \leq \mathrm{TV}(P,Q) \leq \sqrt{2} \cdot \mathrm{H}(P,Q)$$

 $\hfill\square$ Relation to ${\rm KL}$

$$\operatorname{H}(P,Q)^2 \leq \operatorname{KL}(P \| Q)$$

 \square Why TV is called total variation distance?

Hellinger, Kullback–Leibler, and Total Variation

 \square Relation to TV

$$\operatorname{H}(P,Q)^2 \leq \operatorname{TV}(P,Q) \leq \sqrt{2} \cdot \operatorname{H}(P,Q)$$

 \square Relation to KL

$$\operatorname{H}(P,Q)^2 \leq \operatorname{KL}(P \| Q)$$

 $\hfill\square$ Why TV is called total variation distance?

- P and Q are distributions over \mathcal{T}
- $h: \mathcal{T} \to [0, 1]$ is a function

Hellinger, Kullback–Leibler, and Total Variation

 \square Relation to TV

$$\operatorname{H}(P,Q)^2 \leq \operatorname{TV}(P,Q) \leq \sqrt{2} \cdot \operatorname{H}(P,Q)$$

 \square Relation to KL

$$\operatorname{H}(P,Q)^2 \leq \operatorname{KL}(P \| Q)$$

 $\hfill\square$ Why TV is called total variation distance?

- P and Q are distributions over \mathcal{T}
- $h:\mathcal{T}
 ightarrow [0,1]$ is a function

We have

$$\left|\mathsf{E}_{v\sim P}h(v) - \mathsf{E}_{v\sim Q}h(v)\right| \leq \mathrm{TV}(P,Q)$$
Theorem If D has support size k, E is empirical distribution over $m \approx \frac{k + \log \frac{1}{\delta}}{\varepsilon^2}$ i.i.d. samples, then

 $\operatorname{H}(D, E) \leq \varepsilon$

Theorem If D has support size k, E is empirical distribution over $m \approx \frac{k + \log \frac{1}{\delta}}{\varepsilon^2}$ i.i.d. samples, then

 $\operatorname{H}(D, E) \leq \varepsilon$

$$\left(\mathbf{E} \operatorname{H}(D, E) \right)^2 \leq \mathbf{E} \operatorname{H}(D, E)^2$$

Theorem If D has support size k, E is empirical distribution over $m \approx \frac{k + \log \frac{1}{\delta}}{\varepsilon^2}$ i.i.d. samples, then $H(D, E) < \varepsilon$

$$\left(\mathbf{E} \operatorname{H}(D, E)\right)^2 \leq \mathbf{E} \operatorname{H}(D, E)^2 = \sum_{v} \mathbf{E} \left(\sqrt{D(v)} - \sqrt{E(v)}\right)^2$$

Theorem If D has support size k, E is empirical distribution over $m \approx \frac{k + \log \frac{1}{\delta}}{\varepsilon^2}$ i.i.d. samples, then $H(D, E) < \varepsilon$

 \square Here we prove a weaker result $\mathbf{E} \operatorname{H}(D, E) \lesssim \sqrt{\frac{k}{m}}$

$$\left(\mathbf{E} \operatorname{H}(D, E)\right)^2 \leq \mathbf{E} \operatorname{H}(D, E)^2 = \sum_{v} \mathbf{E} \left(\sqrt{D(v)} - \sqrt{E(v)}\right)^2$$

□ It suffices to bound $\mathbf{E} \left(\sqrt{D(v)} - \sqrt{E(v)} \right)^2$ for any v

$$\mathsf{E} \frac{\left(D(v) - E(v)\right)^2}{\left(\sqrt{D(v)} + \sqrt{E(v)}\right)^2}$$

Theorem If D has support size k, E is empirical distribution over $m \approx \frac{k + \log \frac{1}{\delta}}{\varepsilon^2}$ i.i.d. samples, then $H(D, E) < \varepsilon$

