Data-Driven Auction Design III
 Learnability of Product Distributions and Strong Revenue Monotonicity

Zhiyi Huang

University of Hong Kong

Recap

Two Different Viewpoints

Learnability of Product Distributions

Strong (Revenue) Monotonicity

Further Extensions and Open Questions

Recap: Single-Item Auctions

\square Sell 1 item to n bidders, to maximize revenue
\square Bidder i 's value v_{i} is drawn independently from D_{i}

Recap: Single-Item Auctions

\square Sell 1 item to n bidders, to maximize revenue
\square Bidder i 's value v_{i} is drawn independently from D_{i}
\square Direct revelation auction

1. Bidders bid $b_{1}, b_{2}, \ldots, b_{n}$
2. Seller picks allocations $x_{1}, x_{2}, \ldots, x_{n}$ and payments $p_{1}, p_{2}, \ldots, p_{n}$
3. Bidder i wins the item w.p. x_{i}, pays p_{i}, gets utility $v_{i} x_{i}-p_{i}$

Recap: Single-Item Auctions

\square Sell 1 item to n bidders, to maximize revenue
\square Bidder i 's value v_{i} is drawn independently from D_{i}
\square Direct revelation auction

1. Bidders bid $b_{1}, b_{2}, \ldots, b_{n}$
2. Seller picks allocations $x_{1}, x_{2}, \ldots, x_{n}$ and payments $p_{1}, p_{2}, \ldots, p_{n}$
3. Bidder i wins the item w.p. x_{i}, pays p_{i}, gets utility $v_{i} x_{i}-p_{i}$
\square Dominant-Strategy Incentive Compatible (DSIC)

$$
\forall i, v_{i}, b_{i}, b_{-i}: \quad v_{i} x_{i}\left(v_{i}, b_{-i}\right)-p_{i}\left(v_{i}, b_{-i}\right) \geq v_{i} x_{i}\left(b_{i}, b_{-i}\right)-p_{i}\left(b_{i}, b_{-i}\right)
$$

Recap: Single-Item Auctions

\square Sell 1 item to n bidders, to maximize revenue
\square Bidder i 's value v_{i} is drawn independently from D_{i}
\square Direct revelation auction

1. Bidders bid $b_{1}, b_{2}, \ldots, b_{n}$
2. Seller picks allocations $x_{1}, x_{2}, \ldots, x_{n}$ and payments $p_{1}, p_{2}, \ldots, p_{n}$
3. Bidder i wins the item w.p. x_{i}, pays p_{i}, gets utility $v_{i} x_{i}-p_{i}$
\square Dominant-Strategy Incentive Compatible (DSIC)

$$
\forall i, v_{i}, b_{i}, b_{-i}: \quad v_{i} x_{i}\left(v_{i}, b_{-i}\right)-p_{i}\left(v_{i}, b_{-i}\right) \geq v_{i} x_{i}\left(b_{i}, b_{-i}\right)-p_{i}\left(b_{i}, b_{-i}\right)
$$

\square Individually Rational (IR)

$$
\forall i, v_{i}, b_{-i}: \quad v_{i} x_{i}\left(v_{i}, b_{-i}\right)-p_{i}\left(v_{i}, b_{-i}\right) \geq 0
$$

Recap: Myerson's Theory

\square DSIC and IR are equivalent to

1. $x_{i}\left(v_{i}, b_{-i}\right)$ is monotone (e.g., step function)
2. $p_{i}\left(v_{i}, b_{-i}\right)$ is the area on the left of $x_{i}\left(v_{i}, b_{-i}\right)$ as a function of v_{i} (e.g., threshold price above which $x_{i}=1$, if x_{i} is a step function)

Recap: Myerson's Theory

\square DSIC and IR are equivalent to

1. $x_{i}\left(v_{i}, b_{-i}\right)$ is monotone (e.g., step function)
2. $p_{i}\left(v_{i}, b_{-i}\right)$ is the area on the left of $x_{i}\left(v_{i}, b_{-i}\right)$ as a function of v_{i} (e.g., threshold price above which $x_{i}=1$, if x_{i} is a step function)
\square Expected revenue is equivalent to expected virtual welfare

$$
\mathbf{E} \sum_{i=1}^{n} \varphi_{i}\left(v_{i}\right) x_{i}
$$

where the virtual value φ_{i} is

$$
\varphi_{i}\left(v_{i}\right)=v_{i}-\frac{1-F_{i}\left(v_{i}\right)}{f_{i}\left(v_{i}\right)}
$$

Recap: Myerson's Optimal (Single-Item) Auction

$\square \bar{R}(q)$ is concave closure of revenue curve

- Max expected revenue given sale prob. q
\square Ironed virtual value $\bar{\varphi}_{i}\left(v_{i}\right)$ is $\bar{R}(q)$'s derivative
- Quantile q 's marginal revenue contribution
\square Highest non-negative ironed virtual value wins
\square Winner pays threshold winning bid i.e., lowest bid above which he/she wins
\square Expected revenue is at most $\mathbf{E} \sum_{i=1}^{n} \bar{\varphi}_{i}\left(v_{i}\right) x_{i}$
 with equality if values in an ironed interval are treated as the same

Recap: Data-Driven Optimal (Single-Item) Auction

\square Sample Complexity/Statistical Learning Model

- Take m i.i.d. samples from $D=D_{1} \times D_{2} \times \cdots \times D_{m}$ as input
- Output a DSIC and IR auction A
\square How many samples are needed to pick a near optimal A "up to an ε margin"?
- ε additive approximation
[0, 1]-bounded distributions
(illustrative example)
- $1-\varepsilon$ (multiplicative) approximation

Regular distributions
(i.e., concave revenue curve)

MHR distributions
(i.e., "strongly concave" revenue curve)
[$1, H]$-bounded distributions
\square The sample complexity is smallest number of samples needed

Recap: Summary of Upper and Lower Bounds So Far

Distributions	Upper Bound	Lower Bound
$[0,1]$-Bounded	$\frac{n}{\varepsilon^{3}}$	$\frac{n}{\varepsilon^{2}}$
Regular distributions	$\frac{n}{\varepsilon^{4}}$	$\frac{n}{\varepsilon^{3}}$
MHR distributions	$\frac{n}{\varepsilon^{3}}$	$\frac{n}{\varepsilon^{2}}$
$[1, H]$-bounded distributions	$\frac{H n}{\varepsilon^{3}}$	$\frac{H n}{\varepsilon^{2}}$

\square Upper Bound:
Concentration inequality + covering of auction space + union bound
\square Lower Bound:
Assouad's method

