Tabular Data

Definition: We target the crowdsourcing of a two-dimensional table $C = \{c_{ij}\}$, where $i \in \{1, \ldots, N\}$ and $j \in \{1, \ldots, M\}$. C has an entity attribute which is the key attribute of the table. Each column is a categorical or a continuous attribute. Each cell c_{ij} represents the value of the i-th entity in the j-th attribute, whose true value (i.e., truth, or ground truth) is denoted as T_{ij}.

Example:

<table>
<thead>
<tr>
<th>Name</th>
<th>Nationality</th>
<th>Age</th>
<th>Notability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leonardo DiCaprio</td>
<td>United States</td>
<td>42</td>
<td>5</td>
</tr>
<tr>
<td>Jet Li</td>
<td>China</td>
<td>54</td>
<td>4</td>
</tr>
<tr>
<td>James Purefoy</td>
<td>Great Britain</td>
<td>53</td>
<td>3</td>
</tr>
</tbody>
</table>

Entity attr | Continuous attr | Categorical attr

Problem: A task is related to a cell c_{ij} and the workers are asked to answer the task, by providing values for the cell. Given the set of answers $\{a_{ij}^u\}$, by workers u to cells c_{ij}, our target is to obtain the truth table including all the accurate estimates \hat{T}_{ij} for each cell c_{ij}’s true value T_{ij}.

Existing Methods[3]

For categorical data only:
- Majority Voting (MV) determines the correct labels based on the majority of answers from workers.
- EM iteratively estimates each worker’s confusion matrix, which is used to infer the correct labels.
- GLAD is a probabilistic approach for categorical data.

For continuous data only:
- Median uses the median of workers’ answers as the estimated true value.
- GTM[2] is a truth-finding method specially designed for continuous data.

For both categorical and continuous data:
- CRH[1] detects truth from heterogeneous data types by minimizing a loss function.

Weaknesses: Existing work often treats related attributes independently, leading to suboptimal performance. T-Crowd integrates each worker’s answers on different attributes to effectively learn his/her trustworthiness and true values.

Quality of a Worker

For categorical types, $q_u \in [0,1]$ indicates the probability that the worker u would correctly answer a task traditionally [1], i.e.,

$$P(a_{ij}^u = z) = (q_u)^{1_{\{\text{true}\}}} \cdot (1 - q_u)^{1_{\{\text{false}\}}}$$

where $1_{\{\text{true}\}}$ is an indicator function and z is possible answer in L.

For continuous types, we model the distribution of a_{ij}^u given by worker u as a normal distribution $a_{ij}^u \sim \mathcal{N}(\hat{T}_{ij}, \phi_u)$ [2]:

$$P(a_{ij}^u = z) = \frac{1}{\sqrt{2\pi}\phi_u} \exp\left(-\frac{(x - \hat{T}_{ij})^2}{2\phi_u}\right)$$

Where \hat{T}_{ij} is the expected value of c_{ij} and ϕ_u is the variance of u. Inspired by the idea of discretization of continuous data, we model categorical quality q_u as the area under the normal distribution curve $\mathcal{N}(\hat{T}_{ij}, \phi_u)$ in a small range ε around the truth \hat{T}_{ij}:

$$q_u = P(\hat{T}_{ij} - \varepsilon < a_{ij}^u < \hat{T}_{ij} + \varepsilon) = \text{erf}(\varepsilon / \sqrt{2\phi_u})$$

where ε is a general parameter that controls the shape of the area and erf is the Gauss error function.

Difficulty of a Cell

The quality of answer a_{ij}^u depends on the quality of worker u, the difficulty β_j of attribute (i.e., column) j, and the difficulty α_i of entity (i.e., row) i. To incorporate the difficulty, the variance of continuous answer to c_{ij} as $\phi_u = \alpha_i \beta_j \phi_u$. Based on above equation, the categorical quality is $q_u = \text{erf}(\varepsilon / \alpha_i \beta_j \phi_u)$.

Inference Process

Note that \hat{T}_{ij}, α_i, β_j and ϕ_u are unknown which need to compute. The objective function of the problem is to maximize the likelihood of workers’ answers, i.e.,

$$\arg \max_{\alpha_i, \beta_j, \phi_u} P(A|\alpha, \beta, \phi) = \arg \max_{\alpha_i, \beta_j, \phi_u} \sum_{T} P(A, T|\alpha, \beta, \phi)$$

where A is the current set of answers and T_{ij} denotes the estimated distribution of truth in cell c_{ij}.

To optimize this non-convex function, we use the EM algorithm, which takes an iterative approach. In each iteration of EM, the E-step computes the hidden variables T_{ij}, and the M-step computes the parameters α_i, β_j and $\phi_u(q_u)$.

Experiments

<table>
<thead>
<tr>
<th>Method</th>
<th>Celebrity Error Rate</th>
<th>Celebrity MNAD</th>
<th>Restaurant Error Rate</th>
<th>Restaurant MNAD</th>
<th>Emotion Error Rate</th>
<th>Emotion MNAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-Crowd</td>
<td>0.0441</td>
<td>0.6339</td>
<td>0.1855</td>
<td>0.5607</td>
<td>0.5961</td>
<td></td>
</tr>
<tr>
<td>CRH</td>
<td>0.0460</td>
<td>0.6737</td>
<td>0.1921</td>
<td>0.5835</td>
<td>0.7224</td>
<td></td>
</tr>
<tr>
<td>Maj. Voting</td>
<td>0.0573</td>
<td>/</td>
<td>0.2003</td>
<td>/</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>EM</td>
<td>0.0620</td>
<td>/</td>
<td>0.2463</td>
<td>/</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>GLAD</td>
<td>0.0498</td>
<td>/</td>
<td>0.1905</td>
<td>/</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>/</td>
<td>0.6998</td>
<td>/</td>
<td>0.6784</td>
<td>0.7026</td>
<td></td>
</tr>
<tr>
<td>GTM</td>
<td>/</td>
<td>0.6516</td>
<td>/</td>
<td>0.5871</td>
<td>0.6792</td>
<td></td>
</tr>
</tbody>
</table>

References