 \square Here we prove a weaker result $\mathbf{E} \operatorname{H}(D, E) \lesssim \sqrt{\frac{k}{m}}$

$$\left(\mathbf{E} \operatorname{H}(D, E)\right)^2 \leq \mathbf{E} \operatorname{H}(D, E)^2 = \sum_{v} \mathbf{E} \left(\sqrt{D(v)} - \sqrt{E(v)}\right)^2$$

□ It suffices to bound $\mathbf{E} \left(\sqrt{D(v)} - \sqrt{E(v)} \right)^2$ for any v

$$\mathbf{E} \frac{\left(D(v) - E(v)\right)^2}{\left(\sqrt{D(v)} + \sqrt{E(v)}\right)^2} \leq \underbrace{\mathbf{E} \frac{\left(D(v) - E(v)\right)^2}{D(v)}}_{\chi^2 \text{ distance}}$$

Theorem If D has support size k, E is empirical distribution over $m \approx \frac{k + \log \frac{1}{\delta}}{\varepsilon^2}$ i.i.d. samples, then $H(D, E) < \varepsilon$

 \square Here we prove a weaker result $\mathbf{E} \operatorname{H}(D, E) \lesssim \sqrt{\frac{k}{m}}$

$$\left(\mathbf{E} \operatorname{H}(D, E) \right)^2 \leq \mathbf{E} \operatorname{H}(D, E)^2 = \sum_{v} \mathbf{E} \left(\sqrt{D(v)} - \sqrt{E(v)} \right)^2$$

□ It suffices to bound $\mathbf{E} \left(\sqrt{D(v)} - \sqrt{E(v)} \right)^2$ for any v

$$\mathbf{E} \frac{\left(D(v) - E(v)\right)^2}{\left(\sqrt{D(v)} + \sqrt{E(v)}\right)^2} \leq \underbrace{\mathbf{E} \frac{\left(D(v) - E(v)\right)^2}{D(v)}}_{\chi^2 \text{ distance}} = \frac{1}{m} (1 - D(v)) \leq \frac{1}{m}$$

Theorem

If $D = D_1 \times D_2 \times \cdots \times D_n$ and each D_i has support size $k, E = E_1 \times E_2 \times \cdots \times E_n$ is the product empirical distribution over $m \approx \frac{kn + \log \frac{1}{\delta}}{\varepsilon^2}$ i.i.d. samples, then

 $\operatorname{H}(D, E) \leq \varepsilon$

Theorem

If $D = D_1 \times D_2 \times \cdots \times D_n$ and each D_i has support size k, $E = E_1 \times E_2 \times \cdots \times E_n$ is the product empirical distribution over $m \approx \frac{kn + \log \frac{1}{\delta}}{\varepsilon^2}$ i.i.d. samples, then

 $\operatorname{H}(D, E) \leq \varepsilon$

Theorem

If $D = D_1 \times D_2 \times \cdots \times D_n$ and each D_i has support size k, $E = E_1 \times E_2 \times \cdots \times E_n$ is the product empirical distribution over $m \approx \frac{kn + \log \frac{1}{\delta}}{\varepsilon^2}$ i.i.d. samples, then

 $\operatorname{H}(D, E) \leq \varepsilon$

$$\left(\mathbf{E}\operatorname{H}(D,E)\right)^2 \leq \mathbf{E}\operatorname{H}(D,E)^2$$

Theorem

If $D = D_1 \times D_2 \times \cdots \times D_n$ and each D_i has support size k, $E = E_1 \times E_2 \times \cdots \times E_n$ is the product empirical distribution over $m \approx \frac{kn + \log \frac{1}{\delta}}{\varepsilon^2}$ i.i.d. samples, then

 $\operatorname{H}(D, E) \leq \varepsilon$

$$\left(\mathbf{E}\operatorname{H}(D,E)\right)^2 \leq \mathbf{E}\operatorname{H}(D,E)^2 \leq \sum_{i=1}^n \mathbf{E}\operatorname{H}(D_i,E_i)^2$$