Recap: Concentration Inequalities

Theorem (Chernoff-Hoeffding, User-Friendly Version)
$X_{1}, X_{2}, \ldots, X_{m}$ are i.i.d. $R V$ over $[0,1]$. Let $\mu=\mathbf{E} X_{i}$. With probability $1-\delta$ we have

$$
\left|\frac{1}{m} \sum_{i=1}^{m} X_{i}-\mu\right| \lesssim \sqrt{\frac{\log \frac{1}{\delta}}{m}}
$$

Theorem (Bernstein Inequality, User-Friendly Version)

$X_{1}, X_{2}, \ldots, X_{m}$ are i.i.d. $R V$ over $[0,1]$. Let $\mu=\mathbf{E} X_{i}$. With probability $1-\delta$ we have

$$
\left|\frac{1}{m} \sum_{i=1}^{m} X_{i}-\mu\right| \lesssim \max \left\{\sqrt{\frac{\mu(1-\mu) \log \frac{1}{\delta}}{m}}, \frac{\log \frac{1}{\delta}}{m}\right\}
$$

Recap

Two Different Viewpoints

Learnability of Product Distributions

Strong (Revenue) Monotonicity

Further Extensions and Open Questions

Learning Prices' Revenue vs. Learning Value Distribution

\square Recall our approach for data-driven optimal pricing

- It suffices to learn the revenue of every price up to ε
- For each price, estimating its revenue reduces to estimating its quantile

Learning Prices' Revenue vs. Learning Value Distribution

\square Recall our approach for data-driven optimal pricing

- It suffices to learn the revenue of every price up to ε
- For each price, estimating its revenue reduces to estimating its quantile
\square Next consider an alternative approach

Learning Prices' Revenue vs. Learning Value Distribution

\square Recall our approach for data-driven optimal pricing

- It suffices to learn the revenue of every price up to ε
- For each price, estimating its revenue reduces to estimating its quantile
\square Next consider an alternative approach
- It suffices to learn the distribution up to ε w.r.t. its CDF/quantile, i.e.

$$
\sup _{v \in[0,1]}|\underbrace{F_{D}(v)}_{\text {true CDF }}-\underbrace{F_{E}(v)}_{\text {estimated CDF }}| \leq \varepsilon \quad \text { (Kolmogorov distance) }
$$

Learning Prices' Revenue vs. Learning Value Distribution

\square Recall our approach for data-driven optimal pricing

- It suffices to learn the revenue of every price up to ε
- For each price, estimating its revenue reduces to estimating its quantile
\square Next consider an alternative approach
- It suffices to learn the distribution up to ε w.r.t. its CDF/quantile, i.e.

$$
\sup _{v \in[0,1]}|\underbrace{F_{D}(v)}_{\text {true CDF }}-\underbrace{F_{E}(v)}_{\text {estimated CDF }}| \leq \varepsilon \quad \text { (Kolmogorov distance) }
$$

- Then, for each price, we know its revenue up to ε

Learning Prices' Revenue vs. Learning Value Distribution

\square Recall our approach for data-driven optimal pricing

- It suffices to learn the revenue of every price up to ε
- For each price, estimating its revenue reduces to estimating its quantile
\square Next consider an alternative approach
- It suffices to learn the distribution up to ε w.r.t. its CDF/quantile, i.e.

$$
\sup _{v \in[0,1]}|\underbrace{F_{D}(v)}_{\text {true CDF }}-\underbrace{F_{E}(v)}_{\text {estimated CDF }}| \leq \varepsilon \quad \text { (Kolmogorov distance) }
$$

- Then, for each price, we know its revenue up to ε
\square Two approaches coincide for pricing...

Learning Prices' Revenue vs. Learning Value Distribution

\square Recall our approach for data-driven optimal pricing

- It suffices to learn the revenue of every price up to ε
- For each price, estimating its revenue reduces to estimating its quantile
\square Next consider an alternative approach
- It suffices to learn the distribution up to ε w.r.t. its CDF/quantile, i.e.

$$
\sup _{v \in[0,1]}|\underbrace{F_{D}(v)}_{\text {true CDF }}-\underbrace{F_{E}(v)}_{\text {estimated CDF }}| \leq \varepsilon \quad \text { (Kolmogorov distance) }
$$

- Then, for each price, we know its revenue up to ε
\square Two approaches coincide for pricing... but not for auctions

Lower Confidence (Revenue) Bounds vs. Underestimating Distribution

\square Recall the take-home question regarding optimal pricing

- Different value distributions require different regularization in Lecture I
- Can we get all upper bounds using the same algorithm?

Lower Confidence (Revenue) Bounds vs. Underestimating Distribution

\square Recall the take-home question regarding optimal pricing

- Different value distributions require different regularization in Lecture I
- Can we get all upper bounds using the same algorithm?
\square Lower Confidence Bound (LCB), e.g., choose p to maximize

$$
p \cdot\left(\frac{\mid \text { number of samples } \geq p \mid}{m}-\sqrt{\frac{\log \frac{1}{\delta}}{m}}\right)
$$

Lower Confidence (Revenue) Bounds vs. Underestimating Distribution

\square Recall the take-home question regarding optimal pricing

- Different value distributions require different regularization in Lecture I
- Can we get all upper bounds using the same algorithm?
\square Lower Confidence Bound (LCB), e.g., choose p to maximize

$$
p \cdot\left(\frac{\mid \text { number of samples } \geq p \mid}{m}-\sqrt{\frac{\log \frac{1}{\delta}}{m}}\right)
$$

\square Alternatively, consider an underestimation of the value distribution, e.g.

$$
F_{E}(v)=\frac{\mid \text { number of samples } \leq v \mid}{m}+\sqrt{\frac{\log \frac{1}{\delta}}{m}}
$$

Lower Confidence (Revenue) Bounds vs. Underestimating Distribution

\square Recall the take-home question regarding optimal pricing

- Different value distributions require different regularization in Lecture I
- Can we get all upper bounds using the same algorithm?
\square Lower Confidence Bound (LCB), e.g., choose p to maximize

$$
p \cdot\left(\frac{\mid \text { number of samples } \geq p \mid}{m}-\sqrt{\frac{\log \frac{1}{\delta}}{m}}\right)
$$

\square Alternatively, consider an underestimation of the value distribution, e.g.

$$
F_{E}(v)=\frac{\mid \text { number of samples } \leq v \mid}{m}+\sqrt{\frac{\log \frac{1}{\delta}}{m}}
$$

\square Two approaches coincide for pricing...