Theorem

If $D = D_1 \times D_2 \times \cdots \times D_n$ and each D_i has support size k, $E = E_1 \times E_2 \times \cdots \times E_n$ is the product empirical distribution over $m \approx \frac{kn + \log \frac{1}{\delta}}{\varepsilon^2}$ i.i.d. samples, then

 $\operatorname{H}(D, E) \leq \varepsilon$

$$\left(\mathbf{E}\operatorname{H}(D,E)\right)^2 \leq \mathbf{E}\operatorname{H}(D,E)^2 \leq \sum_{i=1}^n \mathbf{E}\operatorname{H}(D_i,E_i)^2 \leq \sum_{i=1}^n \frac{k}{m}$$

Theorem

If $D = D_1 \times D_2 \times \cdots \times D_n$ and each D_i has support size k, $E = E_1 \times E_2 \times \cdots \times E_n$ is the product empirical distribution over $m \approx \frac{kn + \log \frac{1}{\delta}}{\varepsilon^2}$ i.i.d. samples, then

 $\operatorname{H}(D, E) \leq \varepsilon$

$$\left(\mathbf{E}\operatorname{H}(D,E)\right)^2 \leq \mathbf{E}\operatorname{H}(D,E)^2 \leq \sum_{i=1}^n \mathbf{E}\operatorname{H}(D_i,E_i)^2 \leq \sum_{i=1}^n \frac{k}{m} = \frac{kn}{m}$$

 $\square D = D_1 \times D_2 \times \cdots \times D_n \text{ is an } n \text{-dimensional product value distribution}$

 $\square D = D_1 \times D_2 \times \cdots \times D_n \text{ is an } n \text{-dimensional product value distribution}$

 We may think of each dimension's support size as k = ¹/_ε because we can round values v_i to |v_i|_ε (closest multiple of ε)

 $\square D = D_1 \times D_2 \times \cdots \times D_n \text{ is an } n \text{-dimensional product value distribution}$

- We may think of each dimension's support size as k = 1/ε
 because we can round values v_i to ⌊v_i⌋_ε (closest multiple of ε)
- Formally, let $\lfloor D \rfloor_{\varepsilon}$ be the distribution of rounded value profile

 $OPT(\lfloor D \rfloor_{\varepsilon}) \geq OPT(D) - \varepsilon$

 $\square D = D_1 \times D_2 \times \cdots \times D_n \text{ is an } n \text{-dimensional product value distribution}$

- We may think of each dimension's support size as k = 1/ε
 because we can round values v_i to ⌊v_i⌋_ε (closest multiple of ε)
- Formally, let $\lfloor D \rfloor_{\varepsilon}$ be the distribution of rounded value profile

 $OPT(\lfloor D
floor_{arepsilon}) \geq OPT(D) - arepsilon$

 $\Box E = E_1 \times E_2 \times \cdots \times E_n$ is product empirical distribution from *m* rounded samples

• *E_i* is the uniform distribution over bidder *i*'s rounded sample values

 $\square D = D_1 \times D_2 \times \cdots \times D_n \text{ is an } n \text{-dimensional product value distribution}$

- We may think of each dimension's support size as k = 1/ε
 because we can round values v_i to [v_i]_ε (closest multiple of ε)
- \blacksquare Formally, let $\lfloor D \rfloor_{\varepsilon}$ be the distribution of rounded value profile

 $OPT(\lfloor D \rfloor_{\varepsilon}) \geq OPT(D) - \varepsilon$

□ E = E₁ × E₂ × ··· × E_n is product empirical distribution from m rounded samples
 ■ E_i is the uniform distribution over bidder i's rounded sample values

Theorem

With $m \gtrsim \frac{n}{\varepsilon^3} + \frac{\log \frac{1}{\delta}}{\varepsilon^2}$ samples, Myerson's optimal auction M_E w.r.t. E is an ε additive approximation w.p. $1 - \delta$.