Lower Confidence (Revenue) Bounds vs. Underestimating Distribution

\square Recall the take-home question regarding optimal pricing

- Different value distributions require different regularization in Lecture I
- Can we get all upper bounds using the same algorithm?
\square Lower Confidence Bound (LCB), e.g., choose p to maximize

$$
p \cdot\left(\frac{\mid \text { number of samples } \geq p \mid}{m}-\sqrt{\frac{\log \frac{1}{\delta}}{m}}\right)
$$

\square Alternatively, consider an underestimation of the value distribution, e.g.

$$
F_{E}(v)=\frac{\mid \text { number of samples } \leq v \mid}{m}+\sqrt{\frac{\log \frac{1}{\delta}}{m}}
$$

\square Two approaches coincide for pricing... but not for auctions

Data-Driven (Single-Item) Auction via Learning Value Distribution

\square Product empirical distribution $E=E_{1} \times E_{2} \times \cdots \times E_{n}$

- E_{i} is uniform distribution over bidder i 's value samples

Data-Driven (Single-Item) Auction via Learning Value Distribution

\square Product empirical distribution $E=E_{1} \times E_{2} \times \cdots \times E_{n}$

- E_{i} is uniform distribution over bidder i 's value samples
\square Dominated product empirical distribution $\bar{E}=\bar{E}_{1} \times \bar{E}_{2} \times \cdots \times \bar{E}_{n}$

$$
F_{\bar{E}_{i}}(v)=F_{E_{i}}(v)+\sqrt{\frac{F_{E_{i}}(v)\left(1-F_{E_{i}}(v)\right)}{m}}
$$

(simplified incorrect form for illustration)

Data-Driven (Single-Item) Auction via Learning Value Distribution

\square Product empirical distribution $E=E_{1} \times E_{2} \times \cdots \times E_{n}$

- E_{i} is uniform distribution over bidder i 's value samples
\square Dominated product empirical distribution $\bar{E}=\bar{E}_{1} \times \bar{E}_{2} \times \cdots \times \bar{E}_{n}$

$$
F_{\bar{E}_{i}}(v)=F_{E_{i}}(v)+\sqrt{\frac{F_{E_{i}}(v)\left(1-F_{E_{i}}(v)\right)}{m}}
$$

(simplified incorrect form for illustration)
\square Return Myerson's optimal auction w.r.t. E or \bar{E}

```
Recap
Two Different Viewpoints
```

Learnability of Product Distributions
Strong (Revenue) Monotonicity
Further Extensions and Open Questions

Hellinger Distance

$$
\mathrm{H}(P, Q)=\frac{1}{\sqrt{2}}\|\sqrt{P}-\sqrt{Q}\|_{2}=\sqrt{\frac{1}{2} \sum_{v}(\sqrt{P(v)}-\sqrt{Q(v)})^{2}}
$$

Hellinger Distance

$$
\mathrm{H}(P, Q)=\frac{1}{\sqrt{2}}\|\sqrt{P}-\sqrt{Q}\|_{2}=\sqrt{\frac{1}{2} \sum_{v}(\sqrt{P(v)}-\sqrt{Q(v)})^{2}}
$$

\square Direct product

$$
1-\mathrm{H}\left(P_{1} \times \cdots \times P_{n}, Q_{1} \times \cdots \times Q_{n}\right)^{2}=\prod_{i=1}^{n}\left(1-\mathrm{H}\left(P_{i}, Q_{i}\right)^{2}\right)
$$

Hellinger Distance

$$
\mathrm{H}(P, Q)=\frac{1}{\sqrt{2}}\|\sqrt{P}-\sqrt{Q}\|_{2}=\sqrt{\frac{1}{2} \sum_{v}\left(\sqrt{P(v)}-\sqrt{Q(v))^{2}}\right.}
$$

\square Direct product

$$
1-\mathrm{H}\left(P_{1} \times \cdots \times P_{n}, Q_{1} \times \cdots \times Q_{n}\right)^{2}=\prod_{i=1}^{n}\left(1-\mathrm{H}\left(P_{i}, Q_{i}\right)^{2}\right)
$$

\square This implies sub-additivity

$$
\mathrm{H}\left(P_{1} \times \cdots \times P_{n}, Q_{1} \times \cdots \times Q_{n}\right)^{2} \leq \sum_{i=1}^{n} \mathrm{H}\left(P_{i}, Q_{i}\right)^{2}
$$

Hellinger, Kullback-Leibler, and Total Variation

\square Relation to TV

$$
\mathrm{H}(P, Q)^{2} \leq \mathrm{TV}(P, Q) \leq \sqrt{2} \cdot \mathrm{H}(P, Q)
$$

Hellinger, Kullback-Leibler, and Total Variation

\square Relation to TV

$$
\mathrm{H}(P, Q)^{2} \leq \mathrm{TV}(P, Q) \leq \sqrt{2} \cdot \mathrm{H}(P, Q)
$$

\square Relation to KL

$$
\mathrm{H}(P, Q)^{2} \leq \mathrm{KL}(P \| Q)
$$

Hellinger, Kullback-Leibler, and Total Variation

\square Relation to TV

$$
\mathrm{H}(P, Q)^{2} \leq \mathrm{TV}(P, Q) \leq \sqrt{2} \cdot \mathrm{H}(P, Q)
$$

\square Relation to KL

$$
\mathrm{H}(P, Q)^{2} \leq \mathrm{KL}(P \| Q)
$$

\square Why TV is called total variation distance?

Hellinger, Kullback-Leibler, and Total Variation

\square Relation to TV

$$
\mathrm{H}(P, Q)^{2} \leq \mathrm{TV}(P, Q) \leq \sqrt{2} \cdot \mathrm{H}(P, Q)
$$

\square Relation to KL

$$
\mathrm{H}(P, Q)^{2} \leq \mathrm{KL}(P \| Q)
$$

\square Why TV is called total variation distance?

- P and Q are distributions over \mathcal{T}
- $h: \mathcal{T} \rightarrow[0,1]$ is a function

Hellinger, Kullback-Leibler, and Total Variation

\square Relation to TV

$$
\mathrm{H}(P, Q)^{2} \leq \mathrm{TV}(P, Q) \leq \sqrt{2} \cdot \mathrm{H}(P, Q)
$$

\square Relation to KL

$$
\mathrm{H}(P, Q)^{2} \leq \mathrm{KL}(P \| Q)
$$

\square Why TV is called total variation distance?