Recap

Two Different Viewpoints

Learnability of Product Distributions

Strong (Revenue) Monotonicity

Further Extensions and Open Questions

 \Box Value distribution *D*, e.g., uniform on [0, 1]

Value distribution *D*, e.g., uniform on [0, 1]
 Empirical distribution *E* over *m* samples

- \Box Value distribution *D*, e.g., uniform on [0, 1]
- \Box Empirical distribution *E* over *m* samples
- \Box Bernstein Inequality + Union Bound

Bernstein Inequality + Union Bound

$$|F_{E}(v) - F_{D}(v)| \lesssim \sqrt{\frac{F_{D}(v)(1 - F_{D}(v))\log\frac{m}{\delta}}{m}} + \frac{\log\frac{m}{\delta}}{m}$$

 \Box Value distribution *D*, e.g., uniform on [0, 1]

 \square Empirical distribution *E* over *m* samples

 $\hfill\square$ Bernstein Inequality + Union Bound

$$|F_{E}(v) - F_{D}(v)| \lesssim \sqrt{\frac{F_{D}(v)(1 - F_{D}(v))\log\frac{m}{\delta}}{m}} + \frac{\log\frac{m}{\delta}}{m}$$

$$\Box \text{ Dominated empirical } \bar{E}$$

$$F_{\bar{E}}(v) - F_{E}(v) \approx \sqrt{\frac{F_{E}(v)(1 - F_{E}(v))\log \frac{m}{\delta}}{m}} + \frac{\log \frac{m}{\delta}}{m}$$

 \square Value distribution *D*, e.g., uniform on [0, 1]

 \Box Empirical distribution *E* over *m* samples

 \Box Bernstein Inequality + Union Bound

$$|F_{E}(v) - F_{D}(v)| \lesssim \sqrt{\frac{F_{D}(v)(1 - F_{D}(v))\log\frac{m}{\delta}}{m}} + \frac{\log\frac{m}{\delta}}{m}$$

Dominated empirical \bar{E}
 $F_{\bar{E}}(v) - F_{E}(v) \approx \sqrt{\frac{F_{E}(v)(1 - F_{E}(v))\log\frac{m}{\delta}}{m}} + \frac{\log\frac{m}{\delta}}{m}$

т

 \Box Value distribution *D*, e.g., uniform on [0, 1]

□ Empirical distribution *E* over *m* samples

 $\hfill\square$ Bernstein Inequality + Union Bound

$$\left|F_{E}(v)-F_{D}(v)\right| \lesssim \sqrt{\frac{F_{D}(v)(1-F_{D}(v))\log\frac{m}{\delta}}{m}} + \frac{\log\frac{m}{\delta}}{m}$$

 \Box Dominated empirical \overline{E}

$$F_{\bar{E}}(v) - F_{E}(v) \approx \sqrt{rac{F_{E}(v)(1 - F_{E}(v))\log \frac{m}{\delta}}{m}} + rac{\log \frac{m}{\delta}}{m}$$

 $\Box \text{ Auxiliary distribution } \overline{D} \qquad (\overline{D} \preceq \overline{E} \preceq D)$

$$F_{\overline{D}}(v) - F_{D}(v) \approx \sqrt{\frac{F_{D}(v)(1 - F_{D}(v))\log \frac{m}{\delta}}{m}} + \frac{\log \frac{m}{\delta}}{m}$$

Compute dominated empirical distribution \$\bar{E}_i\$ for each bidder \$i\$
 Return Myerson's optimal auction \$M_{\bar{E}}\$ w.r.t. \$\bar{E} = \bar{E}_1 \times \bar{E}_2 \times \cdots \times \bar{E}_n\$

 $M_{\overline{E}}(D)$ vs. OPT(D)

Compute dominated empirical distribution \$\bar{E}_i\$ for each bidder \$i\$
 Return Myerson's optimal auction \$M_{\vec{E}}\$ w.r.t. \$\bar{E} = \bar{E}_1 \times \bar{E}_2 \times \cdots \times \bar{E}_n\$

$$M_{\overline{E}}(D)$$
 vs. $OPT(D)$

□ What's the best conceivable lower bound for $M_{\bar{E}}(D)$ given $\bar{E} \leq D$?

Compute dominated empirical distribution \$\bar{E}_i\$ for each bidder \$i\$
 Return Myerson's optimal auction \$M_{\bar{E}}\$ w.r.t. \$\bar{E} = \bar{E}_1 \times \bar{E}_2 \times \cdots \times \bar{E}_n\$

$$M_{\overline{E}}(D)$$
 vs. $OPT(D)$

□ What's the best conceivable lower bound for $M_{\bar{E}}(D)$ given $\bar{E} \leq D$?

 $M_{\bar{E}}(D) \ge OPT(\bar{E})$ (strong monotonicity)

□ Compute dominated empirical distribution \bar{E}_i for each bidder *i* □ Return Myerson's optimal auction $M_{\bar{E}}$ w.r.t. $\bar{E} = \bar{E}_1 \times \bar{E}_2 \times \cdots \times \bar{E}_n$

 $M_{\overline{E}}(D)$ vs. OPT(D)

□ What's the best conceivable lower bound for $M_{\bar{E}}(D)$ given $\bar{E} \leq D$?

 $M_{\bar{E}}(D) \ge OPT(\bar{E})$ (strong monotonicity)

□ What's the best conceivable lower bound for $OPT(\bar{E})$ given $\bar{E} \succeq \bar{D}$?

Compute dominated empirical distribution \$\bar{E}_i\$ for each bidder \$i\$
 Return Myerson's optimal auction \$M_{\bar{E}}\$ w.r.t. \$\bar{E} = \bar{E}_1 \times \bar{E}_2 \times \cdots \times \bar{E}_n\$

 $M_{\overline{E}}(D)$ vs. OPT(D)

□ What's the best conceivable lower bound for $M_{\bar{E}}(D)$ given $\bar{E} \leq D$?

 $M_{\bar{E}}(D) \ge OPT(\bar{E})$ (strong monotonicity)

□ What's the best conceivable lower bound for $OPT(\bar{E})$ given $\bar{E} \succeq \bar{D}$?

 $OPT(\bar{E}) \ge OPT(\bar{D})$ (weak monotonicity)

Compute dominated empirical distribution \$\bar{E}_i\$ for each bidder \$i\$
 Return Myerson's optimal auction \$M_{\vec{E}}\$ w.r.t. \$\bar{E} = \vec{E}_1 \times \vec{E}_2 \times \cdots \times \vec{E}_n\$

$$M_{\overline{E}}(D)$$
 vs. $OPT(D)$

□ What's the best conceivable lower bound for $M_{\bar{E}}(D)$ given $\bar{E} \leq D$?

 $M_{\bar{E}}(D) \ge OPT(\bar{E})$ (strong monotonicity)

□ What's the best conceivable lower bound for $OPT(\bar{E})$ given $\bar{E} \succeq \bar{D}$?

$$OPT(\bar{E}) \ge OPT(\bar{D})$$
 (weak monotonicity)

 \Box Compare $OPT(\overline{D})$ and OPT(D)

Theorem

For any value distributions $D \succeq \overline{E}$, and the optimal auction $M_{\overline{E}}$ for \overline{E}

 $M_{\bar{E}}(D) \geq OPT(\bar{E})$

Theorem

For any value distributions $D \succeq \overline{E}$, and the optimal auction $M_{\overline{E}}$ for \overline{E}

 $M_{\bar{E}}(D) \geq OPT(\bar{E})$

Here we only prove weak monotonicity, i.e., $OPT(D) \ge OPT(\overline{E})$, via coupling