- P and Q are distributions over \mathcal{T}
- $h: \mathcal{T} \rightarrow[0,1]$ is a function
- We have

$$
\left|\mathbf{E}_{v \sim P} h(v)-\mathbf{E}_{v \sim Q} h(v)\right| \leq \operatorname{TV}(P, Q)
$$

Learnability of Distribution

Theorem
If D has support size k, E is empirical distribution over $m \approx \frac{k+\log \frac{1}{\delta}}{\varepsilon^{2}}$ i.i.d. samples, then

$$
\mathrm{H}(D, E) \leq \varepsilon
$$

Learnability of Distribution

Theorem
If D has support size k, E is empirical distribution over $m \approx \frac{k+\log \frac{1}{\delta}}{\varepsilon^{2}}$ i.i.d. samples, then

$$
\mathrm{H}(D, E) \leq \varepsilon
$$

\square Here we prove a weaker result $\mathbf{E} H(D, E) \lesssim \sqrt{\frac{k}{m}}$

$$
(\mathbf{E H}(D, E))^{2} \leq \mathbf{E H}(D, E)^{2}
$$

Learnability of Distribution

Theorem
If D has support size k, E is empirical distribution over $m \approx \frac{k+\log \frac{1}{\delta}}{\varepsilon^{2}}$ i.i.d. samples, then

$$
\mathrm{H}(D, E) \leq \varepsilon
$$

\square Here we prove a weaker result $\mathbf{E} H(D, E) \lesssim \sqrt{\frac{k}{m}}$

$$
(\mathbf{E H}(D, E))^{2} \leq \mathbf{E} H(D, E)^{2}=\sum_{v} \mathbf{E}(\sqrt{D(v)}-\sqrt{E(v)})^{2}
$$

Learnability of Distribution

Theorem
If D has support size k, E is empirical distribution over $m \approx \frac{k+\log \frac{1}{\delta}}{\varepsilon^{2}}$ i.i.d. samples, then

$$
\mathrm{H}(D, E) \leq \varepsilon
$$

- Here we prove a weaker result $\mathbf{E H}(D, E) \lesssim \sqrt{\frac{k}{m}}$

$$
(\mathbf{E H}(D, E))^{2} \leq \mathbf{E H}(D, E)^{2}=\sum_{v} \mathbf{E}(\sqrt{D(v)}-\sqrt{E(v)})^{2}
$$

- It suffices to bound $\mathbf{E}(\sqrt{D(v)}-\sqrt{E(v)})^{2}$ for any v

$$
\mathbf{E} \frac{(D(v)-E(v))^{2}}{(\sqrt{D(v)}+\sqrt{E(v)})^{2}}
$$

Learnability of Distribution

Theorem

If D has support size k, E is empirical distribution over $m \approx \frac{k+\log \frac{1}{\delta}}{\varepsilon^{2}}$ i.i.d. samples, then

$$
\mathrm{H}(D, E) \leq \varepsilon
$$

\square Here we prove a weaker result $\mathbf{E H}(D, E) \lesssim \sqrt{\frac{k}{m}}$

$$
(\mathbf{E H}(D, E))^{2} \leq \mathbf{E H}(D, E)^{2}=\sum_{v} \mathbf{E}(\sqrt{D(v)}-\sqrt{E(v)})^{2}
$$

- It suffices to bound $\mathbf{E}(\sqrt{D(v)}-\sqrt{E(v)})^{2}$ for any v

$$
\mathbf{E} \frac{(D(v)-E(v))^{2}}{(\sqrt{D(v)}+\sqrt{E(v)})^{2}} \leq \underbrace{\mathbf{E} \frac{(D(v)-E(v))^{2}}{D(v)}}_{\chi^{2} \text { distance }}
$$

Learnability of Distribution

Theorem
If D has support size k, E is empirical distribution over $m \approx \frac{k+\log \frac{1}{\delta}}{\varepsilon^{2}}$ i.i.d. samples, then

$$
\mathrm{H}(D, E) \leq \varepsilon
$$

- Here we prove a weaker result $\mathbf{E H}(D, E) \lesssim \sqrt{\frac{k}{m}}$

$$
(\mathbf{E H}(D, E))^{2} \leq \mathbf{E H}(D, E)^{2}=\sum_{v} \mathbf{E}(\sqrt{D(v)}-\sqrt{E(v)})^{2}
$$

- It suffices to bound $\mathbf{E}(\sqrt{D(v)}-\sqrt{E(v)})^{2}$ for any v

$$
\mathbf{E} \frac{(D(v)-E(v))^{2}}{(\sqrt{D(v)}+\sqrt{E(v)})^{2}} \leq \underbrace{\mathbf{E} \frac{(D(v)-E(v))^{2}}{D(v)}}_{\chi^{2} \text { distance }}=\frac{1}{m}(1-D(v)) \leq \frac{1}{m}
$$

Learnability of Product Distribution

Theorem

If $D=D_{1} \times D_{2} \times \cdots \times D_{n}$ and each D_{i} has support size $k, E=E_{1} \times E_{2} \times \cdots \times E_{n}$ is the product empirical distribution over $m \approx \frac{k n+\log \frac{1}{\delta}}{\varepsilon^{2}}$ i.i.d. samples, then

$$
\mathrm{H}(D, E) \leq \varepsilon
$$

Learnability of Product Distribution

Theorem

If $D=D_{1} \times D_{2} \times \cdots \times D_{n}$ and each D_{i} has support size $k, E=E_{1} \times E_{2} \times \cdots \times E_{n}$ is the product empirical distribution over $m \approx \frac{k n+\log \frac{1}{\partial}}{\varepsilon^{2}}$ i.i.d. samples, then

$$
\mathrm{H}(D, E) \leq \varepsilon
$$

- Again, we prove a weaker result $\mathbf{E H}(D, E) \lesssim \sqrt{\frac{k n}{m}}$

Learnability of Product Distribution

Theorem

If $D=D_{1} \times D_{2} \times \cdots \times D_{n}$ and each D_{i} has support size $k, E=E_{1} \times E_{2} \times \cdots \times E_{n}$ is the product empirical distribution over $m \approx \frac{k n+\log \frac{1}{d}}{\varepsilon^{2}}$ i.i.d. samples, then

$$
\mathrm{H}(D, E) \leq \varepsilon
$$

- Again, we prove a weaker result $\mathbf{E H}(D, E) \lesssim \sqrt{\frac{k n}{m}}$

$$
(\mathbf{E H}(D, E))^{2} \leq \mathbf{E H}(D, E)^{2}
$$

Learnability of Product Distribution

Theorem

If $D=D_{1} \times D_{2} \times \cdots \times D_{n}$ and each D_{i} has support size $k, E=E_{1} \times E_{2} \times \cdots \times E_{n}$ is the product empirical distribution over $m \approx \frac{k n+\log \frac{1}{d}}{\varepsilon^{2}}$ i.i.d. samples, then

$$
\mathrm{H}(D, E) \leq \varepsilon
$$

- Again, we prove a weaker result $\mathbf{E H}(D, E) \lesssim \sqrt{\frac{k n}{m}}$

$$
(\mathbf{E H}(D, E))^{2} \leq \mathbf{E H}(D, E)^{2} \leq \sum_{i=1}^{n} \mathbf{E H}\left(D_{i}, E_{i}\right)^{2}
$$

Learnability of Product Distribution

Theorem

If $D=D_{1} \times D_{2} \times \cdots \times D_{n}$ and each D_{i} has support size $k, E=E_{1} \times E_{2} \times \cdots \times E_{n}$ is the product empirical distribution over $m \approx \frac{k n+\log \frac{1}{d}}{\varepsilon^{2}}$ i.i.d. samples, then

$$
\mathrm{H}(D, E) \leq \varepsilon
$$

- Again, we prove a weaker result $\mathbf{E H}(D, E) \lesssim \sqrt{\frac{k n}{m}}$

$$
(\mathbf{E H}(D, E))^{2} \leq \mathbf{E H}(D, E)^{2} \leq \sum_{i=1}^{n} \mathbf{E} H\left(D_{i}, E_{i}\right)^{2} \leq \sum_{i=1}^{n} \frac{k}{m}
$$

Learnability of Product Distribution

Theorem

If $D=D_{1} \times D_{2} \times \cdots \times D_{n}$ and each D_{i} has support size $k, E=E_{1} \times E_{2} \times \cdots \times E_{n}$ is the product empirical distribution over $m \approx \frac{k n+\log \frac{1}{d}}{\varepsilon^{2}}$ i.i.d. samples, then

$$
\mathrm{H}(D, E) \leq \varepsilon
$$

- Again, we prove a weaker result $\mathbf{E H}(D, E) \lesssim \sqrt{\frac{k n}{m}}$

$$
(\mathbf{E H}(D, E))^{2} \leq \mathbf{E H}(D, E)^{2} \leq \sum_{i=1}^{n} \mathbf{E} H\left(D_{i}, E_{i}\right)^{2} \leq \sum_{i=1}^{n} \frac{k}{m}=\frac{k n}{m}
$$

Implications to Data-Driven Auction Design

$\square D=D_{1} \times D_{2} \times \cdots \times D_{n}$ is an n-dimensional product value distribution

Implications to Data-Driven Auction Design

$\square D=D_{1} \times D_{2} \times \cdots \times D_{n}$ is an n-dimensional product value distribution

- We may think of each dimension's support size as $k=\frac{1}{\varepsilon}$ because we can round values v_{i} to $\left\lfloor v_{i}\right\rfloor_{\varepsilon}$ (closest multiple of ε)

Implications to Data-Driven Auction Design

$\square D=D_{1} \times D_{2} \times \cdots \times D_{n}$ is an n-dimensional product value distribution

- We may think of each dimension's support size as $k=\frac{1}{\varepsilon}$ because we can round values v_{i} to $\left\lfloor v_{i}\right\rfloor_{\varepsilon}$ (closest multiple of ε)
- Formally, let $\lfloor D\rfloor_{\varepsilon}$ be the distribution of rounded value profile

$$
O P T\left(\lfloor D\rfloor_{\varepsilon}\right) \geq O P T(D)-\varepsilon
$$

Implications to Data-Driven Auction Design

$\square D=D_{1} \times D_{2} \times \cdots \times D_{n}$ is an n-dimensional product value distribution

- We may think of each dimension's support size as $k=\frac{1}{\varepsilon}$ because we can round values v_{i} to $\left\lfloor v_{i}\right\rfloor_{\varepsilon}$ (closest multiple of ε)
- Formally, let $\lfloor D\rfloor_{\varepsilon}$ be the distribution of rounded value profile

$$
O P T\left(\lfloor D\rfloor_{\varepsilon}\right) \geq O P T(D)-\varepsilon
$$

$\square E=E_{1} \times E_{2} \times \cdots \times E_{n}$ is product empirical distribution from m rounded samples

- E_{i} is the uniform distribution over bidder i 's rounded sample values

Implications to Data-Driven Auction Design

$\square D=D_{1} \times D_{2} \times \cdots \times D_{n}$ is an n-dimensional product value distribution

- We may think of each dimension's support size as $k=\frac{1}{\varepsilon}$ because we can round values v_{i} to $\left\lfloor v_{i}\right\rfloor_{\varepsilon}$ (closest multiple of ε)
- Formally, let $\lfloor D\rfloor_{\varepsilon}$ be the distribution of rounded value profile

$$
O P T\left(\lfloor D\rfloor_{\varepsilon}\right) \geq O P T(D)-\varepsilon
$$

$\square E=E_{1} \times E_{2} \times \cdots \times E_{n}$ is product empirical distribution from m rounded samples

- E_{i} is the uniform distribution over bidder i 's rounded sample values

Theorem

With $m \gtrsim \frac{n}{\varepsilon^{3}}+\frac{\log \frac{1}{\delta}}{\varepsilon^{2}}$ samples, Myerson's optimal auction M_{E} w.r.t. E is an ε additiive approximation w.p. $1-\delta$.

```
Recap
```


Two Different Viewpoints

Learnability of Product Distributions

Strong (Revenue) Monotonicity

Further Extensions and Open Questions

Underestimating Value Distribution

\square Value distribution D, e.g., uniform on $[0,1]$

Underestimating Value Distribution

\square Value distribution D, e.g., uniform on $[0,1]$
\square Empirical distribution E over m samples

Underestimating Value Distribution

\square Value distribution D, e.g., uniform on $[0,1]$
\square Empirical distribution E over m samples
\square Bernstein Inequality + Union Bound

$$
\left|F_{E}(v)-F_{D}(v)\right| \lesssim \sqrt{\frac{F_{D}(v)\left(1-F_{D}(v)\right) \log \frac{m}{\delta}}{m}}+\frac{\log \frac{m}{\delta}}{m}
$$

Underestimating Value Distribution

\square Value distribution D, e.g., uniform on $[0,1]$
\square Empirical distribution E over m samples
\square Bernstein Inequality + Union Bound

$$
\left|F_{E}(v)-F_{D}(v)\right| \lesssim \sqrt{\frac{F_{D}(v)\left(1-F_{D}(v)\right) \log \frac{m}{\delta}}{m}}+\frac{\log \frac{m}{\delta}}{m}
$$