Theorem

For any value distributions $D \succeq \overline{E}$, and the optimal auction $M_{\overline{E}}$ for \overline{E}

 $M_{\bar{E}}(D) \geq OPT(\bar{E})$

Here we only prove weak monotonicity, i.e., $OPT(D) \ge OPT(\overline{E})$, via coupling

quantiles q_1, q_2, \dots, q_n

Theorem

For any value distributions $D \succeq \overline{E}$, and the optimal auction $M_{\overline{E}}$ for \overline{E}

 $M_{\bar{E}}(D) \geq OPT(\bar{E})$

Here we only prove weak monotonicity, i.e., $OPT(D) \ge OPT(\overline{E})$, via coupling

Theorem

For any value distributions $D \succeq \overline{E}$, and the optimal auction $M_{\overline{E}}$ for \overline{E}

 $M_{\bar{E}}(D) \geq OPT(\bar{E})$

Here we only prove weak monotonicity, i.e., $OPT(D) \ge OPT(\overline{E})$, via coupling

Theorem

For any value distributions $D \succeq \overline{E}$, and the optimal auction $M_{\overline{E}}$ for \overline{E}

 $M_{\bar{E}}(D) \geq OPT(\bar{E})$

Here we only prove weak monotonicity, i.e., $OPT(D) \ge OPT(\overline{E})$, via coupling

quantiles q_1, q_2, \ldots, q_n

- 1. Values $v_1, v_2, \ldots, v_n \sim D$
- 2. Allocate to bidder *i* with highest non-negative $\bar{\varphi}_{\bar{E}_i}(\bar{v}_i)$

1. Values $\bar{v}_1, \bar{v}_2, \ldots, \bar{v}_n \sim \bar{E}$

- Allocate to bidder *i* with highest non-negative \$\vec{\varphi}_{\vec{E}_i}(\vec{v}_i)\$
- 3. Winner pays threshold bid
Strong (Revenue) Monotonicity

Theorem

For any value distributions $D \succeq \overline{E}$, and the optimal auction $M_{\overline{E}}$ for \overline{E}

 $M_{\bar{E}}(D) \geq OPT(\bar{E})$

Here we only prove weak monotonicity, i.e., $OPT(D) \ge OPT(\overline{E})$, via coupling

quantiles q_1, q_2, \ldots, q_n

- 1. Values $v_1, v_2, \ldots, v_n \sim D$
- 2. Allocate to bidder *i* with highest non-negative $\bar{\varphi}_{\bar{E}_i}(\bar{v}_i)$
- 3. Winner pays threshold bid, which is **at least as large**

1. Values $\bar{v}_1, \bar{v}_2, \ldots, \bar{v}_n \sim \bar{E}$

- 2. Allocate to bidder *i* with highest non-negative $\bar{\varphi}_{\bar{E}_i}(\bar{v}_i)$
- 3. Winner pays threshold bid

Comparing OPT(D) and $OPT(\overline{D})$

Reminder

$$F_{\overline{D}}(v) - F_{D}(v) \approx \sqrt{\frac{F_{D}(v)(1-F_{D}(v))\log\frac{m}{\delta}}{m}} + \frac{\log\frac{m}{\delta}}{m}$$

Lemma If we have $m \gtrsim \frac{n \cdot (\log \frac{m}{\varepsilon \delta})^2}{\varepsilon^2}$ samples, then the auxiliary distribution \overline{D} $H(D, \overline{D}) \leq \frac{\varepsilon}{\sqrt{2}}$

Comparing OPT(D) and $OPT(\overline{D})$

Reminder

$$F_{\overline{D}}(v) - F_{D}(v) \approx \sqrt{\frac{F_{D}(v)(1-F_{D}(v))\log \frac{m}{\delta}}{m}} + \frac{\log \frac{m}{\delta}}{m}$$