\square Dominated empirical \bar{E}

$$
F_{\bar{E}}(v)-F_{E}(v) \approx \sqrt{\frac{F_{E}(v)\left(1-F_{E}(v)\right) \log \frac{m}{\delta}}{m}}+\frac{\log \frac{m}{\delta}}{m}
$$

Underestimating Value Distribution

\square Value distribution D, e.g., uniform on $[0,1]$
\square Empirical distribution E over m samples
\square Bernstein Inequality + Union Bound

$$
\left|F_{E}(v)-F_{D}(v)\right| \lesssim \sqrt{\frac{F_{D}(v)\left(1-F_{D}(v)\right) \log \frac{m}{\delta}}{m}}+\frac{\log \frac{m}{\delta}}{m}
$$

\square Dominated empirical \bar{E}

$$
F_{\bar{E}}(v)-F_{E}(v) \approx \sqrt{\frac{F_{E}(v)\left(1-F_{E}(v)\right) \log \frac{m}{\delta}}{m}}+\frac{\log \frac{m}{\delta}}{m}
$$

Underestimating Value Distribution

\square Value distribution D, e.g., uniform on $[0,1]$
\square Empirical distribution E over m samples
\square Bernstein Inequality + Union Bound

$$
\left|F_{E}(v)-F_{D}(v)\right| \lesssim \sqrt{\frac{F_{D}(v)\left(1-F_{D}(v)\right) \log \frac{m}{\delta}}{m}}+\frac{\log \frac{m}{\delta}}{m}
$$

\square Dominated empirical \bar{E}

$$
F_{\bar{E}}(v)-F_{E}(v) \approx \sqrt{\frac{F_{E}(v)\left(1-F_{E}(v)\right) \log \frac{m}{\delta}}{m}}+\frac{\log \frac{m}{\delta}}{m}
$$

\square Auxiliary distribution \bar{D}

$$
(\bar{D} \preceq \bar{E} \preceq D)
$$

$$
F_{\bar{D}}(v)-F_{D}(v) \approx \sqrt{\frac{F_{D}(v)\left(1-F_{D}(v)\right) \log \frac{m}{\delta}}{m}}+\frac{\log \frac{m}{\delta}}{m}
$$

Dominated Empirical Myerson's Auction

\square Compute dominated empirical distribution \bar{E}_{i} for each bidder i
\square Return Myerson's optimal auction $M_{\bar{E}}$ w.r.t. $\bar{E}=\bar{E}_{1} \times \bar{E}_{2} \times \cdots \times \bar{E}_{n}$

$$
M_{\bar{E}}(D) \quad \text { vs. } \quad O P T(D)
$$

Dominated Empirical Myerson's Auction

\square Compute dominated empirical distribution \bar{E}_{i} for each bidder i
\square Return Myerson's optimal auction $M_{\bar{E}}$ w.r.t. $\bar{E}=\bar{E}_{1} \times \bar{E}_{2} \times \cdots \times \bar{E}_{n}$

$$
M_{\bar{E}}(D) \quad \text { vs. } \quad O P T(D)
$$

\square What's the best conceivable lower bound for $M_{\bar{E}}(D)$ given $\bar{E} \preceq D$?

Dominated Empirical Myerson's Auction

\square Compute dominated empirical distribution \bar{E}_{i} for each bidder i
\square Return Myerson's optimal auction $M_{\bar{E}}$ w.r.t. $\bar{E}=\bar{E}_{1} \times \bar{E}_{2} \times \cdots \times \bar{E}_{n}$

$$
M_{\bar{E}}(D) \quad \text { vs. } \quad O P T(D)
$$

\square What's the best conceivable lower bound for $M_{\bar{E}}(D)$ given $\bar{E} \preceq D$?

$$
M_{\bar{E}}(D) \geq O P T(\bar{E})
$$

(strong monotonicity)

Dominated Empirical Myerson's Auction

\square Compute dominated empirical distribution \bar{E}_{i} for each bidder i
\square Return Myerson's optimal auction $M_{\bar{E}}$ w.r.t. $\bar{E}=\bar{E}_{1} \times \bar{E}_{2} \times \cdots \times \bar{E}_{n}$

$$
M_{\bar{E}}(D) \quad \text { vs. } \quad O P T(D)
$$

\square What's the best conceivable lower bound for $M_{\bar{E}}(D)$ given $\bar{E} \preceq D$?

$$
M_{\bar{E}}(D) \geq O P T(\bar{E})
$$

(strong monotonicity)
\square What's the best conceivable lower bound for $\operatorname{OPT}(\bar{E})$ given $\bar{E} \succeq \bar{D}$?

Dominated Empirical Myerson's Auction

\square Compute dominated empirical distribution \bar{E}_{i} for each bidder i
\square Return Myerson's optimal auction $M_{\bar{E}}$ w.r.t. $\bar{E}=\bar{E}_{1} \times \bar{E}_{2} \times \cdots \times \bar{E}_{n}$

$$
M_{\bar{E}}(D) \quad \text { vs. } \quad O P T(D)
$$

\square What's the best conceivable lower bound for $M_{\bar{E}}(D)$ given $\bar{E} \preceq D$?

$$
M_{\bar{E}}(D) \geq O P T(\bar{E})
$$

(strong monotonicity)
\square What's the best conceivable lower bound for $\operatorname{OPT}(\bar{E})$ given $\bar{E} \succeq \bar{D}$?

$$
O P T(\bar{E}) \geq O P T(\bar{D})
$$

(weak monotonicity)

Dominated Empirical Myerson's Auction

\square Compute dominated empirical distribution \bar{E}_{i} for each bidder i
\square Return Myerson's optimal auction $M_{\bar{E}}$ w.r.t. $\bar{E}=\bar{E}_{1} \times \bar{E}_{2} \times \cdots \times \bar{E}_{n}$

$$
M_{\bar{E}}(D) \quad \text { vs. } \quad O P T(D)
$$

\square What's the best conceivable lower bound for $M_{\bar{E}}(D)$ given $\bar{E} \preceq D$?

$$
M_{\bar{E}}(D) \geq O P T(\bar{E})
$$

(strong monotonicity)
\square What's the best conceivable lower bound for $\operatorname{OPT}(\bar{E})$ given $\bar{E} \succeq \bar{D}$?

$$
O P T(\bar{E}) \geq O P T(\bar{D})
$$

(weak monotonicity)
\square Compare $\operatorname{OPT}(\bar{D})$ and $\operatorname{OPT}(D)$