Lemma If we have $m \gtrsim \frac{n \cdot (\log \frac{m}{\varepsilon \delta})^2}{\varepsilon^2}$ samples, then the auxiliary distribution \overline{D} $H(D, \overline{D}) \leq \frac{\varepsilon}{\sqrt{2}}$ $\Rightarrow TV(D, \overline{D}) \leq \varepsilon$ Comparing OPT(D) and $OPT(\overline{D})$

Reminder

$$F_{\overline{D}}(v) - F_{D}(v) \approx \sqrt{\frac{F_{D}(v)(1-F_{D}(v))\log \frac{m}{\delta}}{m}} + \frac{\log \frac{m}{\delta}}{m}$$

Lemma If we have $m \gtrsim \frac{n \cdot (\log \frac{m}{\varepsilon \delta})^2}{\varepsilon^2}$ samples, then the auxiliary distribution \overline{D} $H(D, \overline{D}) \leq \frac{\varepsilon}{\sqrt{2}}$ $\Rightarrow \qquad TV(D, \overline{D}) \leq \varepsilon$ $\Rightarrow \qquad \text{for any auction } A, \quad A(\overline{D}) \geq A(D) - \varepsilon$ Comparing OPT(D) and $OPT(\bar{D})$

Reminder

$$F_{\overline{D}}(v) - F_{D}(v) \approx \sqrt{\frac{F_{D}(v)(1-F_{D}(v))\log\frac{m}{\delta}}{m}} + \frac{\log\frac{m}{\delta}}{m}$$

Lemma If we have $m \gtrsim \frac{n \cdot (\log \frac{\pi}{c^2})^2}{c^2}$ samples, then the auxiliary distribution \overline{D} $H(D, \overline{D}) \leq \frac{\varepsilon}{\sqrt{2}}$ $TV(D, \overline{D}) < \varepsilon$ \Rightarrow for any auction A, $A(\overline{D}) \geq A(D) - \varepsilon$ \Rightarrow $OPT(\overline{D}) > OPT(D) - \varepsilon$ \Rightarrow

Summary

Distributions	Sample Complexity
[0,1]-Bounded	$\frac{n}{\varepsilon^2}$
Regular distributions	$\frac{n}{\varepsilon^3}$
MHR distributions	$\frac{n}{\varepsilon^2}$
[1, H]-bounded distributions	$\frac{Hn}{\varepsilon^2}$

Upper Bound:

Learnability of product distribution + strong (revenue) monotonicity

□ Lower Bound:

Assouad's method

Recap

Two Different Viewpoints

Learnability of Product Distributions

Strong (Revenue) Monotonicity

Further Extensions and Open Questions

□ Revenue maximization

Single-parameter auctions (e.g., multiple homogeneous items)

- Single-parameter auctions (e.g., multiple homogeneous items)
- Multi-parameter auctions (e.g., multiple heterogeneous items)
 Optimal sample complexity is still open

- Single-parameter auctions (e.g., multiple homogeneous items)
- Multi-parameter auctions (e.g., multiple heterogeneous items)
 Optimal sample complexity is still open
- Sequential decision-making in stochastic models

- Single-parameter auctions (e.g., multiple homogeneous items)
- Multi-parameter auctions (e.g., multiple heterogeneous items)
 Optimal sample complexity is still open
- Sequential decision-making in stochastic models
 - Prophet inequality Optimal sample complexity is still open

- Single-parameter auctions (e.g., multiple homogeneous items)
- Multi-parameter auctions (e.g., multiple heterogeneous items)
 Optimal sample complexity is still open
- Sequential decision-making in stochastic models
 - Prophet inequality Optimal sample complexity is still open
 - Pandora's box

- Single-parameter auctions (e.g., multiple homogeneous items)
- Multi-parameter auctions (e.g., multiple heterogeneous items)
 Optimal sample complexity is still open
- Sequential decision-making in stochastic models
 - Prophet inequality Optimal sample complexity is still open
 - Pandora's box
 - Online stochastic matching Optimal sample complexity is still open