Strong (Revenue) Monotonicity

Theorem
For any value distributions $D \succeq \bar{E}$, and the optimal auction $M_{\bar{E}}$ for \bar{E}

$$
M_{\bar{E}}(D) \geq O P T(\bar{E})
$$

Strong (Revenue) Monotonicity

Theorem

For any value distributions $D \succeq \bar{E}$, and the optimal auction $M_{\bar{E}}$ for \bar{E}

$$
M_{\bar{E}}(D) \geq O P T(\bar{E})
$$

Here we only prove weak monotonicity, i.e., $\operatorname{OPT}(D) \geq O P T(\bar{E})$, via coupling

Strong (Revenue) Monotonicity

Theorem

For any value distributions $D \succeq \bar{E}$, and the optimal auction $M_{\bar{E}}$ for \bar{E}

$$
M_{\bar{E}}(D) \geq O P T(\bar{E})
$$

Here we only prove weak monotonicity, i.e., $O P T(D) \geq O P T(\bar{E})$, via coupling quantiles $q_{1}, q_{2}, \ldots, q_{n}$

Strong (Revenue) Monotonicity

Theorem

For any value distributions $D \succeq \bar{E}$, and the optimal auction $M_{\bar{E}}$ for \bar{E}

$$
M_{\bar{E}}(D) \geq O P T(\bar{E})
$$

Here we only prove weak monotonicity, i.e., $O P T(D) \geq O P T(\bar{E})$, via coupling quantiles $q_{1}, q_{2}, \ldots, q_{n}$

Strong (Revenue) Monotonicity

Theorem

For any value distributions $D \succeq \bar{E}$, and the optimal auction $M_{\bar{E}}$ for \bar{E}

$$
M_{\bar{E}}(D) \geq O P T(\bar{E})
$$

Here we only prove weak monotonicity, i.e., $O P T(D) \geq O P T(\bar{E})$, via coupling quantiles $q_{1}, q_{2}, \ldots, q_{n}$

1. Values $v_{1}, v_{2}, \ldots, v_{n} \sim D$
2. Values $\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{n} \sim \bar{E}$
3. Allocate to bidder i with highest non-negative $\bar{\varphi}_{\bar{E}_{i}}\left(\overline{\boldsymbol{v}}_{\boldsymbol{i}}\right)$
4. Winner pays threshold bid

Strong (Revenue) Monotonicity

Theorem

For any value distributions $D \succeq \bar{E}$, and the optimal auction $M_{\bar{E}}$ for \bar{E}

$$
M_{\bar{E}}(D) \geq O P T(\bar{E})
$$

Here we only prove weak monotonicity, i.e., $O P T(D) \geq O P T(\bar{E})$, via coupling quantiles $q_{1}, q_{2}, \ldots, q_{n}$

1. Values $v_{1}, v_{2}, \ldots, v_{n} \sim D$
2. Allocate to bidder i with highest non-negative $\bar{\varphi}_{\bar{E}_{i}}\left(\bar{v}_{i}\right)$
3. Values $\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{n} \sim \bar{E}$
4. Allocate to bidder i with highest non-negative $\bar{\varphi}_{\bar{E}_{\boldsymbol{i}}}\left(\overline{\boldsymbol{v}}_{\boldsymbol{i}}\right)$
5. Winner pays threshold bid

Strong (Revenue) Monotonicity

Theorem

For any value distributions $D \succeq \bar{E}$, and the optimal auction $M_{\bar{E}}$ for \bar{E}

$$
M_{\bar{E}}(D) \geq O P T(\bar{E})
$$

Here we only prove weak monotonicity, i.e., $O P T(D) \geq O P T(\bar{E})$, via coupling quantiles $q_{1}, q_{2}, \ldots, q_{n}$

1. Values $v_{1}, v_{2}, \ldots, v_{n} \sim D$
2. Allocate to bidder i with highest non-negative $\bar{\varphi}_{\bar{E}_{i}}\left(\overline{\boldsymbol{v}}_{\boldsymbol{i}}\right)$
3. Winner pays threshold bid, which is at least as large
4. Values $\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{n} \sim \bar{E}$
5. Allocate to bidder i with highest non-negative $\overline{\boldsymbol{\varphi}}_{\bar{E}_{\boldsymbol{i}}}\left(\overline{\boldsymbol{v}}_{\boldsymbol{i}}\right)$
6. Winner pays threshold bid

Comparing $O P T(D)$ and $O P T(\bar{D})$

Reminder

Lemma
If we have $m \gtrsim \frac{n \cdot\left(\log \frac{m}{\varepsilon}\right)^{2}}{\varepsilon^{2}}$ samples, then the auxiliary distribution \bar{D}

$$
\mathrm{H}(D, \bar{D}) \leq \frac{\varepsilon}{\sqrt{2}}
$$

Comparing $O P T(D)$ and $O P T(\bar{D})$

Reminder

Lemma
If we have $m \gtrsim \frac{n \cdot\left(\log \frac{m}{\varepsilon}\right)^{2}}{\varepsilon^{2}}$ samples, then the auxiliary distribution \bar{D}

$$
\begin{aligned}
& \mathrm{H}(D, \bar{D}) \leq \frac{\varepsilon}{\sqrt{2}} \\
& \mathrm{TV}(D, \bar{D}) \leq \varepsilon
\end{aligned}
$$

Comparing $O P T(D)$ and $O P T(\bar{D})$

Reminder

Lemma
If we have $m \gtrsim \frac{n \cdot\left(\log \frac{m}{\varepsilon \delta}\right)^{2}}{\varepsilon^{2}}$ samples, then the auxiliary distribution \bar{D}

$$
\mathrm{H}(D, \bar{D}) \leq \frac{\varepsilon}{\sqrt{2}}
$$

$\Rightarrow \quad \operatorname{TV}(D, \bar{D}) \leq \varepsilon$
$\Rightarrow \quad$ for any auction $A, \quad A(\bar{D}) \geq A(D)-\varepsilon$

Comparing $O P T(D)$ and $O P T(\bar{D})$

Reminder

Lemma
If we have $m \gtrsim \frac{n \cdot\left(\log \frac{m}{\varepsilon \delta}\right)^{2}}{\varepsilon^{2}}$ samples, then the auxiliary distribution \bar{D}

$$
\mathrm{H}(D, \bar{D}) \leq \frac{\varepsilon}{\sqrt{2}}
$$

$\Rightarrow \quad \operatorname{TV}(D, \bar{D}) \leq \varepsilon$
$\Rightarrow \quad$ for any auction $A, \quad A(\bar{D}) \geq A(D)-\varepsilon$

$$
\operatorname{OPT}(\bar{D}) \geq O P T(D)-\varepsilon
$$

Summary

Distributions	Sample Complexity
$[0,1]$-Bounded	$\frac{n}{\varepsilon^{2}}$
Regular distributions	$\frac{n}{\varepsilon^{3}}$
MHR distributions	$\frac{n}{\varepsilon^{2}}$
$[1, H]$-bounded distributions	$\frac{H n}{\varepsilon^{2}}$