Underestimating Value Distribution

- \Box Value distribution *D*, e.g., uniform on [0, 1]
- □ Empirical distribution *E* over *m* samples
- Bernstein Inequality + Union Bound

$$\left|F_{E}(v)-F_{D}(v)\right| \lesssim \sqrt{\frac{F_{D}(v)(1-F_{D}(v))\log\frac{m}{\delta}}{m}} + \frac{\log\frac{m}{\delta}}{m}$$

Underestimating Value Distribution

- \Box Value distribution *D*, e.g., uniform on [0, 1]
- □ Empirical distribution *E* over *m* samples
- Bernstein Inequality + Union Bound

$$\left|F_{E}(v)-F_{D}(v)\right| \lesssim \sqrt{\frac{F_{D}(v)(1-F_{D}(v))\log\frac{m}{\delta}}{m}} + \frac{\log\frac{m}{\delta}}{m}$$

Dvoretzky–Kiefer–Wolfowitz (DKW) inequality

$$\left|F_{E}(v)-F_{D}(v)\right|\lesssim\sqrt{rac{\lograc{1}{\delta}}{m}}$$

Underestimating Value Distribution

- \Box Value distribution *D*, e.g., uniform on [0, 1]
- Empirical distribution E over m samples
- Bernstein Inequality + Union Bound

$$\left|F_{E}(v)-F_{D}(v)\right| \lesssim \sqrt{\frac{F_{D}(v)(1-F_{D}(v))\log\frac{m}{\delta}}{m}} + \frac{\log\frac{m}{\delta}}{m}$$

Dvoretzky–Kiefer–Wolfowitz (DKW) inequality

$$\left|F_{E}(v)-F_{D}(v)\right|\lesssim\sqrt{rac{\lograc{1}{\delta}}{m}}$$

□ **Open question:** Is there a Bernstein-style DKW inequality?

Bidders may underbid today in order to get a lower price tomorrow

- Bidders may underbid today in order to get a lower price tomorrow
- □ Can we learn optimal auctions despite of bidders' strategic behaviors?

- Bidders may underbid today in order to get a lower price tomorrow
- □ Can we learn optimal auctions despite of bidders' strategic behaviors?
 - Impossible if bidders are patient

- Bidders may underbid today in order to get a lower price tomorrow
- □ Can we learn optimal auctions despite of bidders' strategic behaviors?
 - Impossible if bidders are patient
 - Possible for relatively simple auctions, and impatient bidders (with slower convergence rate than learning form non-strategic bidders)

- Bidders may underbid today in order to get a lower price tomorrow
- □ Can we learn optimal auctions despite of bidders' strategic behaviors?
 - Impossible if bidders are patient
 - Possible for relatively simple auctions, and impatient bidders (with slower convergence rate than learning form non-strategic bidders)
 - **Open question:** Is the slower convergence rate avoidable?

References

- 1. Chenghao Guo, Zhiyi Huang, and Xinzhi Zhang. *"Settling the sample complexity of single-parameter revenue maximization."* In Proceedings of the 51st Annual ACM Symposium on Theory of Computing, ACM, pp. 662–673, 2019.
- Chenghao Guo, Zhiyi Huang, Zhihao Gavin Tang, and Xinzhi Zhang. "Generalizing complex hypotheses on product distributions: auctions, prophet inequalities, and Pandora's problem." In Proceedings of the 34th Annual Conference on Learning Theory, PMLR, pp. 2248–2288, 2021.
- 3. Ziyun Chen, Zhiyi Huang, Dorsa Madji, Zipeng Yan. *"Strong revenue (non-)monotonicity of single-parameter auctions."* In Proceedings of the 24th ACM Conference on Economics and Computation, ACM, pp. 452–471, 2023.