\square Upper Bound:
Learnability of product distribution + strong (revenue) monotonicity
\square Lower Bound:
Assouad's method

Recap

Two Different Viewpoints

Learnability of Product Distributions

Strong (Revenue) Monotonicity

Further Extensions and Open Questions

Sample Compelxity of Optimization Problems in Stochastic Models

Revenue maximization

Sample Compelxity of Optimization Problems in Stochastic Models

- Revenue maximization
- Single-parameter auctions (e.g., multiple homogeneous items)

Sample Compelxity of Optimization Problems in Stochastic Models

\square Revenue maximization

- Single-parameter auctions (e.g., multiple homogeneous items)
- Multi-parameter auctions (e.g., multiple heterogeneous items) Optimal sample complexity is still open

Sample Compelxity of Optimization Problems in Stochastic Models

\square Revenue maximization

- Single-parameter auctions (e.g., multiple homogeneous items)
- Multi-parameter auctions (e.g., multiple heterogeneous items) Optimal sample complexity is still open
\square Sequential decision-making in stochastic models

Sample Compelxity of Optimization Problems in Stochastic Models

\square Revenue maximization

- Single-parameter auctions (e.g., multiple homogeneous items)
- Multi-parameter auctions (e.g., multiple heterogeneous items) Optimal sample complexity is still open
\square Sequential decision-making in stochastic models
- Prophet inequality Optimal sample complexity is still open

Sample Compelxity of Optimization Problems in Stochastic Models

\square Revenue maximization

- Single-parameter auctions (e.g., multiple homogeneous items)
- Multi-parameter auctions (e.g., multiple heterogeneous items) Optimal sample complexity is still open
\square Sequential decision-making in stochastic models
- Prophet inequality Optimal sample complexity is still open
- Pandora's box

Sample Compelxity of Optimization Problems in Stochastic Models

\square Revenue maximization

- Single-parameter auctions (e.g., multiple homogeneous items)
- Multi-parameter auctions (e.g., multiple heterogeneous items) Optimal sample complexity is still open
\square Sequential decision-making in stochastic models
- Prophet inequality Optimal sample complexity is still open
- Pandora's box
- Online stochastic matching Optimal sample complexity is still open

Underestimating Value Distribution

\square Value distribution D, e.g., uniform on $[0,1]$
\square Empirical distribution E over m samples
\square Bernstein Inequality + Union Bound

$$
\left|F_{E}(v)-F_{D}(v)\right| \lesssim \sqrt{\frac{F_{D}(v)\left(1-F_{D}(v)\right) \log \frac{m}{\delta}}{m}}+\frac{\log \frac{m}{\delta}}{m}
$$

Underestimating Value Distribution

\square Value distribution D, e.g., uniform on $[0,1]$
\square Empirical distribution E over m samples
\square Bernstein Inequality + Union Bound

$$
\left|F_{E}(v)-F_{D}(v)\right| \lesssim \sqrt{\frac{F_{D}(v)\left(1-F_{D}(v)\right) \log \frac{m}{\delta}}{m}}+\frac{\log \frac{m}{\delta}}{m}
$$

\square Dvoretzky-Kiefer-Wolfowitz (DKW) inequality

$$
\left|F_{E}(v)-F_{D}(v)\right| \lesssim \sqrt{\frac{\log \frac{1}{\delta}}{m}}
$$

Underestimating Value Distribution

\square Value distribution D, e.g., uniform on $[0,1]$
\square Empirical distribution E over m samples
\square Bernstein Inequality + Union Bound

$$
\left|F_{E}(v)-F_{D}(v)\right| \lesssim \sqrt{\frac{F_{D}(v)\left(1-F_{D}(v)\right) \log \frac{m}{\delta}}{m}}+\frac{\log \frac{m}{\delta}}{m}
$$

\square Dvoretzky-Kiefer-Wolfowitz (DKW) inequality

$$
\left|F_{E}(v)-F_{D}(v)\right| \lesssim \sqrt{\frac{\log \frac{1}{\delta}}{m}}
$$

\square Open question: Is there a Bernstein-style DKW inequality?

Bidders' Strategic Behaviors in Data-Driven Auction Design

\square Bidders may underbid today in order to get a lower price tomorrow

Bidders' Strategic Behaviors in Data-Driven Auction Design

\square Bidders may underbid today in order to get a lower price tomorrow
\square Can we learn optimal auctions despite of bidders' strategic behaviors?

Bidders' Strategic Behaviors in Data-Driven Auction Design

\square Bidders may underbid today in order to get a lower price tomorrow
\square Can we learn optimal auctions despite of bidders' strategic behaviors?

- Impossible if bidders are patient

Bidders' Strategic Behaviors in Data-Driven Auction Design

\square Bidders may underbid today in order to get a lower price tomorrow
\square Can we learn optimal auctions despite of bidders' strategic behaviors?

- Impossible if bidders are patient
- Possible for relatively simple auctions, and impatient bidders (with slower convergence rate than learning form non-strategic bidders)

Bidders' Strategic Behaviors in Data-Driven Auction Design

\square Bidders may underbid today in order to get a lower price tomorrow
\square Can we learn optimal auctions despite of bidders' strategic behaviors?

- Impossible if bidders are patient
- Possible for relatively simple auctions, and impatient bidders (with slower convergence rate than learning form non-strategic bidders)
- Open question: Is the slower convergence rate avoidable?

References

1. Chenghao Guo, Zhiyi Huang, and Xinzhi Zhang. "Settling the sample complexity of single-parameter revenue maximization." In Proceedings of the 51st Annual ACM Symposium on Theory of Computing, ACM, pp. 662-673, 2019.
2. Chenghao Guo, Zhiyi Huang, Zhihao Gavin Tang, and Xinzhi Zhang. "Generalizing complex hypotheses on product distributions: auctions, prophet inequalities, and Pandora's problem." In Proceedings of the 34th Annual Conference on Learning Theory, PMLR, pp. 2248-2288, 2021.
3. Ziyun Chen, Zhiyi Huang, Dorsa Madji, Zipeng Yan. "Strong revenue (non-)monotonicity of single-parameter auctions." In Proceedings of the 24th ACM Conference on Economics and Computation, ACM, pp. 452-471, 2023.
